
HAL Id: inria-00087226
https://inria.hal.science/inria-00087226v4
Submitted on 9 Mar 2010 (v4), last revised 9 Apr 2010 (v5)

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Interactive Learning of Node Selecting Tree Transducers
Julien Carme, Rémi Gilleron, Aurélien Lemay, Joachim Niehren

To cite this version:
Julien Carme, Rémi Gilleron, Aurélien Lemay, Joachim Niehren. Interactive Learning of Node Select-
ing Tree Transducers. Machine Learning, 2007, Machine Learning, 66 (1), pp.33-67. �10.1007/s10994-
006-9613-8�. �inria-00087226v4�

https://inria.hal.science/inria-00087226v4
https://hal.archives-ouvertes.fr


Interactive Learning of Node Selecting Tree

Transducers⋆

Julien Carme, Rémi Gilleron, Aurélien Lemay, Joachim Niehren

INRIA Futurs and Lille University, LIFL, Mostrare project

Version of March 9, 2010

Key words Web information extraction, wrapper induction, grammatical
inference, tree automata, monadic queries.

Abstract We develop new algorithms for learning monadic node selection
queries in unranked trees from annotated examples, and apply them to
visually interactive Web information extraction.

We propose to represent monadic queries by bottom-up deterministic
Node Selecting Tree Transducers (Nstts), a particular class of tree au-
tomata that we introduce. We prove that deterministic Nstts capture the
class of queries definable in monadic second order logic (Mso) in trees,
which Gottlob and Koch (2002) argue to have the right expressiveness for
Web information extraction, and prove that monadic queries defined by
Nstts can be answered efficiently. We present a new polynomial time al-
gorithm in Rpni-style that learns monadic queries defined by deterministic
Nstts from completely annotated examples, where all selected nodes are
distinguished.

In practice, users prefer to provide partial annotations. We propose to
account for partial annotations by intelligent tree pruning heuristics. We
introduce pruning Nstts - a formalism that shares many advantages of
Nstts. This leads us to an interactive learning algorithm for monadic que-
ries defined by pruning Nstts, which satisfies a new formal active learning
model in the style of Angluin (1987).

We have implemented our interactive learning algorithm and integrated
it into a visually interactive Web information extraction system – called
Squirrel– by plugging it into the Mozilla Web browser. Experiments on

⋆ A previous version of this article was published in Machine Learning 66,1
(2007) 33–67.



2 Julien Carme et al.

realistic Web documents confirm excellent quality with very few user inter-
actions during wrapper induction.

Contents

1 Node Selection Tasks in Web Information Extraction . . . . . . . . . . . 2
2 Node Selecting Tree Transducers: Nstts and pNstts . . . . . . . . . . 6
3 Testing Functionality in Polynomial Time . . . . . . . . . . . . . . . . . 12
4 Learning Nstts from Completely Annotated Examples . . . . . . . . . 17
5 Interactive Learning of pNstts . . . . . . . . . . . . . . . . . . . . . . . 21
6 Squirrel Web Information Extraction System . . . . . . . . . . . . . . . 27
7 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
A Testing Cut-Functionality in Polynomial Time . . . . . . . . . . . . . . 37
B Efficient Query Answering for Nstts and pNstts . . . . . . . . . . . . 40
C Expressiveness of Nstts and pNstts . . . . . . . . . . . . . . . . . . . 42

1 Node Selection Tasks in Web Information Extraction

The Web’s information overload calls for intelligent services that provide
high-quality collected and value-added information. Information from di-
verse sources sites relevant to the service needs to be integrated and made
accessible in a uniform manner. Web documents in Html are ill-suited for
automated processing, which nevertheless is an inevitable prerequisite. This
problem is addressed by much work on so-called Web wrappers. These are
programs that extract the relevant information from Html documents and
translate it into a more machine-friendly format.

Manual wrapper programming is often not manageable. Even for ex-
perts, this task remains time consuming and error prone. Furthermore,
wrappers must frequently be adapted to changes of the document sources.
This is why new tools have been proposed that assist humans in wrapper
creation. These are of two kinds:

– Machine learning techniques are used for inducing string based wrappers.
Most systems (Kushmerick, 1997; Hsu & Dung, 1998; Freitag & Mc-
Callum, 1999; Freitag & Kushmerick, 2000; Kushmerick, 2000; Muslea,
Minton, & Knoblock, 2001; Chidlovskii, 2001) rely on finite-state ap-
proaches (patterns, automata and transducers, Hidden Markov Models).
See in Kushmerick (2002) for a comparison.

– Visual specification of node selection queries in trees (Baumgartner,
Flesca, & Gottlob, 2001; Gottlob & Koch, 2002). Suitable query specifi-
cation languages behind the graphical interface are monadic Datalog or
similar tree logics.

Some of the most recent approaches propose machine learning techniques
for inducing tree-based wrappers. One of them is multi-view inductive logic
programming (Cohen, Hurst, & Jensen, 2003) which enriches string-based



Interactive Learning of Node Selecting Tree Transducers 3

Search Results for: Bruss

Found 26 Total matches in 1.32067 seconds

Score: 1

Name: Ingo Bruss First Entered: 03/07/96

Email: bruss@mach.uni/karsruhe.de

Score: 1

Name: Trevor Bruss First Entered: 20/05/97
Email: bruss@pz621.inland.com

Score: 1

Name: Trevor Bruss First Entered: 04/08/98
Email: bruss@virgo.valpo.edu

Figure 1 A rendered Html document returned by some Web search machine.

machine learning techniques by tree views. Another is based on finite-state
techniques (Kosala, Bruynooghe, Van den Bussche, & Blockeel, 2003; Raey-
maekers, Bruynooghe, & Van den Bussche, 2005). This approach differs
from ours in that it represents monadic queries by a local tree languages.
Induction starts from learning algorithms from positive examples. For a
more detailed comparison see Section 6.

In the present article – extending on Carme, Lemay, and Niehren (2004a)
and Carme, Gilleron, Lemay, and Niehren (2005) – we combine features of
both, machine learning techniques and visual specification. We define an
interactive setting for inducing tree based wrappers. We are interested in
machine learning techniques that can infer node selection queries in trees.
We consider an Html document as a tree structure obtained by parsing the
document. An example for a rendered Html document is given in Figure
1, and its parse tree in Figure 2. The Html document contains the email
addresses of three persons, called Ingo Bruss, Trevor Bruss, and Trevor
Bruss again, each of which is described in its own Html table. The names
of these persons as well as their email addresses are contained in hyperlinks,
which correspond to nodes of the parse tree that are labeled by tag A.

Suppose that we want to extract all email addresses in this Html doc-
ument. With respect to the parse tree, this wish can be expressed by the
monadic node selection query that selects all hyperlinks in the last row of a
table. In XPath like notation (but with additional axes), this query can be
defined as follows:

/descendant-or-self::TABLE/lastchild::*/descendant::A/child::*

Start at the root, go downwards to a node labeled by TABLE, move to its
last child, then move to some A-labeled offspring and finally select one of
its children. The same query can be expressed by a conjunctive formula of



4 Julien Carme et al.

HTML

HEAD BODY

. . . TABLE

. . .

TABLE

TR

. . .

TR

TD

. . . A

Trevor Bruss

TD

. . .

TR

TD

. . . A

bruss@pz621.inland.com

TABLE

. . .

Figure 2 The parse tree of the Html document in Figure 1.

first-order logic with one free node variable x:

{x | ∃x1∃x2∃x3. labelTABLE(x1) ∧ lastchild(x1, x2)
∧descendant(x2, x3) ∧ labelA(x3) ∧ child(x3, x)}

One might opt for a more precise query that further constrains the path
from the TABLE to the A labeled node. For tree structures generated by
the same search machine, however, such a refinements seem unnecessary to
correctly select the informative nodes.

Another task of interest might be to extract all pairs of names and
email addresses. This binary query can be expressed by a conjunctive first-
order formula with two free variables. In what follows, however, we will
restrict ourselves to monadic queries. This is because most existing systems
rely on monadic queries for treating more complex binary or n-ary cases
(Baumgartner et al., 2001; Muslea et al., 2001; Kosala et al., 2003).

We thus consider the problem of extracting sets of informative nodes
in trees, that are generated homogeneously by some back-end database or
search machine. We fix a formal query representation language and split the
selection task into two subproblems:

1. find a representation of an appropriate monadic query for informative
nodes in trees; here we want to use machine learning techniques, rather
than manual query specification or programming.

2. answer the query in a tree: given a tree and a query definition, compute
the set of nodes that the query selects in the tree.

Suitable query representation languages thus need to satisfy a number of
constraints.

Expressiveness: All useful monadic queries should be definable in the chosen
query representation language. Monadic second-order logic (MSO) is the
yardstick for measuring the expressiveness of query languages for trees
and thus wrapper language in information extraction from tree struc-
tured documents (Gottlob & Koch, 2002). It allows to define all regular



Interactive Learning of Node Selecting Tree Transducers 5

node selection queries in trees, which is adequate for many information
extraction tasks.

Efficiency: We need efficient algorithms for answering monadic queries given
a tree a representation of the query in our language.

Learnability: The objective is to induce monadic queries from trees in some
of the nodes are annotated that are to be extracted. In the simpler case,
we consider completely annotated Web pages in which all nodes are an-
notated that are subject to extraction. Because complete annotation may
be unfeasible, we also consider partial annotations. Therefore we need
to consider the problem of learning monadic queries from completely or
partially annotated trees.

In this article, we propose two new query representation formalisms for mo-
nadic queries that are based on tree automata, Node Selecting Tree Trans-
ducers (Nstts) and Pruning Node Selecting Tree Transducers (pNstts).
We introduce Nstts and pNstts in Section 2, with the objective to illus-
trate the basic ideas and concepts related to tree automata for unranked
trees and monadic queries by examples.

In Section 3, we show that these query representation languages sat-
isfy some of the algorithmic learnability requirements. What we need is
an efficient test to determine whether a tree automaton is functional and
thus an Nstt, or cut-functional and thus a pNstt. The algorithm for cut-
functionality is elaborated in the appendix (Section A).

Our results on efficiency and expressiveness of Nstts and pNstts are
postponed to the appendix as well (Sections B and C). There, we show
that monadic queries defined by deterministic Nstts or pNstts can be
answered efficiently with linear time combined complexity. We then show
that this holds even though deterministic Nstts and pNstts capture the
class of monadic queries definable in MSO. Both query languages Nstts
and pNstts are thus unrestricted from the view point of expressiveness1.

The subsequent sections are devoted to learning algorithms for node se-
lection queries, that are represented by Nstts or pNstts. In Section 4,
we present a new polynomial time algorithm in Rpni-style that we call
tRpni which learns monadic queries defined by deterministic Nstts from
completely annotated examples (for the target query). It relies on a sub-
procedure for testing membership to the class of Nstts, i.e. for testing
functionality.

In Section 5, we model the interactive process of learning monadic que-
ries as active learning in the style of Angluin (1987), in order to measure
the user’s effort during the interaction. Only partially annotated trees are
available in interactive Web information extraction. We solve this problem
by using intelligent tree pruning heuristics and we present a practically fea-
sible interactive learning algorithm for monadic queries defined by pNstts.

1 Completeness with respect to expressiveness and learning are independent
questions. Our learning algorithm tRpni for Nstts is a complete, while our algo-
rithm Rpniprune inducing pNstts is not (for realistic pruning functions).



6 Julien Carme et al.

It relies on a sub-procedure for testing membership to the class of pNstts,
i.e. cut-functionality.

Finally, Section 6 discusses the integration of our learning algorithms
into visually interactive Web information extraction. We have implemented
our core learning algorithm in OCaml and have turned it into a visually in-
teractive Web information extraction system – called Squirrel– by integra-
tion into the Mozilla Web browser. Experiments on realistic Web documents
confirm excellent quality with very few user interactions – annotations and
corrections – during wrapper induction.

2 Node Selecting Tree Transducers: Nstts and pNstts

Parse trees of Html or Xml documents are sibling ordered unranked trees
whose nodes may have an unbounded list of children. In this section, we
develop query representation languages for monadic node selection queries
in unranked trees, that we will use for query induction by methods of gram-
matical inference. We rely on tree automata for unranked trees. We propose
two kinds of tree automata, that we call node selecting tree transducers
(Nstts) and pruning node selecting tree transducers (pNstts).

