On the Minimization of XML-Schemas and Tree Automata for Unranked Trees

Wim Martens 1 Joachim Niehren 2
2 MOSTRARE - Modeling Tree Structures, Machine Learning, and Information Extraction
LIFL - Laboratoire d'Informatique Fondamentale de Lille, Inria Lille - Nord Europe
Abstract : Automata for unranked trees form a foundation for XML schemas, querying and pattern languages. We study the problem of efficiently minimizing such automata. First, we study unranked tree automata that are standard in database theory, assuming bottom-up determinism and that horizontal recursion is represented by deterministic finite automata. We show that minimal automata in that class are not unique and that minimization is np complete. Second, we study more recent automata classes that do allow for polynomial time minimization. Among those, we show that bottom-up deterministic stepwise tree automata yield the most succinct representations. Third, we investigate abstractions of ML schema languages. In particular, we show that the class of one-pass preorder typable schemas allows for polynomial time minimization and unique minimal models.
Type de document :
Article dans une revue
Journal of Computer and System Science, Elsevier, 2007, Journal of Computer and System Science, 73 (4), pp.550-583. 〈10.1016/j.jcss.2006.10.021〉
Liste complète des métadonnées

Littérature citée [33 références]  Voir  Masquer  Télécharger

https://hal.inria.fr/inria-00088406
Contributeur : Joachim Niehren <>
Soumis le : dimanche 13 août 2006 - 16:41:09
Dernière modification le : jeudi 11 janvier 2018 - 06:22:13
Document(s) archivé(s) le : lundi 20 septembre 2010 - 16:06:31

Fichier

Identifiants

Collections

Citation

Wim Martens, Joachim Niehren. On the Minimization of XML-Schemas and Tree Automata for Unranked Trees. Journal of Computer and System Science, Elsevier, 2007, Journal of Computer and System Science, 73 (4), pp.550-583. 〈10.1016/j.jcss.2006.10.021〉. 〈inria-00088406v2〉

Partager

Métriques

Consultations de la notice

414

Téléchargements de fichiers

222