We start with a gentle introduction to Nstts and pNstts, whose objec-
tive is to illustrate the basic ideas and concepts related to tree automata for
unranked trees and monadic queries by examples. Algorithmic learnability
aspects will be discussed in Section 3. Questions on efficiency and expres-
siveness for Nstts and pNstts are answered in the appendix (Sections B
and C).

2.1 Monadic queries in unranked trees

Let N = {1, 2, . . .} be the set of natural numbers without 0 and B = {0, 1}
be the set of Booleans. Let Σ be a finite set, the set of node labels, also
called the signature.

An unranked tree over Σ is a finite tree with Σ-labeled nodes whose
edges are totally ordered from the left to the right. An unranked tree t over
Σ is a pair consisting of a label a ∈ Σ and a possibly empty list of unranked
trees t1, . . . , tn: the following abstract syntax:

t ::= a(t1, . . . , tn) where n ∈ N ∪ {0} and a ∈ Σ

As a running example, we consider the following unranked tree with labels
in Σ = {L,F ,A,H ,W }:

films = L(F (A,H ),F (A,W ),F (A,H ))

This tree represents a list (L) of three films (F), two of which are directed
by Hitchcock (H) and one by Wenders (W). The letter (A) represents the



Interactive Learning of Node Selecting Tree Transducers 7

L

F

A H

F

A W

F

A H

Figure 3 The unranked tree films = L(F (A,H ),F (A,W ),F (A,H )). We want
to query for the actor lists (A) in the films by Hitchcock (H).

actor lists of these films (which would rather expand to a larger subtree in
realistic examples). We draw trees as graphs, as for instance in Figure 3.

As in this example, we will systematically ignore textual contents of
Html or Xml documents in this article. This design decision clearly sim-
plifies our tasks, which nevertheless remains useful for practical applications
to Web information extraction, as we will see.

We write nodes(t) for the set of nodes of a tree t. We identify a node
with its relative address, so that nodes(t) ⊆ N

∗. The node 21, for instance, is
the first child of the second child of the root. In our example tree films, this
node is labeled by A. We write t(v) for the the label of some v ∈ nodes(t),
for instance:

films(21) = A

We say that two trees have the same shape if they have the same set of
nodes. This definition works, since we identify nodes with their relative
address from the root.

Definition 1 A monadic query in unranked Σ-trees is a function q that
maps unranked trees t over Σ to subsets of their nodes:

q(t) ⊆ nodes(t)

The function nodes itself, for instance, is a monadic query that maps a tree t

to the set of all its nodes. A less trivial example is the query actors_hitchcock

which asks for the set of all actor lists in films by Hitchcock. Applied to the
example tree films, this query yields the following set of nodes:

actors_hitchcock(films) = {11, 31}

Each actor list of a Hitchcock film corresponds to some node labeled by
A, that has a parent labeled by F , and a next sibling to the right that is
labeled by H. Furthermore, the F -parent should belong to a list of films, so
that its own parent is labeled by L and all its siblings by F .

2.2 Tree automata for unranked trees

Tree automata are machines that recognize sets of trees. Tree automata
are traditionally developed for binary or ranked trees (Comon, Dauchet,



8 Julien Carme et al.

Gilleron, Jacquemard, Lugiez, Tison, & Tommasi, 1997), and indeed, the
situation gets different for unranked trees.

A large number of different automata notions for unranked trees and
querying have been proposed recently. Besides so called unranked tree au-
tomata (UTAs) by Brüggemann-Klein, Wood, and Murata (2001) that are
most popular in the database community (Libkin, 2005) and identical with
the much earlier pseudo-automata by Thatcher (1967), there are so called
query automata (Neven & Schwentick, 2002), forest grammars of Neumann
and Seidl (1998), automata on binary encodings of unranked trees (Frick,
Grohe, & Koch, 2003) and the algebraic recognizably notion of stepwise tree
automata by Carme, Niehren, and Tommasi (2004b).

With respect to query induction as proposed in this article, we need
an automata notion for unranked trees that comes with a good notion of
bottom-up determinism, so that the Myhill-Nerode theorem on minimiza-
tion holds. Martens and Niehren (2007) discuss the available alternatives.
They show that unique minimization fails for deterministic UTAs, and ar-
gue that stepwise tree automata yield smaller minimal automata than the
inverted standard binary encoding (up to a linear factor depending on the
size of the alphabet) and parallel UTAs (Raeymaekers & Bruynooghe, 2004;
Cristau, Löding, & Thomas, 2005). We thus choose to work with stepwise
tree automata.

Stepwise tree automata can be understood as standard tree automata
that operate on binary encodings of unranked trees (not the standard en-
coding however). This fact will come in handy for our more formal results
on Nstts and pNstts in Section 3. In this section, however, we will use fi-
nite word automata syntax to present stepwise tree automata. Semantically,
however, they behave such as tree automata. The relationship to standard
tree automata will be clarified on need (in Section 3.2).

Definition 2 A stepwise tree automaton for unranked trees over Σ is a
finite word automaton A with alphabet(A) = states(A) ⊎ Σ such that

– there is a unique initial state: initial(A) = {qI}.

– if q0
a
→ q′ in rules(A) for some a ∈ Σ then q0 = qI , and

– no transition q1
q2

→ q in rules(A) satisfies q = qI nor q2 = qI .

A run r of a stepwise tree automaton A on an unranked tree t labels the
nodes of t by states of A. It is a function of type r : nodes(t) → states(A)
that can be understood as a tree over states(A) having the same shape as
t. Value r(v) is the state that run r assigns to node v ∈ nodes(t). If v has
n children v1, . . . , vn then r(v) is a state obtained by running A on the
following word:

t(v) r(v1) . . . r(vn)

This word starts with the label of v in t and continues by the sequence
of states that r assigns to the children of v. A run is successful if it maps
the root of t to a final state of A. A stepwise tree automaton A accepts
an unranked tree t if there exists a successful run of A on t. The language



Interactive Learning of Node Selecting Tree Transducers 9

6 4

5

3

1 2

F
L

4,5

H
W

A

1
2

3
L6

F 4

A1 H 2

F 5

A1 W 3

F 4

A1 H 2

Figure 4 A stepwise tree automaton that accepts film lists, and the films tree
annotated by a successful run of this automaton. State 6 of the root is obtained
by evaluating the word L454 by the automaton.

L(A) of a stepwise tree automaton A is the set of all unranked trees that A

accepts. An example for a stepwise tree automaton is given in Figure 4. This
automaton accepts all lists containing films by Hitchcock and Wenders. The
films tree annotated by a run of this automaton is drawn in Figure 4.

Definition 3 A stepwise tree automaton A is (bottom-up) deterministic,
if it is a left-to-right deterministic finite automaton, i.e., for ever every
q ∈ states(A) and a ∈ alphabet(A) there exists at most one q′ in states(A)

such that q
a
→ q′ belongs to rules(A).

What might be less clear at the time being is that every stepwise tree au-
tomaton can be determinized without altering its tree language, and that
all regular languages of unranked trees are recognized by a unique mini-
mal deterministic stepwise tree automaton (up to isomorphism). This will
become obvious from the tree automata perspective adopted in Section 3.

2.3 Nstts for unranked trees

The next goal is to use stepwise tree automata in order to define monadic
queries in unranked trees. There are many possibilities to do so, Nstts
provide one of them, pNstts another. Two further methods will be discussed
and used in Section B.

An annotated tree over Σ is a tree over Σ×B. Every annotated tree can
be decomposed into a product t × β between a Σ-tree t and a B-tree β of
the same shape. For convenience, we will often write ab for pairs (a, b). For
instance:

L(F (A,H )) × 0(0(1, 0)) = L0(F0(A1,H0))

A completely annotated tree for a query q in Σ-trees is an annotated tree of
the form:

t × q(t)



10 Julien Carme et al.

L0

F0

A1 H0

F0

A0 W0

F0

A1 H0

L0

F0

A1 H0

L0

F0

A0 W0

Figure 5 Three film lists completely annotated by the query actors_hitchcock

6 4

5

3

0 1 2

F0

L0

4,5

H0

W0

A1

A0

1

0

2

3

L0
6

F0
4

A1
1 H0

2

F0
5

A0
0 W0

3

F0
4

A1
1 H0

2

Figure 6 A deterministic Nstt defining the query actors_hitchcock and one of
its successful runs.

for some Σ-tree t. Here, we freely consider the set q(t) as a B-tree of the
shape of t, which relabels selected nodes of t to 1 and all others to 0. Ex-
amples for three completely annotated trees for the query actors_hitchcock

are given in Figure 5.
The idea of Nstts is to represent a monadic query q by a tree automaton

that recognizes the set of completely annotated trees for q except for some
t × q(t) where q(t) = ∅. Such languages L of annotated trees are functional
in that for every Σ-tree t there exists at most one Boolean tree β such that
t × β ∈ L(A) (namely β = q(t)).

Definition 4 An Nstt over Σ is a stepwise tree automaton A over Σ ×B

that recognizes a functional language of annotated trees. Every Nstt A

defines a monadic query qA such that for all unranked Σ-trees t:

qA(t) = {v | ∃B-tree β s.t. t × β ∈ L(A), β(v) = 1}

As example, we present in Figure 6 a deterministic Nstt that defines the
query actors_hitchcock . Let us recall that we freely write ab instead of
(a, b).

A query q is represented by an Nstt A if A defines the query q, i.e.
qA = q. As we do not care about trees t such that q(t) = ∅, a query q

may be represented by several Nstts. Two Nstts A and A′ are said to be
equivalent if qA = qA′ .

2.4 Pruning Nstts for unranked trees

One of the disadvantages of Nstts is that they need to model all subtrees,
even those that are irrelevant for node selection. The Nstt in Figure 4, for



Interactive Learning of Node Selecting Tree Transducers 11

L0

F0

A1 H0

T T

L0

T T F0

A1 H0

Figure 7 Two trees obtained by pruning the tree films annotated by query
actors_hitchcock . The Boolean annotations are compatible with this query.

instance, has rules to recognize films that are not directed by Hitchcock (but
by Wenders). In Web information extraction, such information is typically
not available or difficult to learn from the very few given examples.

We propose pNstts to solve this problem. These are machines that
operate like Nstts except they first prune trees non-deterministically and
then select nodes from the pruned tree. This way, they are able to ignore
all pruned subtrees.

Let T be a special constant, that we use to mark leaves in pruned trees
where complete subtrees have been cut off. A pruned tree over a signature
Σ is an unranked tree over the signature

ΣT = Σ ∪ {T}

whose inner nodes are labeled in Σ. Only leaves of pruned trees may be
labeled by T. For every Σ-tree t, let cuts(t) be the set of ΣT-trees obtained
by pruning some subtrees of t, i.e., by substituting some complete subtrees
of t by T. Two pruned trees t1 and t2 are said to be compatible if they can
be obtained by pruning from some common third tree, i.e., if there is a tree
t such that t1, t2 ∈ cuts(t).

See Figure 7 for some examples of pruned annotated trees, which have
the signature (Σ × B)T. It will be convenient to identify pruned annotated
trees over (Σ×B)T with trees over (Σ×B)⊎{TT}, i.e., we implicitly identify
T with the pair (T,T) which is T = TT. This permits us to decompose all
trees over (Σ × B)T into products t × β of trees t over ΣT and trees β

over BT. Intuitively, the annotation of T by T means that we don’t know
whether nodes in pruned subtrees will be selected or not.

We call a language L of (Σ × B)T-trees cut-functional if for all t1 ×
β1, t2 × β2 ∈ L such that t1 and t2 are compatible, it holds that β1 and β2

are compatible. This means that different prunings t1 and t2 of the same
third tree t will never carry contradictory information. A ΣT-tree t is called
unpruned if T does not occur in the set of node labels used by t. Note that
cut-functional languages of unpruned trees (and thus with signature Σ ⊎B)
are functional.

Consider for instance the two annotated prunings of films in Figure 7.
Their Boolean annotations are compatible in that both of them require
the root to be unselected. For all other nodes, there exist no overlapping
annotations. The fact that the left-most (resp. right-most) A-node is to be
selected is available on the left-most (resp. right-most) pruning only.



12 Julien Carme et al.

6

4

7

1 2

F0

L0

4,7

H0

T

A1

1 2

Figure 8 A deterministic pNstt defining the query actors_hitchcock .

L0
6

F0
4

A1
1 H0

2

T7 T7

L0
6

T7 T7 F0
4

A1
1 H0

2

Figure 9 Two runs of different prunings of films by the pNstt in Figure 8. Each
of them selects one of the A-nodes in Hitchcock’s films.

Definition 5 A pNstt over Σ is a tree automaton over (Σ × B)T whose
language is cut-functional. Every pNstt A defines the query qA such that
for all Σ-trees t:

qA(t) = {v ∈ nodes(t) | ∃ t′ ∈ cuts(t),∃β′ : t′ × β′ ∈ L(A), β′(v) = 1}

The nodes of qA(t) can thus be computed non-deterministically, by guessing
a pruning of t′ of t and inspecting the Boolean annotation β′ such that
t′ × β′ ∈ L(A), which is unique by cut-functionality if it exists.

A deterministic pNstt that recognizes the actors lists of Hitchcock’s
films is given in Figure 8. Indeed, it leaves the structure of all films by other
directors than Hitchcock undefined, since these can be pruned to T.

A query q is represented by a pNstt A if A defines the query q, i.e.
qA = q. A query q may be represented by several pNstts.

3 Testing Functionality in Polynomial Time

Queries defined by Nstts and pNstts have three important algorithmic
or descriptive properties that render them suitable for interactive query
induction.

Membership: whether a deterministic tree automaton over Σ × B is func-
tional, and hence an Nstt can be decided in polynomial time. Whether
a tree automaton over (Σ ×B)T is cut-functional and thus a pNstt can
be decided in polynomial time.

Efficiency: monadic queries defined by Nstts or pNstts can be answered
in polynomial time

Expressiveness: deterministic Nstts can express all monadic second order
definable monadic queries, as well as deterministic pNstts.



Interactive Learning of Node Selecting Tree Transducers 13

In this section, we prove the first property, by presenting efficient algo-
rithms for membership testing, on which our learning algorithms will rely.
Efficiency will be treated in Section B. It is fundamental because correctness
of the hypothesis Nstt or pNstt must be checked frequently in the inter-
active setting. Also, an information extraction program must be efficient.
Expressiveness will be treated in Section C. We show that deterministic
Nstts and pNstts can express all MSO-definable queries. The learning
algorithm for Nstts will be able to infer all MSO-definable queries, when
given enough examples (which is unrealistic in practice). The choice of a
practical pruning function will restrict the class of learnable queries by the
learning algorithm of pNstts.

3.1 Tree automata for binary trees

Properties depending on determinism and functionality are easier to estab-
lish for standard tree automata on binary trees. As we will show, they can
be lifted to stepwise tree automata by exploiting a particular binary encod-
ing of unranked trees, called Currying in (Carme et al., 2004b). Note that
the notion of determinism for tree automata on unranked trees works out
smoothly for stepwise tree automata in contrast to more standard notions
of tree automata for unranked trees (Martens & Niehren, 2007).

Standard tree automata (Comon et al., 1997) are traditionally defined
for binary trees, i.e., unranked trees where every node has either no or
exactly 2 children. For sake of simplicity, we will develop our algorithms for
binary trees, and then lift them to unranked trees via binary encoding.

A tree automaton A for binary trees over some signature Σ consists of a
finite set states(A), a subset final(A) ⊆ states(A), and a set of rules of two
kinds where a ∈ Σ and p, p1, p2 ∈ states(A).

a → p instead of p

a(p1, p2) → p instead of p

a

a p1 p2

Standard tree automata can be seen as particular stepwise tree automata,
except that they decompose binary rules into three steps.

As a consequence, the notions of runs, successful runs, and accepted tree
languages carry over immediately. We write runsA(t) for the set of runs of
automaton A on tree t and succ_runsA(t) for the subset of successful runs.
The notion of bottom-up determinism carries over from stepwise to standard
tree automata, too. A tree automaton is bottom-up deterministic if none of
its rules have the same left hand side. It is well known that every standard
tree automaton can be determinized without affecting its tree language.
Further notions that carry over to binary trees without any changes are
functionality, cut-functionality, Nstts, and pNstts.



14 Julien Carme et al.

L

F

A H

F

A W

F

A H

curry
=⇒

@

@

@
L @ @ @

H W H

@ @ @

F A F A F A

Figure 10 Curried binary encoding: curry(L (F (A,H ),F (A,W ),F (A,H ))) =
L @(F @A @H )@(F @A @W )@(F @A @H ).

3.2 Binary encoding of unranked trees

We next relate deterministic stepwise tree automata for unranked trees to
deterministic standard tree automata over binary trees. This shows that
subsequent learnability results for deterministic standard tree automata can
be lifted to deterministic stepwise tree automata. The base idea is to en-
code unranked trees into binary trees by using Currying. The better known
first-child next-sibling encoding fails to do this job; it does not preserve
determinism.

Some more care is needed when determinizing stepwise tree automata.
The usual determinization algorithm for finite automata fails since it alters
the tree language of a stepwise tree automaton. Instead, a stepwise tree
automaton needs to be understood as a standard tree automata operating
on Curryied encodings. Determinisation for standard tree automata is then
doing the job.

For applying Currying we consider unranked trees as lambda terms. The
term L(F ,F ,F ) for instance, is a lambda term that describes the applica-
tion of function L to a triple of arguments. Its Curried encoding is the
binary tree (((L@F )@F )@F ) which describes the application of function L

to its arguments stepwise one by one. The Curried binary encoding of the
unranked tree films is displayed in Figure 10.

Stepwise tree automata A over Σ can be understood as syntax for stan-
dard tree automata Ab for binary trees over Σ ⊎ {@}, which operates on
Curried binary encodings of unranked trees. The translation is as follows,
where a ∈ Σ and p0 ∈ initial(A), and p1, p2, p ∈ states(A) − initial(A):

p0
a
→ p ∈ rules(A) iff a → p ∈ rules(Ab)

p1
p2

→ p ∈ rules(A) iff @(p1, p2) → p ∈ rules(Ab)

The translation of the stepwise automaton in Figure 4 is given in Figure
11. Generally, it holds that:

A is deterministic ⇔ Ab is deterministic.

This follows immediately from the definitions. As an immediate conse-
quence, it follows that every stepwise tree automaton can be determinized.



Interactive Learning of Node Selecting Tree Transducers 15

Labels: {@,A,H ,W ,F ,L}
States: {1, 2, 3, 4, 5, 6, 8, 9}
Rules: A → 1 @(8, 1) → 9

H → 2 @(9, 2) → 4
F → 8 @(6, 4) → 6
L → 6 @(6, 5) → 5
W → 3 @(9, 3) → 5

@(6, 5) → 6
Final: {6}

@6

@6

L6 @4 @5

H 2 W 3

@9 @9

F 8 A1 F 8 A1

Figure 11 A standard tree automaton for binary encodings of film lists, corre-
sponding to the stepwise tree automaton in Figure 4.

Furthermore, the language of both automata correspond modulo Currying,
i.e., for all unranked trees t over Σ ⊎ {@}:

t ∈ L(A) ⇔ curry(t) ∈ L(Ab)

This is because both automata produce runs that correspond precisely ex-
cept for intermediate results stored in @-labeled nodes (which could be
annotated to the edges of unranked trees). Since states(Ab) = states(A) −
initial(A), it also follows that there exists unique minimal deterministic
stepwise tree automata for all regular languages of unranked trees.

The correspondence lifts to monadic queries defined by Nstts or pNstts
even though this needs a little care. An Nstt A over Σ is a tree automaton
over Σ×B, so that Ab is an automaton over (Σ×B)⊎{@}. Unfortunately, Ab

is not an Nstt over Σ×{@}, but this problem can be resolved by replacing
@ by @0, which means that we do not want to extract any auxiliary nodes
introduced by the binary encoding, which is of course consistent with our
intuition. Modulo the equation @ = @0 it holds for every tree automaton A

over Σ × B, and Σ-tree t:

A is functional ⇔ Ab is functional
qA(t) = qAb(curry(t))

Hence, A is an Nstt for unranked trees over Σ if and only if Ab is an Nstt

for binary trees over Σ⊎{@}, and that both automata define the same query
modulo the natural correspondence between nodes in unranked trees to leafs
in binary encodings. As a consequence, we can reduce functionality testing
and Nstt query answering on unranked trees to the respective problems on
binary trees.

The same arguments carry over to pNstts without any further changes.
Modulo the equation @ = @0 it holds for every tree automaton A over
(Σ × B)T, and Σ-tree t:

A is cut-functional ⇔ Ab is cut-functional
qA(t) = qAb(curry(t))



16 Julien Carme et al.

3.3 Testing functionality and cut-functionality

We next show how to test whether a tree automaton for binary trees over
Σ × B is functional. As argued above, this is sufficient to solve the same
problem for unranked trees

We reduce functionality testing to unambiguity testing, a problem for
tree automata that can be solved in polynomial time (Seidl, 1989).

A tree automaton is unambiguous if it permits at most one successful
run per tree. Note that every deterministic tree automaton is unambiguous,
since it permits at most one run per tree, may it be successful or not.

The projected automaton π(A) over Σ has states(π(A)) = states(A)×B,
final(π(A)) = final(A)×B, and the rules are given by the following inference
scheme where a ∈ Σ and b, b1, b2 ∈ B:

(a, b)(p1, p2) → p ∈ rules(A)

a((p1, b1), (p2, b2)) → (p, b) ∈ rules(π(A))

(a, b) → p ∈ rules(A)

a → (p, b) ∈ rules(π(A))

Lemma 1 r ∈ runsA(t × β) iff r × β ∈ runsπ(A)(t).

Lemma 2 A deterministic tree automaton A over Σ × B is functional and
thus an Nstt if and only if its projection π(A) to Σ is unambiguous.

Proof For the one direction, let A be a deterministic Nstt. Suppose r1 ×
β1, r2 × β2 ∈ succ_runsπ(A)(t) for some t ∈ treeΣ . Lemma 1 yields r1 ∈
succ_runsA(t × β1) and r2 ∈ succ_runsA(t × β2). The functionality of A

implies that t× β1 = t× β2 and thus β1 = β2. The unambiguity of A yields
r1 = r2 so that r1 × β1 = r2 × β2. This proves that π(A) is unambiguous.

For the converse, assume that π(A) is unambiguous and suppose t ×
β1, t×β2 ∈ L(A). Let r1 ∈ succ_runsA(t×β1) and r2 ∈ succ_runsA(t×β2).
Lemma 1 yields r1 × β1, r2 × β2 ∈ succ_runsπ(A)(t). The unambiguity of
π(A) implies β1 = β2, i.e., L(A) is functional.

Proposition 1 Whether a deterministic tree automaton over Σ×B is func-
tional and hence an Nstt can be tested in cubic time.

It is sufficient to prove this proposition for standard tree automata over
binary trees, so that it carries over to stepwise tree automata for unranked
trees.

Proof Let A be a deterministic tree automaton over Σ × B. By Lemma 2
it is sufficient to compute the Σ-projection π(A) and to test whether this
automaton is unambiguous. This can be done in cubic time.

It remains to show that we can equally decide membership to the class
of deterministic pNstt in polynomial time. This is stated by the following
proposition that is proved in Section A.

Proposition 2 Cut-functionality of deterministic pNstts can be tested in
cubic time.



Interactive Learning of Node Selecting Tree Transducers 17

4 Learning Nstts from Completely Annotated Examples

We have shown that monadic node selection queries can be represented
by deterministic Nstts which are tree automata. It is known that regular
tree languages represented by deterministic bottom-up tree automata are
learnable from polynomial time and data (Oncina & García, 1993). But
this result holds only when positive and negative examples are available,
i.e. trees belonging to the target language or not. In our query learning
framework, however, completely annotated trees for the target query will
be available instead. These express a number of positive and implicit neg-
ative examples. We will prove in this section that monadic node selection
queries represented by Nstts are learnable from polynomial time and data,
provided that the data contains completely annotated examples for the tar-
get query. The difficulty is to show, that completely annotated examples are
indeed equivalent to arbitrary samples of positive and negative examples.

4.1 Identification from polynomial time and data

We recall the learning model from polynomial time and data (Gold, 1967,
1978; de la Higuera, 1997), and adapt it to the problem of tree language
inference using deterministic tree automata. An example is a couple (t, b)
where t is a tree and b is its Boolean label. Positive examples are labeled by
1 and negative examples by 0. A (tree) sample is a finite set of examples. A
tree automaton A is compatible with an example (t, b) if (t ∈ L(A)) ⇔ b, it
is compatible with a sample if it is compatible with all its examples. We also
say in this case that the sample is consistent with A. The size of a sample
is the total number of nodes of all trees in the sample.

Definition 6 Tree languages represented by a class of tree automata C are
said to be identifiable from polynomial time and data if there exist two
polynomials p1 and p2 and an algorithm learner such that:

– with as input a sample S of size m, learner returns a tree automaton
A ∈ C compatible with S in O(p1(m)) time;

– for each tree automaton A ∈ C of size n, there exists a sample – called
the characteristic sample for A – char(A) of cardinality less than p2(n)
such that, with input a sample S that contains char(A), learner returns
a tree automaton A′ ∈ C equivalent with A.

Regular tree languages represented by deterministic tree automata are
identifiable from polynomial time and data (Oncina & García, 1993). In the
sequel of the paper we mainly use the existence of a polynomial time learning
algorithm learner . It is set to be the Rpni algorithm for deterministic tree
automata which is defined in (Oncina & García, 1993) as an extension of
the Rpni algorithm for deterministic string automata (Oncina & Garcia,
1992).



18 Julien Carme et al.

The reader should note that the model for tree languages differs from
the model for string languages on one important point: it is required that
the cardinality of the characteristic sample is polynomial in the size of the
target automaton whereas for string languages it is required that the size of
the characteristic sample is polynomial in the size of the target automaton.
This is of course weaker and due to the fact that the size of trees – measured
as the number of nodes – in the characteristic sample can be exponential.
Indeed, consider the tree language containing a single balanced binary tree
of height n on the alphabet Σ = {a, f} where a is a constant and f a
binary symbol. The characteristic sample must contain this tree which has
2n+1 − 1 nodes while the corresponding tree automaton has only n + 1
states. This blow-up is indeed due to the intrinsic nature of trees. This
problem could be solved with a new representation schema for trees in
the characteristic sample: represent a tree by a deterministic automaton
recognizing the language reduced to this unique tree. The proof is out of
scope of the paper because we will only consider the learner defined with
the Rpni algorithm presented in (Oncina & García, 1993).

The learning model for tree languages is not well suited for node selec-
tion queries in trees. We can represent a node selection query by a regular
tree language over Σ × B. But, for learning node selection queries, only
completely annotated trees for the target query will be available. Thus, if
q is the target query, only positive examples (t × q(t), 1) will be available.
We will refer to them as completely annotated examples. Also, negative
examples are useless as they can be deduced from completely annotated
ones: for a completely annotated example t× β, every other annotated tree
t×β′ (β′ 6= β) is negative. Two query representations are equivalent if they
represent the same query. This leads to the following definition:

Definition 7 Node selection queries represented in a class of automata C

are said to be identifiable from polynomial time and data from completely
annotated examples if there exist two polynomials p1 and p2 and an algo-
rithm learner such that:

– for all sets S of annotated trees of size m, learner(S) returns a query
representation A ∈ C in time O(p1(m)) such that qA is compatible with
S;

– for all automata A ∈ C of size n, there exists a set of completely anno-
tated examples for qA – called the characteristic sample for A – char(A)
of cardinality less than p2(n) such that, for every sample S that contains
char(A), learner(S) returns an automaton A′ ∈ C such that qA = qA′ .

We will simply talk of identifiability when we do not impose polynomial
constraints.

4.2 tRpni: an Rpni extension for deterministic Nstts

We now want to prove that node selection queries represented by determin-
istic Nstts are identifiable from polynomial time and data. We first show



Interactive Learning of Node Selecting Tree Transducers 19

that one can easily deduce identifiability of node selection queries repre-
sented by deterministic Nstts in this framework from the previous result
of identifiability of tree languages represented by deterministic automata –
polynomial constraints set aside.

Note that the proof presented here leads to an exponential time algo-
rithm – as we will have to enumerate explicitly all negative examples in-
duce by a functional set of completely annotated examples. Polynomiality
can nevertheless be reached by using functionality directly. This leads us
to a new variation of the learning algorithm Rpni which can identify node
selection queries represented by Nstts.

Lemma 3 Node selection queries represented by deterministic Nstts are
identifiable from completely annotated examples.

Proof First note that annotated tree languages represented by deterministic
Nstts are identifiable as they are deterministic tree automata over Σ × B.
Let learner be an algorithm according to Definition 6 and let char be a
function that computes the characteristic sample for any deterministic tree
automaton over Σ × B according to Definition 6.

To prove the lemma, we have to show that we can infer an Nstt defin-
ing the target query from completely annotated examples. A completely
annotated example t × β for a query q defines a positive example (t × β, 1)
and negative ones (t × β′, 0) for all β′ 6= β. Thus, we define a function pn

that takes as an input a set S of annotated trees and outputs a sample over
Σ × B.

pn(S) = {(t × β′, b) | t × β ∈ S, b ⇔ (β = β′)}
∪ {(t × ∅, 0) | t ∈ TΣ)

We next define learner ′ and char ′ in the following manner:

learner ′(S) = learner(pn(S))
Lq = {t × q(t) | q(t) 6= ∅}
char ′(q) = {t × β ∈ Lq | (t × β′, b) ∈ char(Lq)}

First note that char ′(q) is a set of completely annotated examples for q.
Second, we show that char(Lq) ⊆ pn(char ′(q)).

– For positive examples (t × β′, 1) ∈ char(Lq), we have t × β′ ∈ Lq and
thus t × β′ ∈ char ′(q), so that (t × β′, 1) ∈ pn(char ′(q)).

– For negative examples, lets assume that (t×β′, 0) ∈ char(Lq). If q(t) 6= ∅
then t × q(t) ∈ Lq and thus t × q(t) ∈ char ′(q). Furthermore, β′ 6= q(t)
so that (t × β′, 0) ∈ pn(char ′(q)).

Let q be a node selection query and S ⊇ char ′(q) a sample consistent with
Lq. Then pn(S) ⊇ char(q) and pn(S) consistent with Lq. As learner identi-
fies regular tree languages represented by deterministic tree automata over
Σ × B, learner(pn(S)) = learner ′(S) outputs a deterministic tree automa-
ton A such that L(A) = Lq, as required for identifying queries represented
by Nstts.



20 Julien Carme et al.

The functions learner ′ and char ′ witness that monadic queries repre-
sentable by deterministic Nstts can be identifed for completely annotated
examples (but not yet from polynomial time and data). ¤

Our next objective is to adapt the functions learner ′ and char ′ in the
previous proofs, in order to establish identifiability of Nstt-queries from
polynomial time and data. There are two problems. First, algorithm learner ′

computes the set of implicit examples pn(S) induced by functionality, which
may be of exponential in cardinality compared to S. This problem be solved
by an alternative learning algorithm that always test the current automaton
for functionality, rather than testing for consistency w.r.t. negative exam-
ples in pn(S). And fortunately, functionality can be tested in P-time for
deterministic automata over Σ ×B. Second, we need to show for all Nstts
A that the sample char ′(qA) is always of polynomial cardinality in the size
of A. This is the case, since we can compute in polynomial time another
Nstt recognizing LqA

, so that LqA
is definable by some deterministic Nstt

of size polyomial in that of A.

Theorem 1 Monadic node selection queries represented by deterministic
Nstts are identifiable from polynomial time and data from completely an-
notated examples.

Proof First, let us recall the Rpni-algorithm (Oncina & García, 1993; Oncina
& Garcia, 1992; Lang, 1992). Rpni inputs a sample S of positive and neg-
ative examples. It first computes a deterministic automaton which recog-
nizes the set of positive examples in the sample called the initial automaton
and denoted Nstt(S) – it is the largest deterministic tree automaton that
recognizes exactly S. It then merges states exhaustively in some fixed or-
der. A merging operation applies to the recent deterministic automaton A

and two states q1, q2 ∈ states(q) and returns a deterministic automaton
det-merge(A, q1, q2). A deterministic merge is a merge followed by recursive
merges needed to preserve determinism. For example, merging q1 and q2

in an automaton with rules f(q1) → q3 and f(q2) → q4 requires merging
q3 with q4. A merging operation is licensed only if det-merge(A, q1, q2) is
consistent with all negative examples in the sample. The algorithm tRpni

(described in Figure 12) behaves as Rpni except that it checks differently
whether deterministic merging operation are licensed. It tests whether the
language L of det-merge(A, qi, qj) is functional and whether L ∩ {t × ∅ |
t} = ∅. It thereby avoids to enumerate implicit negative examples. It checks
functionality in polynomial time in the automaton size (Proposition 1), at
this at most quadratically many times. Therefore:

– The polynomial time condition for learner equal to tRpni is satisfied.
Consistency with the input sample is also given: by construction, the
inferred automaton always recognizes trees of S.

– The characteristic set of completely annotated examples is given in the
proof of Lemma 3. Given an Nstt A such that q = qA we first com-
pute another automaton Ã so that L(Ã) = Lq. This can be done in



Interactive Learning of Node Selecting Tree Transducers 21

tRpni(S)

A ← Nstt(S)
For i = 1 to |states(A)| do

For j = 0 to i − 1 do
A′ ← det-merge(A, qi, qj)
If A′ is functional
and L(A) ∩ {s | s is tree over Σ × {0}} 6= ∅
then A ← A′

exit inner loop
else skip

Output: A

Figure 12 Learning from completely annotated examples.

polynomial time in the size of A, by intersecting A with an automaton
recognizing {t× β | t ∈ TΣ , β 6= ∅}. We then compute char(Lq) in poly-

nomial time from Ã, and char ′(q) in polynomial time from char(Lq).
It follows that the cardinality of char ′(q) is polynomial in the size of
A. Furthermore, given any sample S containing char ′(q), tRpni(S) be-
haves as the algorithm learner ′(S) described in this lemma (except that
it does not explicitly enumerate negative examples) and therefore in-
duces the target Nstt. The polynomial cardinality of the characteristic
set of annotated trees is guaranteed by the polynomial cardinality of the
characteristic sample of the target Nstt.

5 Interactive Learning of pNstts

The above framework has two main drawbacks:

– completely annotated examples are required, which may be a problem
in practical cases where sometimes hundreds of nodes would have to be
selected by the user. Therefore, one should deal with examples that are
only partially annotated.

– Furthermore, it does not take into account the interactions between the
user and the algorithm. The user does not simply provide a set of anno-
tated examples. He should for example be able to give some annotations
to the algorithm in order to have a candidate query that he could then
correct if he is not happy with its behaviour.

To take into account those two points, a new learning model has to be
defined. We present here the active learning model. The Squirrel system
that we develop here is a learning algorithm for monadic node selection
queries in this framework that allows the user - presented here as an oracle
- to interact with a core learning algorithm, which will be a variant of tRpni

able to deal with partial annotations.



22 Julien Carme et al.

5.1 Active Learning Model

Deterministic finite automata are learnable in the MAT model (Angluin,
1987), i.e., by an active learner who may ask membership and equivalence
queries to his teacher. This result extends to deterministic bottom-up tree
automata (Sakakibara, 1990; Drewes & Hogberg, 2003). Such queries, how-
ever, are not well suited for active learning of node selection queries in trees.
Indeed, a node selection query may be represented by a regular tree language
over Σ × B. Thus, a membership query would need as input an annotated
tree which is not manageable in practice. Moreover, a membership query
answers yes or no whether the annotated tree is correctly annotated, but,
if the answer is negative, a membership query gives no information on the
annotation error. Also, recall that a monadic query can be represented by
several languages of annotated trees. Therefore equivalence of tree languages
is not adapted for equivalence of monadic node selection queries.

We introduce two new types of queries that the learner may ask to
the teacher, correct labeling queries (Clqs) and query equivalence queries
(Qeqs). This can be done with respect to an arbitrary formalism for rep-
resenting queries – for instance by Nstts. We denote query representations
by A and the query they represent by qA. A Clq about target q is defined
as follows:

Input: an annotated Σ × B-tree t × β

Output: yes if q(t) = β, else some node v ∈ nodes(t)
such that β(v) 6= q(t)(v)

Correct Labeling Query (Clq)

A Clq asks whether the current annotation hypothesis t × β is correct
and requires a failure witness v otherwise. A Qeq about target q has the
form:

Input: a query representation A

Output: yes if q = qA, else some Σ-tree t s. t. qA(t) 6= q(t).

Query Equivalence Query (Qeq)

A Qeq asks whether the current query hypothesis A is correct, and
requires a failure witness t otherwise.

Before presenting the main result, let us discuss about queries in prac-
tice. The user (or query designer) plays the role of the oracle. This is not a
problem for Clq: the user can check on the current web page if it is well
annotated and correct it otherwise. This may however be a problem for
Qeq. We do not want to show the inferred Nstt to the user, as we want
a “black-box” system usable even for non-expert users. The only thing that
the user can check is whether the inferred query annotates correctly web
pages that he proposes. The user simply answers “yes” to the Qeq (by ac-
tually stopping the learning process) when he is satisfied with the behavior



Interactive Learning of Node Selecting Tree Transducers 23

of the proposed query on web pages processed so far. The possible conse-
quence is that this query may not behave correctly on some unseen web
pages, especially web pages that have a general design which is different
to the one of processed web pages. Solutions to this problem are discussed
in Section 6 and in the conclusion. Nevertheless Qeqs and Clqs allow to
define a rigorous framework for interactive learning of monadic queries. We
have the following result:

Theorem 2 Monadic node selection queries represented by deterministic
Nstts are learnable in polynomial time by active learning processes with
correct labeling queries and query equivalence queries.

Proof Let q be the target query and L be a target functional language over
Σ × B defining q. Let A be a learning algorithm with membership and
equivalence queries for deterministic tree automata. At each call of A to a
membership query t × β ∈ L, we ask the correct labeling oracle with input
t × β and answer yes if the Clq answers yes and no if the Clq outputs a
node. At each call of A to an equivalence query, we ask the query equivalence
query oracle with the same hypothesis tree automaton and answers yes if
the Qeq outputs yes. If the Qeq outputs a Σ-tree t, we have to construct
the annotated tree t × β which is a counterexample for the equivalence
query. To do so, ask the correct labeling oracle until we get the annotated
tree t × β. The reader should note that the number of calls to the correct
labeling oracle is bounded by the number of nodes to be selected in t. The
modified algorithm is a learning algorithm with Clqs and Qeqs. It outputs
in polynomial time a minimal tree automaton A of the functional language
L, i.e. a deterministic Nstt defining the target query q.

5.2 The Squirrel Algorithm

The outer loop of the Squirrel algorithm in Figure 13 halts when the
teacher considers the current query to be equivalent to the target query.
Otherwise a new tree is investigated. The inner loop halts when the teacher
confirms that the current tree is correctly annotated by the current hypoth-
esis query. Otherwise, it asks for further partial annotations for the current
tree and learns from them.

A partially annotated tree over Σ is a triple 〈t, p+, p−〉 consisting of a Σ-
tree t, a set p+ ⊆ nodes(t) of positively annotated nodes, a set p− ⊆ nodes(t)
of negatively annotated nodes, and p+∩p− = ∅. It is consistent with a query
q if p+ ⊆ q(t) and p− ∩ q(t) = ∅. Squirrel is parametrized by an arbitrary
algorithm Rpniprune, which we will fix later on to be a variant of the tRpni

algorithm for Nstts. However, we could use every other algorithm that
computes query representations from a set S of (completely) annotated trees
(the set of correctly annotated trees seen so far) and a partially annotated
tree 〈t, p+, p−〉 (the tree for which the teacher is answering Clq queries).



24 Julien Carme et al.

Squirrel

// fix a representation formalism for queries //
// we write qA for the query represented by A //
let A represent the empty query
let S be the empty set of completely annotated trees
Loop until Qeq (A) returns yes

let t be the output of Qeq

let p+ = p− = ∅ be partial annotations for t

Loop until Clq (t × qA(t)) returns yes
let v be output of Clq

// add the correct annotation of v to p+ or p− //
If v ∈ qA(t) then add v to p− else add v to p+

// learn a new query representation//
A ← Rpniprune(S, 〈t, p+, p−〉)

Add t × qA(t) to the set S

Output : A

Figure 13 Squirrel active learning algorithm.

5.3 Pruning

In order to be able to benefit from partial annotations, we propose to prune
subtrees that seem irrelevant for distinguishing positively annotated nodes.
All remaining nodes are assumed to be unselected if not annotated posi-
tively (which seems reasonable for appropriate pruning heuristics). Thereby,
we obtain complete annotations on pruned trees. Note that negatively an-
notated nodes may be pruned. This complicates the situation a little, as
wrapper induction needs to ensure consistency with all negative annota-
tions, pruned or not.

At the same time, pruning helps resolving the second drawback because
the size of the target automaton is reduced. The idea is similar to that of
windowing in wrapper induction from texts (see e.g.(Freitag & Kushmerick,
2000; Chidlovskii, 2001)).

5.4 tRpni with Pruning

The learning algorithm Rpniprune in Figure 14 is parametrized by a pruning
function prune, which is an arbitrary function mapping Σ × B-trees to
(Σ × B)T-trees such that for every possible argument t:

prune(t) ∈ cuts(t)

First, we prune all input trees in S and the partially annotated input tree
〈t, p+, p−〉. This is done by computing a completely annotated tree t×p+ in
which all nodes of p+ are labeled by 1 and all others by 0, to which prune



Interactive Learning of Node Selecting Tree Transducers 25

Rpniprune (S, 〈t, p+, p−〉)

// prune all input trees //
S′ = {prune(t′ × β) | t′ × β ∈ S, β 6= ∅} ∪ prune(t × p+)
// compute a deterministic pNstt by Rpni//
A ← pNstt(S′)
For i = 1 to |states(A)| do

For j = 0 to i − 1 do
A′ ← det-merge(A, qi, qj)
If A′ is cut-functional
and A′ consistent with S and 〈t, p+, p−〉
and L(A′) ∩ {s | s is tree over (Σ × {0})T} = ∅
then A ← A′

exist inner loop
else skip

Output: A

Figure 14 Learning from partially annotated trees.

is then applied. Let S′ be the resulting set of completely annotated pruned
trees.

Second, Rpniprune infers a pNstt by a variant of the tRpni algorithm
which tests for cut-functionality. It starts with an initial pNstt for S′,
denoted by pNstt(S′), as usual with Rpni. This is the deterministic pNstt

whose language consists of all pruned trees in S′, such that for all states
q ∈ states(pNstt(S′)) there exists exactly one tree t over (Σ × B)T with a
successful run by A. Then, we use a state merging for generalization. The
function det-merge takes as input an automaton A and two states qi and
qj of states(A) and outputs an automaton where qi and qj are merged such
that det-merge(A, qi, qj) is made deterministic.

The iteration continues with the merged automaton if it is cut-functional
and consistent with all negative annotations in S and 〈t, p+, p−〉, or else
refuses the merging step and continues with the previous automaton. Con-
sistency here means that there does not exist any tree t′ × β ∈ S and node
v ∈ qA(t′) such that β(v) = 0, and there does not exist any node v ∈ p−
such that v ∈ qA(t).

Improvements. The most classical one is to tweak the merging order, as
illustrated by evidence driven state merging (Lang, Pearlmutter, & Price,
1998). Here, we choose a merging order which favors merges leading to
pNstts with “horizontal” recursion, since this type of recursion is more
frequent in semi-structured documents. The second improvement is to use
background knowledge in form of typing automata (Kermorvant & de la
Higuera, 2002). For web documents, we use a very general typing automaton
that recognizes all well-formed web documents. Merges between states of



26 Julien Carme et al.

L0

F0

A1 T

T F0

A1 T

L0

F0

A1 H0

F0

T T

F0

A1 H0

Figure 15 The pruned trees applying the strategy paths_only (left) and
paths_extended (right) to the tree films

different types are forbidden. This restricts the class of pNstts that can be
inferred.

To conclude, the reader should note that Rpniprune responds in polyno-
mial time (as tRpni and Rpni). As the cut-functionality of a tree automaton
A can be tested in O(|A|3) (see Proposition 2), which is the most complex
task of the inner loop, and as this test has to be performed a quadratic
amount of time, the overall complexity of tRpni is O(|S|5) (at worst, the
working automaton is always the initial automaton, which has a size at
worst equal to the size of the input sample). Note that we consider here
the size of an automaton as the sum of its number of node and its number
of rules, and the size of a sample as the total number of nodes of trees in
the sample. For large trees and a strongly pruning function there would be
a speed-up of the learning process. However there is a trade-off in that we
loose completeness in learnability. We discuss this last point in the next
subsection.

5.5 Pruning Heuristics

The choice of the pruning function determines the quality of Rpniprune. To
be able to learn a target query, some conditions should be imposed on the
pruning function. Namely that it should be possible to find a characteristic
pruned set for the target language, given the pruning function. And that it
should be possible to find a cut-functional pruned language satisfying the
target, for a given pruning function. Therefore the class of learnable func-
tions depends on the pruning function. The time complexity of the learning
algorithm is measured w.r.t. the size of pruned trees. Thus, the more ag-
gressive the pruning function is, the more efficient the learning algorithm
will be. Generally, we will only consider pruning functions that keep all
positively annotated nodes. We have considered three pruning strategies:

– The function paths_only cuts all nodes except those that are ancestors
of or equal to positively labeled nodes. An example is given in Figure 15.
Note that more than a single path is kept so that induction is not sim-
ply reduced to learning path expressions. The problem of defining the
class of Nstts that can actually be identified by Rpniprune with the
pruning function paths_only is still open. The experiments show that
pruning by paths_only yields significantly better learning efficiency than



Interactive Learning of Node Selecting Tree Transducers 27

less aggressive pruning functions. Also experimental results show that
expressiveness is sufficient for monadic queries based on the structure.

– The function paths_extended additionally keeps all the nodes whose
parents are on such paths. An example is given in Figure 15. The prob-
lem of defining the class of Nstt that can actually be identified by
Rpniprune with the pruning function paths_extended is still open. The
class is larger than for the pruning function paths_only because some
node selection queries using textual contents are learnable. For instance,
a query for actor lists where the next sibling contains the textual value
“Hitchcock”. As soon as textual values are not involved, experimental re-
sults have shown lower learning efficiency and equivalent expressiveness
than for the pruning function paths_only .

– The function identity . Rpniprune restricted to completely annotated trees
behaves as the tRpni algorithm for deterministic Nstts. All Mso-definable
node selection queries could be the target of Rpniprune. However exper-
imental results show that a large number of annotated examples is re-
quired to achieve learning. Also, in the interactive setting, learning from
a small number of annotated positions could introduce wrong general-
izations.

6 Squirrel Web Information Extraction System

We have developed a software tool, Squirrel (Figure 16). We first describe
the system. Then we give experimental results in the off-line setting in order
to compare our system with others. Finally we give experimental results in
order to evaluate the number of interactions in the interactive setting.

System description. Squirrel preprocesses pages via the parser included
in Mozilla. This yields a Dom Xhtml tree. We ignored textual values. At-
tributes were ignored too except for ID and CLASS, which were merged with
the name of the tag, i.e. <DIV ID=title> gives a node labeled DIVtitle.

The user is the query designer. When a Clq is made by Squirrel, the
query designer annotates an incorrect node (unwanted or missing). In a real
setting, the query designer may annotate more than one position. When a
Qeq is made by Squirrel, the query designer decides to halt the induction
process or chooses a new Web page.

The Squirrel algorithm calls the Rpniprune algorithm. For the experi-
mental results we have chosen the pruning function paths_only .

Off-line Experiments. The aim of these experiments is to compare Rpniprune

with state-of-the-art algorithms. Thus we do not consider the interactive
framework and Rpniprune is given as an input completely annotated exam-
ples for the target query.

We considered benchmarks from Rise2, the only public repository of an-
notated documents designed to evaluate information extraction algorithms

2 http://www.isi.edu/˜muslea/RISE/index.html



28 Julien Carme et al.

Figure 16 Screenshot of Mozilla Firefox with Squirrel: a toolbar has been
added to help the user to annotate data in the web page and to dialog with the
learning algorithm.

on Web pages. We had to discard some of the datasets, because the extrac-
tion tasks they defined were not Html element extraction tasks, and could
therefore not be addressed by our algorithm. Typically, extracting a given
word in a sentence is a problem outside the scope of our work.

The remaining datasets we used are these ones:

– 18 of Kushmerick’s Wien benchmark (Freitag & Kushmerick, 2000) used
by Muslea in (Muslea et al., 2001) to establish a comparison between
Wien and Stalker. They are denoted by S-XX in table of results. Each
of them is constituted with 8 pages, and is associated with one to four
extraction tasks.

– Bigbook, a set 235 pages extracted from an address book. Two tasks are
associated with this set: name extraction and address extraction.



Interactive Learning of Node Selecting Tree Transducers 29

– Okra, a set of 250 pages which corresponds to a people search engine
output. Three tasks are associated with this set: name, mail address and
score extraction.

For each dataset, we evaluate our algorithm using a 8-fold cross-validation
protocol. The dataset is divided in 8 parts. A wrapper dedicated to one ex-
traction task is learned from 7 parts, and tested on the last one. True posi-
tives, false negatives and false positives are counted and a F1-measure score
is computed. Each part of the dataset is used as test set for each extraction
task in a distinct experience, and an average F-measure is computed.

It is rather difficult to compare our own results to the ones of other
systems, considering that we cannot test them ourselves and that we have
to use published results whose experimental protocol are never exactly the
same. Following Muslea in (Muslea et al., 2001), we establish a comparison
using a qualitative criteria: we consider three possible behaviours for each
system on each benchmark: perfect (average F-measure of 100%), imperfect
(average F-measure between 90% and 100%) and failure (F-measure below
90%). All results are presented in Fig. 17. Results concerning Wien (Kush-
merick, 2000) and Stalker (Muslea et al., 2001), two well known information
extraction systems, are given for the sake of comparison. They have been
directly taken from (Muslea et al., 2001).

These results show that Squirrel behaves satisfyingly in a large ma-
jority of the benchmarks, and achieves performances on these benchmarks
which are equals or greater than Wien and Stalker. A closer analysis
of the failures of Squirrel (S-6 and S-11) shows that they have expected
causes: in both cases, the structure is not informative enough because tex-
tual contents of leaves are necessary to define the query. Therefore Squir-

rel with the pruning function paths_only can not infer a relevant wrapper.
One way to overcome this problem is to preprocess the data sets in order
to distinguish text nodes which should be useful for the induction pro-
cess, consider trees with these textual values, and use the pruning function
paths_extended .

To end the comparisons with existing systems, we now compare our
system with the system presented in (Raeymaekers et al., 2005). They
represent a monadic node selection query q by a tree language Lq where
each tree contains a single marked node. To decide if a node of a tree t

is to be selected, the node is marked (replaced by a special symbol), if
the tree is in Lq, then the original node is to be selected. Whereas we
use the Rpni algorithm from positive and negative examples, their base
learning algorithm is from positive examples only. They consider a subclass
of the class of regular languages which is chosen to be the class of (k, l)-
contextual tree languages where k and l are parameters. With parameter
tuning, they achieve perfect results on benchmarks presented Fig. 17. They
succeed in S-6 and S-11 because they use a preprocessing procedure to
distinguish important textual values. They also present a method to learn
the parameters from positive and negative examples.



30 Julien Carme et al.

Stalker Wien Squirrel

S-4
√ √ √

S-5
√ √ √

S-6 ≃ − −
S-7

√ − √

S-8
√ √ √

S-9 ≃ − √
S-10

√ √ √

S-11 ≃ − −
S-12

√ √ √
S-13

√ √ √

S-14
√ √ √

S-19
√ √ √

S-20
√ √ √

S-22
√ √ √

S-23
√ √ √

S-24 ≃ − √

S-25
√ √ √

S-28
√ √ √

S-30
√ √ √

Okra
√ √ √

BigBook
√ √ √

Figure 17 Comparison between Stalker, Wien and Squirrel on the Rise

corpus. The symbol − means failure, that is average F-measure lower than 90%,
≃ means imperfect, that is average F-measure between 90% and 100%, and

√
means perfect, that is average F-measure equal to 100%.

Benchmarking interactive learning. For the experiments, we used the bench-
marks Okra, Bigbook and real datasets3 from different Web sites:

– the Yahoo dataset contains 80 pages of the Yahoo Web directory. The
task is to extract a set of URLs from a list of URLs. There are different
lists on a page, the pages have different structures and the position of
the list is not fixed;

– the eBay dataset contains 40 pages of products. The task is to extract
product names from a table. The product name can be mixed with other
information in the cell;

– the Google dataset contains 40 results of the search engine. The task is
to extract the links. The structure of pages is not fixed and there are
numerous auxiliary links;

– the New York Times dataset contains 40 article pages with different
structures. The task is to extract texts of the articles.

In order to evaluate the efficiency of the algorithm in the interactive
mode, we simulated the behavior of a query designer. Squirrel is interfaced
with a user simulator S: at each call of the correct labeling oracle, S answers

3 http://www.grappa.univ-lille3.fr/˜carme/corpus.html



Interactive Learning of Node Selecting Tree Transducers 31

#Qeq #Clq

Okra-names 1.6 3.48

Bigbook-addresses 1 3.02

Yahoo 6.18 11.36

E-bay 1.06 2.62

NYTimes 1.44 1.44

Google 1.86 4.78

Figure 18 #Qeq denotes the number of equivalence queries and #Clq denotes
the number of correct labeling queries. Results are averaged over 100 experiments.

the first wrong annotation of the page in reading order of the source file
(which is the first positive annotation of the page for the first call) ; at each
call of the equivalence oracle, S returns a Web page on which the pruned
Nstt is not correct.

In an interactive setting, time complexity is important. For the different
data sets, on a standard computer, the average time for learning the current
hypothesis and annotating the current Web page is between 1 and 2 seconds
and less than 5 seconds on the more intricate cases.

We also measured the number of Clqs and Qeqs which are needed
to achieve perfect results on the set of Web pages. The results are given
in Figure 18. The number of Clqs is the number of corrections made by
the query designer. The results show that this number is quite small. We
should note that this number is over-valued because in a real setting, the
query designer may correct more than one wrong annotation at a time, and
we can hope that his choice of correction is more relevant than the one
used in our protocol. The number of Qeqs is the number of Web pages
necessary to achieve perfect results. The number of necessary Web pages
for the Yahoo dataset is greater than for other datasets because the dataset
is heterogeneous. We should note that the number of necessary Web pages is
lower than the number of Web pages viewed by the query designer. Indeed,
in our protocol the user simulator selects only Web pages on which the
current hypothesis is incorrect while, in the real setting, the query designer
may choose a Web page on which the current hypothesis is correct. Therefore
we now discuss the choice of the next Web page to be processed in the
interactive setting.

Towards active learning We should render our model active in the sense
that the learner intelligently proposes the next Web page among a set of
Web pages – the Web pages of the target Web site.

We considered a method estimating the value of a tree according to the
number of extracted nodes by the current hypothesis wrapper. We supposed
that there is a linear dependence between the number of extracted nodes
and the total number of nodes. This lead to the following strategy: let L be
the set of Web pages not seen so far by Squirrel; for every Web page p

in L, we compute the number x of nodes of p and y the number of selected



32 Julien Carme et al.

1 2 5 10

random

Yahoo 71.8 80.9 82.1 93.7

NYTimes 91.2 92.4 95.3 100

Google 98.7 99.1 99.5 99.8

active

Yahoo 71.8 86.1 98.4 99.4

NYTimes 91.2 100 100 100

Google 98.7 100 100 100

Figure 19 F-measure of inferred query on test set, using 1,2 5 or 10 documents
chosen randomly (top) or chosen accordingly to our strategy (bottom)

nodes by the current hypothesis wrapper; we used the test of Grubbs for
outlier selection to select the web page (the farthest point (x, y) from the
regression line). The selected Web page is processed by the main loop of
Squirrel.

We only considered the three most difficult datasets. We computed per-
formance with a learning set of annotated documents of respectively 1, 2,
5, 10 Web pages. These Web pages were either randomly chosen or chosen
according to the strategy given above. The experimental results are given
in Figure 19. They show that our naive strategy for active learning leads
to significant improvements. It remains to find an intelligent active learning
strategy as a future work.

7 Conclusion

We have presented a wrapper induction system with the following charac-
teristics:

– it generates tree-based wrappers which select nodes in trees;
– it uses new machine learning techniques based on grammatical inference

and active learning;
– it is integrated in a visual environment;
– it has simple interactions with the query designer.

From the theoretical point of view, it is proved that Nstts and pNstts
can express all MSO-definable node selection queries. However any prun-
ing function, different from identity, will restrict the class of learnable node
selection queries. In future work, We have to specify the subclass of node
selection queries which is learnable depending on the chosen pruning strat-
egy.

From the practical point of view, we have proved that our system achieves
state-of-the-art performance on standard benchmarks and that the number
of interactions with the query designer is quite small. Nevertheless there are
still a number of possible improvements. First, we should render our algo-
rithm active with intelligent strategies. Second, we do not consider textual



Interactive Learning of Node Selecting Tree Transducers 33

values and omit some attribute values. Therefore, we should adapt our ap-
proach to take textual information into account. Finally, our current system
is limited to one-slot information extraction since we only consider mona-
dic node selection queries over trees. Work is under progress to extend our
approach to multi-slot information extraction, i.e., the problem of learning
n-ary regular queries in trees.

Acknowledgments

We are grateful to Alain Terlutte for contributing his forces and enthusiasms
into this work in the early phase.

We thank the referees for their invaluable comments on preliminary ver-
sions of the paper.

This research was partially supported by the research unit Inria Futurs,
Cnrs Umr 8022, “Cper 2000-2006, Contrat de Plan état - région Nord/Pas-
de-Calais: programme Tac, projet Cocoa” and “Aci masse de données
Aci-Mdd, Fns”.

References

Angluin, D. (1987). Learning regular sets from queries and counterexamples.
Information and Computation, 75 (2), 87–106.

Baumgartner, R., Flesca, S., & Gottlob, G. (2001). Visual web information
extraction with lixto. In 28th International Conference on Very Large
Data Bases, pp. 119–128.

Brüggemann-Klein, A., Wood, D., & Murata, M. (2001). Regular tree and
regular hedge languages over unranked alphabets: Version 1..

Carme, J., Gilleron, R., Lemay, A., & Niehren, J. (2005). Interactive learning
of node selecting tree transducer. In IJCAI Workshop on Grammatical
Inference.

Carme, J., Lemay, A., & Niehren, J. (2004a). Learning node selecting tree
transducer from completely annotated examples. In 7th International
Colloquium on Grammatical Inference, Vol. 3264 of Lecture Notes in
Artificial Intelligence, pp. 91–102. Springer Verlag.

Carme, J., Niehren, J., & Tommasi, M. (2004b). Querying unranked trees
with stepwise tree automata. In 19th International Conference on
Rewriting Techniques and Applications, Vol. 3091 of Lecture Notes in
Computer Science, pp. 105 – 118. Springer Verlag.

Chidlovskii, B. (2001). Wrapping web information providers by transducer
induction. In Proc. European Conference on Machine Learning, Vol.
2167 of Lecture Notes in Artificial Intelligence, pp. 61 – 73.

Cohen, W., Hurst, M., & Jensen, L. (2003). Web Document Analysis: Chal-
lenges and Opportunities, chap. A Flexible Learning System for Wrap-
ping Tables and Lists in HTML Documents. World Scientific.



34 Julien Carme et al.

Comon, H., Dauchet, M., Gilleron, R., Jacquemard, F., Lugiez, D., Tison, S.,
& Tommasi, M. (1997). Tree automata techniques and applications.
Available on: http://www.grappa.univ-lille3.fr/tata.

Cristau, J., Löding, C., & Thomas, W. (2005). Deterministic automata on
unranked trees. In 15th International Symposium on Fundamentals of
Computation Theory, Vol. 3623 of Lecture Notes in Computer Science,
pp. 68–79. Springer Verlag.

de la Higuera, C. (1997). Characteristic sets for polynomial grammatical
inference. Machine Learning, 27, 125–137.

Drewes, F., & Hogberg, J. (2003). Learning a regular tree language from
a teacher. In D.L.T. 2003, Vol. 2710 of Lecture Notes in Computer
Science, pp. 279–291.

Freitag, D., & Kushmerick, N. (2000). Boosted wrapper induction. In
AAAI/IAAI, pp. 577–583.

Freitag, D., & McCallum, A. K. (1999). Information extraction with hmms
and shrinkage. In Proceedings of the AAAI-99 Workshop on Machine
Learning for Information Extraction.

Frick, M., Grohe, M., & Koch, C. (2003). Query evaluation on compressed
trees. In 18th IEEE Symposium on Logic in Computer Science, pp.
188–197.

Gold, E. (1967). Language identification in the limit. Inform. Control, 10,
447–474.

Gold, E. (1978). Complexity of automaton identification from given data.
Inform. Control, 37, 302–320.

Gottlob, G., & Koch, C. (2002). Monadic queries over tree-structured data.
In 17th Annual IEEE Symposium on Logic in Computer Science, pp.
189–202 Copenhagen.

Hsu, C.-N., & Dung, M.-T. (1998). Generating finite-state transducers for
semi-structured data extraction from the web. Information Systems,
23 (8), 521 – 538.

Kermorvant, C., & de la Higuera, C. (2002). Learning language with help. In
6th International Colloquium on Grammatical Inference, Vol. 2484 of
Lecture Notes in Artificial Intelligence, pp. 161–173. Springer Verlag.

Kosala, R., Bruynooghe, M., Van den Bussche, J., & Blockeel, H. (2003).
Information extraction from web documents based on local unranked
tree automaton inference. In 18th International Joint Conference on
Artificial Intelligence, pp. 403–408. Morgan Kaufmann.

Kushmerick, N. (1997). Wrapper Induction for Information Extraction.
Ph.D. thesis, University of Washington.

Kushmerick, N. (2000). Wrapper induction: Efficiency and expressiveness.
Artificial Intelligence, 118 (1-2), 15–68.

Kushmerick, N. (2002). Finite-state approaches to web information extrac-
tion. In Proc. 3rd Summer Convention on Information Extraction.

Lang, K. J., Pearlmutter, B. A., & Price, R. A. (1998). Results of the
abbadingo one DFA learning competition and a new evidence-driven
state merging algorithm. Lecture Notes in Computer Science, 1433,



Interactive Learning of Node Selecting Tree Transducers 35

1–12.
Lang, K. (1992). Random DFA’s can be approximately learned from sparse

uniform examples. In Proc. 5th Annu. Workshop on Comput. Learning
Theory, pp. 45–52. ACM Press, New York, NY.

Libkin, L. (2005). Logics over unranked trees: an overview. In Automata,
Languages and Programming: 32nd International Colloquium, No.
3580 in Lecture Notes in Computer Science, pp. 35–50. Springer Ver-
lag.

Martens, W., & Niehren, J. (2007). On the minimization of XML schemas
and tree automata for unranked trees. Journal of Computer and Sys-
tem Science, 73 (4), 550–583.

Muslea, I., Minton, S., & Knoblock, C. A. (2001). Hierarchical wrapper
induction for semistructured information sources. Autonomous Agents
and Multi-Agent Systems, 4 (1/2), 93–114.

Neumann, A., & Seidl, H. (1998). Locating matches of tree patterns in
forests. In Foundations of Software Technology and Theoretical Com-
puter Science, pp. 134–145.

Neven, F., & Schwentick, T. (2002). Query automata over finite trees.
Theoretical Computer Science, 275 (1-2), 633–674.

Neven, F., & Van Den Bussche, J. (2002). Expressiveness of structured
document query languages based on attribute grammars. Journal of
the ACM, 49 (1), 56–100.

Niehren, J., Planque, L., Talbot, J.-M., & Tison, S. (2005). N-ary queries
by tree automata. In 10th International Symposium on Database Pro-
gramming Languages, Vol. 3774 of Lecture Notes in Computer Science,
pp. 217–231. Springer Verlag.

Oncina, J., & Garcia, P. (1992). Inferring regular languages in polynomial
update time. In Pattern Recognition and Image Analysis, pp. 49–61.

Oncina, J., & García, P. (1993). Inference of recognizable tree sets. Tech.
rep., Departamento de Sistemas Informáticos y Computación, Univer-
sidad de Alicante. DSIC-II/47/93.

Raeymaekers, S., & Bruynooghe, M. (2004). Minimization of finite unranked
tree automata. Manuscript.

Raeymaekers, S., Bruynooghe, M., & Van den Bussche, J. (2005). Learning
(k,l)-contextual tree languages for information extraction. In Proceed-
ings of ECML’2005, Vol. 3720 of Lecture Notes in Artificial Intelli-
gence, pp. 305–316.

Sakakibara, Y. (1990). Learning context-free grammars from structural data
in polynomial time. Theoretical Computer Science, 76, 223 – 242.

Seidl, H. (1989). On the finite degree of ambiguity of finite tree automata.
Acta Informatica, 26 (6), 527–542.

Thatcher, J. W. (1967). Characterizing derivation trees of context-free
grammars through a generalization of automata theory. Journal of
Computer and System Science, 1, 317–322.

Thatcher, J. W., & Wright, J. B. (1968). Generalized finite automata with
an application to a decision problem of second-order logic. Mathemat-



36 Julien Carme et al.

ical System Theory, 2, 57–82.



Interactive Learning of Node Selecting Tree Transducers 37

A Testing Cut-Functionality in Polynomial Time

We present a direct proof for Proposition 2 in the case of binary trees (and
thus for unranked trees), stating that cut-functionality of deterministic tree
automata can be decided in polynomial time.

We characterize cut-functionality of a tree automaton A with signature
(Σ × B)T by a binary relation incA ⊆ states(A)2, testing for two states
whether they can be reached by two runs of A on some incompatibly anno-
tated compatible trees. For all two states p, p′ ∈ states(A):

incA(p, p′) iff















∃t, t′ compatible trees over ΣT

∃β, β′ incompatible trees over BT

∃r ∈ runsA(t × β) : r(ε) = p

∃r′ ∈ runsA(t′ × β′) : r′(ε) = p′

Lemma 4 A tree automaton A over (Σ×B)T is cut-functional if and only
if incA(p, p′) doesn’t hold for any two states p, p′ ∈ final(A).

Proof Suppose incA(p, p′) holds for some p, p′ ∈ final(A). Then there exist
runs r ∈ runsA(t×β) and r′ ∈ runsA(t′×β′) for incompatible trees β and β′

and compatible trees t and t′. These runs are successful since p, p′ ∈ final(A).
Thus, A is not cut-functional. The argument can be reversed.

It remains to show that the relation incA can be computed in polynomial
time. We prove that it can be computed by a saturation procedure over
states. We first need to define another binary relation simA on states. simA

holds if two states can be reached by compatible annotated trees:

Definition 8 Let A be a deterministic tree automaton over (Σ × B)T, p

and p′ two states of A, then simA(p, p′) holds if there exist two compatible
(Σ ×B)T-trees t×β, t′×β′, a run r of A over t×β such that r(ε) = p, and
a run r′ of A over t′ × β′ such that r′(ε) = p′.

We now give an inductive characterization of the relation incA which is
based on the relation simA and on the rule set of the tree automaton. We
call an automaton trimmed if it has no useless state, i.e., if for each state p

there is a run r of A on some tree such that r(ε) = p.

Lemma 5 Let A be a trimmed deterministic tree automaton over (Σ×B)T,
incA(p, p′) holds if and only if there exist rules satisfying one of the cases
in Figure 20

Proof Let us suppose that incA(p, p′). Then there exist two (Σ ×B)T-trees
t× β, t′ × β′ such that t and t′ are compatible but t× β and t′ × β′ are not
compatible, a run r of A over t × β such that r(ε) = p, and a run r′ of A

over t′ × β′ such that r′(ε) = p′.



38 Julien Carme et al.

(i) (a, b) → p ∈ rules(A)
∧ (a,¬b) → p′ ∈ rules(A)

(ii) (a, b)(p1, p2) → p ∈ rules(A)
∧ (a,¬b)(p′

1, p
′

2) → p′ ∈ rules(A)
∧ simA(p1, p

′

1) ∧ simA(p2, p
′

2)
(iii) (a, b)(p1, p2) → p ∈ rules(A)

∧ (a, b′)(p′

1, p
′

2) → p′ ∈ rules(A)
∧ incA(p1, p

′

1) ∧ simA(p2, p
′

2)

(iv) (a, b)(p1, p2) → p ∈ rules(A)
∧ (a, b′)(p′

1, p
′

2) → p′ ∈ rules(A)
∧ simA(p1, p

′

1) ∧ incA(p2, p
′

2)
(v) (a, b)(p1, p2) → p ∈ rules(A)

∧ (a, b′)(p′

1, p
′

2) → p′ ∈ rules(A)
∧ incA(p1, p

′

1) ∧ incA(p2, p
′

2)

Figure 20 Cases of Lemma 5.

– First, note that neither t nor t′ is equal to T (which would correspond
to a tree entirely pruned), as otherwise β = T (resp. β′ = T ), and as T

is compatible with every tree, we would have β and β′ compatible.
– If t is a single leaf tree with t = a then t′ = a also as t and t′ are

compatible. In this case β = b and β′ = ¬b as they are not compatible.
As r(ε) = p and r′(ε) = p′, this implies that there are two rules (a, b) → p

and (a,¬b) → p′ and (i) holds.
– If t is a tree of the form t = a(t1, t2) then, as t and t′ are compatible,

there are trees t′1 and t′2 such that t′ = a(t′1, t
′
2) such that t1 is compatible

with t′1 and t2 is compatible with t′2. Let t×β = (a, b)(t1×β1, t2×β2) and
t′×β′ = (a, b′)(t′1×β′

1, t
′
2×β′

2). Let us consider the rules (a, b)(p1, p2) → p

and (a, b′)(p′1, p
′
2) → p′ which are applied at the root of the trees t × β

and t′ ×β′ in the runs r and r′. As t1 and t′1 are compatible, and t2 and
t′2 are compatible, the states satisfy simA(p1, p

′
1) or incA(p1, p

′
1) and

simA(p2, p
′
2) or incA(p2, p

′
2). First, consider the case where the Boolean

values at the root of the trees t×β and t′×β′ are different. In this case,
one of the four conditions (ii), (iii), (iv) or (v) holds. If the Boolean values
at the root of the trees t × β and t′ × β′ are equal, then incA(p1, p

′
1) or

incA(p2, p
′
2) must hold and one of the conditions (iii), (iv) or (v) holds.

We now prove the other direction of the equivalence.

– (i) If ((a, b) → p ∈ rules(A) ∧ (a,¬b) → p′ ∈ rules(A)) then incA(p, p′).
– (ii) Let us consider two rules (a, b)(p1, p2) → p and (a,¬b)(p′1, p

′
2) → p′

in rules(A) such that simA(p1, p
′
1) and simA(p2, p

′
2)). Then simA(p1, p

′
1)

implies that there are two compatible trees t1×β1 and t′1×β′
1, and runs

r1 ∈ runsA(t1 × β1) and r′1 ∈ runsA(t′1 × β′
1) such that p1 = r1(ε)

and p′1 = r′1(ε). We have the same property for the right sub-term (the
corresponding states, runs and terms are denoted by p2, p′2, r2, r′2, t2×β2

and t′2×β′
2). Therefore we can consider trees t×β = (a, b)(t1×β1, t2×β2)

and t′×β′ = (a,¬b)(t′1×β′
1, t

′
2×β′

2) associated to p and p′ through runs
r = p(r1, r2) and r′ = p′(r′1, r

′
2). t × β and t′ × β′ are not compatible

whereas t and t′ are, therefore incA(p, p′) holds.
– (iii) We consider two rules satisfying (iii). We consider the two trees that

are associated with the property incA(p1, p
′
1), and then we construct two



Interactive Learning of Node Selecting Tree Transducers 39

trees proving that incA(p, p′) holds. The construction is similar to the
one used in the precedent point. In this case, incompatibility between
Boolean values comes from the left subtrees t1 × β1 and t′1 × β′

1 because
of incA(p1, p

′
1).

– the cases (iv) and (v) are similar.

Lemma 6 Let A be a trimmed deterministic tree automaton over (Σ ×
B)T, simA(p, p′) stands if and only if there exist rules satisfying one of the
following cases:

(i) (p = p′)
(ii) (T → p) ∈ rules(A)
(iii) (T → p′) ∈ rules(A)
(iv) ∃((a, b)(p1, p2) → p ∈ rules(A)

∧ (a, b)(p′1, p
′
2) → p′ ∈ rules(A)

∧ (simA(p1, p
′
1)) ∧ (simA(p2, p

′
2))

Proof If simA(p, p′), then there exist two compatible (Σ × B)T-trees t × β

and t′ × β′, a run r of A over t × β such that r(ε) = p, and a run r′ of A

over t′ × β′ such that r′(ε) = p′.

– If t = T , then there is a rule T → p in A and (ii) holds.
– If t × β = (a, b), then either t′ × β′ = (a, b) or t′ × β′ = (T,T) because

t×β and t′×β′ are compatible. In the first case, because of determinism,
p = p′ and (i) holds. In the second case, there is a rule T → p′ in A and
(iii) holds.

– If there are some trees t1 × β1 and t2 × β2 such that t × β = (a, b)(t1 ×
β1, t2 × β2), then either t′ is equal to T (and (iii) applies) or the root
of t′ is also (a, b) as t × β and t′ × β′ are compatible. Let t′ × β′ =
(a, b)(t′1 × β′

1, t
′
2 × β′

2). Let us consider the rules (a, b)(p1, p2) → p and
(a, b)(p′1, p

′
2) → p′ which are applied at the root of the trees t × β and

t′ × β′ in the runs r and r′. We should note that t1 × β1 and t′1 × β′
1

are compatible, and t2 × β2 and t′2 × β′
2 are compatible, thus the states

satisfy simA(p1, p
′
1) and simA(p2, p

′
2), and (iv) holds.

We now prove the other direction of the equivalence.

– (i) If p = p′, let t × β be any tree that has a run in A whose root is p,
t × β is compatible with itself and simA(p, p′).

– (ii) and (iii) If T → p ∈ rules(A), then we can consider any tree t′ × β′

that has a run in A whose root is p′ then t′ × β′ is compatible with T

and simA(p, p′). Case (iii) is similar.
– (iv) If (a, b)(p1, p2) → p and (a, b)(p′1, p

′
2) → p′ in rules(A) with simA(p1, p

′
1)

and simA(p2, p
′
2). The two relations simA(p1, p

′
1) and simA(p2, p

′
2) im-

ply that there exist trees t1 × β1, t′1 × β′
1, t2 × β2 and t′2 × β′

2 that are
associated to states p1, p′1, p2 and p′2 through runs r1, r′1, r2 and r′2 on
A. Let t×β = (a, b)(t1 ×β1, t2 ×β2) and t′×β′ = (a, b)(t′1 ×β′

1, t
′
2 ×β′

2),
then t× β and t′ × β′ are compatible, t× β has a run p(r1, r2) in A that
uses the rule (a, b)(p1, p2) → p and t′ × β′ has a run p′(r′1, r

′
2) in A that

uses the rule (a, b)(p′1, p
′
2) → p′. Therefore simA(p, p′) holds.



40 Julien Carme et al.

Proposition 2 Cut-functionality of a deterministic tree automaton A

over (Σ × B)T can be tested in cubic time.

Proof First, the relation simA is computed by a saturation process: Initialize
with the first three rules in Lemma 6: consider the set of {(p, p) | p ∈
states(A)} union {(p, p′) | ∃(T → p ∈ rules(A))} union {(p, p′) | ∃(T → p′ ∈
rules(A))}; and then use the fourth rule (iv) inductively. There is at most
a quadratic amount of linear tests to perform, therefore the construction is
in cubic time. We use a similar construction for the relation incA: First use
the rule (i) in Lemma 5, second the rule (ii), and then apply inductively the
rules (iii), (iv) and (v). Again, the construction is in cubic time.

B Efficient Query Answering for Nstts and pNstts

We next present algorithms for answering queries defined by Nstts or
pNstts. Query answering will be needed in our interactive learning en-
vironment for testing the current query hypothesis on given trees.

B.1 Alternative definitions of monadic queries

We present two further ways for expressing monadic queries by tree au-
tomata. They will be useful for query answering for Nstts and pNstts.

Every tree automaton A with signature Σ × B defines a MSO-definable
monadic query qA in Σ-trees such that for all such trees t :

qA(t) = {v ∈ nodes(t) | β(v) = 1 and t × β ∈ L(A)}

We can compute qA(t) for a given binary tree t and automaton A by enu-
merating all annotated trees t× β, filtering those that belong to L(A), and
collecting the nodes that such β’s annotates by 1. This way of answering
queries defined by tree automata is highly non-deterministic, and thus inef-
ficient. But we can do better, as we will see.

Run-based automata queries offer another way to define monadic que-
ries, for which efficient algorithms are known. They are defined by a tree
automaton A over Σ and a set of selection states S ⊆ states(A), and satisfy
for all binary trees t:

qA,S(t) = {v ∈ nodes(t) | ∃r ∈ succ_runsA(t), r(v) ∈ S}

This query selects all those nodes of t are labeled by some selection state in
S in some successful run of B.

Proposition 3 (Classical Result) Given a tree automaton A over Σ, a
set S ⊆ states(A), and a binary Σ-tree t one can compute the set qA,S(t)
in time O(|A| ∗ |t|).



Interactive Learning of Node Selecting Tree Transducers 41

The algorithm proceeds in two phases. In a bottom-up phase, every node
v of t is annotated by all states of B into which the subtree rooted by v

can be evaluated (determinization on the fly). In a second top-down phase,
one underlines all those states that are used by successful runs. Finally, one
selects all those nodes that are annotated by underlined states from the
selection set S.

B.2 Nstts and pNstts

We first consider monadic queries defined by tree automata A over Σ × B.
We show that we can express them by run-based queries via automata
projection (which will be useful later on too).

Lemma 7 Queries by an automata A over Σ×B can be defined equivalently
by runs of the Σ projected automaton π(A): qA = qπ(A),states(A)×{1}.

As a side product, Lemmas 7 show that every Nstt-defined query can
be defined as run-based query by some unambiguous tree automaton.

Proposition 4 Given a tree automaton A over Σ ×B and a binary Σ-tree
t one can compute the set qA(t) in time O(|A| ∗ |t|).

By Lemma 7 we can convert the query qA into a run-based query by
automata projection, which requires linear time. This later query can be
answered in linear time by Proposition 3.

Theorem 3 Queries qA(t) by Nstts or pNstts over binary trees can be
computed in linear time O(|A| ∗ |t|).

For Nstts this follows immediately from Proposition 4. Queries by
pNstts can be answered the same way after conversion by the following
lemma.

Lemma 8 Every pNstts can be transformed in linear time into an au-
tomata over Σ × B that defines the same query.

Note that the resulting automaton will not necessarily be an Nstt.

Proof Let A be a pNstt with signature (Σ × B)T . The idea of the trans-
formation is to compute an automaton e(A) over Σ × B that recognizes
all expansions of trees in L(A), obtained by replacing T -leaves by arbitrary
trees over Σ × {0}.

states(e(A)) = states(A) ⊎ {T}
final(e(A)) = final(A)

The rules of e(A) are induced by the schemata in 21, which are valid for
all symbols a ∈ Σ, p ∈ states(A), and left hand sides l of rules in A: all
rules of A are preserved by e(A) except those with the symbol T , which is



42 Julien Carme et al.

l → p ∈ rules(A) l 6= T

l → p ∈ rules(e(A))

a ∈ Σ

(a, 0) → T ∈ rules(e(A))
T → p ∈ rules(A)

T
ε→ p ∈ rules(e(A))

a ∈ Σ

(a, 0)(T, T ) → T ∈ rules(e(A))

Figure 21 Rules of automata e(A) that recognizes expansions of trees in L(A).

moved from the signature into the states. Automaton e(A) may label all
leaves by state T , as well as inner nodes whose descendants it has labeled
by T before. At an arbitrary time point, e(A) can decide to move from state
T to some state p of A for which T → p is a rule of A. Subsequently, e(A)
behaves equally to A.

Note that we freely permit ε-rules, which can easily be eliminated while
preserving the language. For these particular automata, ǫ-rules can be elim-
inated in linear time, since no two ǫ rules can be composed.

It now remains to show that qA = qe(A) for every pNstt A. We omit
these details.

C Expressiveness of Nstts and pNstts

We show that deterministic Nstts as well as deterministic pNstts capture
the class of monadic Mso-definable queries.

C.1 MSO-definable queries

In a logical perspective, a tree t is seen as a logical structure with domain
nodes(t), unary relations labela for every a ∈ Σ, and two binary relations
firstchild and nextsibling . We assume an infinite set of first-order variables
x, y, z, and an infinite set of monadic second-order variables S. Formulas of
Mso in unranked (or binary) trees have the following syntax:

φ ::= labela(x) | firstchild(x, y) | nextsibling(x, y)
| φ → φ′ | S(x) | ∀x.φ | ∀S.φ

Standard logical connectives such as conjunction φ ∧ φ′, negation ¬φ, exis-
tential quantification ∃x.φ and ∃S.φ can be expressed as usual, as well set
inclusion S ⊆ S′. Further relations such as child and lastchild are definable
in Mso as well.

Models of Mso formulas are defined in the usual Tarskian style. They
consist of a tree structure t and a variable assignment α mapping first-
order variables to nodes(t) and second-order variables to 2nodes(t). We write
t, α |= φ if t, α is a model of φ, and consider models of φ as equal if they
coincide on the free variables of φ.

Every Mso formula φ(x) with a single free variable x defines a monadic
query qφ(x) in unranked (resp. binary) trees, so that for all trees t:

qφ(x)(t) = {α(x) ∈ nodes(t) | t, α |= φ(x)}



Interactive Learning of Node Selecting Tree Transducers 43

C.2 Nstt and pNstt-defined queries

The idea behind completely annotated examples (as recognized by Nstts)
is to annotate all nodes that are selected in some tree in a single annotation.
In Mso, we can express the same idea by collecting all nodes x selected by
some query φ(x) in a single set S.

φ′(S) ≡ ∀x. (S(x) ↔ φ(x))

More generally, we can use Mso formulas φ(S) with a single free set variable
S to define monadic queries, such that for all trees t:

qφ(S)(t) = {v ∈ nodes(t) | t, α |= φ(S), v ∈ α(S)}

A monadic query is definable by a Mso formula with a single free first-order
variable if and only if it is definable by an Mso formula with a single free
second-order variable.

Annotated trees can be understood as the models of Mso formulas with
a single set valued variable. A model t, α of Mso formulas with a single free
variable S becomes the annotated tree t × α(S), which annotates all nodes
in t belonging to α(S) by 1 and all others by 0.

Theorem 4 (Thatcher and Wright (1968)) The set of annotated trees
corresponding to models of an Mso formula φ(S) over signature Σ is a
regular tree language over Σ × B, and vice versa.

The theorem states that a monadic query in binary trees over Σ definable
by an Mso formula with one free set variable if and only it is definable by
some tree automaton over the signature Σ × B. The original theorem is
even more general in that it applies to n-ary queries which are definable by
formulas with n free variables (Niehren, Planque, Talbot, & Tison, 2005).

Theorem 5 A query is definable in Mso iff it is definable by a deterministic
Nstt iff it is definable by a deterministic pNstt.

Proof Consider a query that is defined by some Mso-formula φ(x). The
same query is defined by the formula φ′(S) ≡ ∀x(x ∈ S ↔ φ(x)). Formula
φ′(S) is functional in that the value of S is uniquely determined by the
tree structure of models of φ′(S). Let A be the tree automaton over Σ × B

that recognizes the set of annotated trees corresponding to the models of
φ′(S), according to Thatcher and Wright’s theorem 4. The language of this
automaton is functional, given that the value of S in models t, α |= φ′(S)
is uniquely defined. This proves that A is an Nstt. By construction, it
defines the same query as φ′(S) and thus φ(x). The same automaton is also
a pNstt.

We have shown in Section B.2 that monadic queries represented by de-
terministic Nstts can be identified with run-based queries defined by un-
ambiguous tree automata. Theorem 5 shows that runs of unambiguous tree



44 Julien Carme et al.

automata can express all Mso definable monadic queries. This result has
been shown before by Neven and Van Den Bussche (2002). The simple
Mso-based proof presented here stems from Niehren et al. (2005) where
the expressiveness of n-ary queries by unambiguous tree automata has been
studied too.


