
HAL Id: inria-00089487
https://inria.hal.science/inria-00089487

Submitted on 18 Aug 2006

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Formal Fault Tree Analysis: Practical Experiences
Frank Ortmeier, Gerhard Schellhorn

To cite this version:
Frank Ortmeier, Gerhard Schellhorn. Formal Fault Tree Analysis: Practical Experiences. Automatic
Verification of Critical Systems, Sep 2006, Nancy, France, pp.120-131. �inria-00089487�

https://inria.hal.science/inria-00089487
https://hal.archives-ouvertes.fr

AVoCS 2006

Formal Fault Tree Analysis:

Practical Experiences

Frank Ortmeier Gerhard Schellhorn
Lehrstuhl für Softwaretechnik und Programmiersprachen

Universität Augsburg
D-86135 Augsburg

Abstract

Safety is an important requirement for many modern systems. To ensure safety of complex critical systems,
well-known safety analysis methods have been formalized. This holds in particular for automation sytsems
and transportation systems. In this paper we present the formalization of one of the most wide spread safety
analysis methods: fault tree analysis (FTA). Formal FTA allows to rigorously reason about completeness
of a faulty tree. This means it is possible to prove whether a certain combination of component failures
is critical for system failure or not. This is a big step forward as informal reasoning on cause-consequence
relations is very error-prone.
We report on our experiences with a real world case study from the domain of railroads. The here presented
case study is – to our knowledge – the first complete formal fault tree analysis for an infinite state system.
Until now only finite state systems have been analyzed with formal FTA by using model checking.

Keywords: fault tree analysis, dependability, safety analysis, formal methods

1 Introduction

Many critical accidents in the last years show that the risk modern systems bring is

rising (e.g. the recent accidents in china’s chemical plants or the german ICE acci-

dent at Eschede). As a result safety is becoming a more and more important issue in

system development . At the same time new systems become increasingly complex.

This makes safety analysis both more important and more difficult. Therefore new

and better analysis methods must be developed. One such technique is formal FTA.

FFTA is a formal variant of well-known FTA. The benefit is, that cause-consequence

relations between component failure and system failure can be rigorously proved.

This is less error-prone than informal reasoning and yields much better results.

In this paper we present the first formal fault tree analysis of an infinite state

system, the problems we faced and the lesson we learned. We use the formal fault

tree semantics of [14]. Verification was done with the KIV system [2]. This case

study can also be seen as a guideline on how to do formal FTA in an interactive

verification environment. From a safety point of view the problems and solutions

found in the presented case study are exemplary for a big group of safety critical

systems.

A revised version of this paper will be electronically published in
Electronic Notes in Theoretical Computer Science

URL: www.elsevier.nl/locate/entcs

Ortmeier and Schellhorn

In Sect. 2 we give a brief introduction on FTA, summarize the formal semantics

and revisit the semantics of Harel’s state charts [9]. Sect. 3 presents a real world

case study from the domain of railroads. Learned lessons are presented in Sect. 4.

A conclusion and an outlook is given in Sect. 5.

2 Formal Fault Tree Analysis

A well-known safety analysis technique is fault tree analysis (FTA, [16]). FTA was

developed for technical systems to analyze if they permit a hazard (top event). The

top event is noted at the root of the fault tree. Events which cause the hazard

are given in the child nodes and analyzed recursively, resulting in a tree of events.

Each analyzed event (main event) is connected to its causes (sub-events) by a gate

in the fault tree (see Fig. 1). An AND-gate indicates that all sub-events are neces-

sary to trigger the main event, for an OR-gate only one sub-event is necessary. An

INHIBIT-gate states that in addition to the cause stated in the sub-event the con-

dition (noted in the oval) has to be true to trigger the main event. The inhibit gate

is more or less an AND-gate, where the condition does not have to be a fault. The

leaves of the tree (basic events) are failure modes at component level. These failures

have to occur in certain combinations (corresponding to the AND/OR structure of

the tree), before the top event can occur i.e. the system fails. An example fault

tree is shown in Fig. 8.

event

AND-gate

OR-gate

INHIBIT-gate

basic event

Fig. 1. Fault Tree Symbols

A combination of basic events which leads to the hazard is called a cut set. A

minimal cut set is a cut set which can not lead to the top level hazard, if only one

event of the set is prevented. A typical example is that in redundant systems for

system failure it is necessary that the primary and the secondary unit fail (for e.g.

the electric and the hydraulic braking module). This information helps to identify

failure events whose exclusion secures the system. If for example one event occurs

in different minimal cut sets, the probability of the top level hazard will strongly

decrease, if this event can be excluded.

Minimal cut sets can be computed from fault trees by combining the primary

events with boolean operators as indicated by the gates. A minimal cut set then

consists of the elements of one conjunction of the disjunctive normal form of the

resulting formula.

For formal FTA, each gate is represented by an interval temporal logic (ITL)

formula. Temporal formulas in ITL are built from first-order formulas using propo-

121

Ortmeier and Schellhorn

Gate ITL-formula Gate ITL-formula

ϕ2ϕ1

D

ψ
x2 (ψ → ϕ1 ∨ ϕ2)

ϕ2ϕ1

C

ψ

¬ (¬ x3 (ϕ1 ∨ ϕ2) ; i3 ψ)

ϕ2ϕ1

D

ψ
x2 (ψ → ϕ1 ∧ ϕ2)

ϕ2ϕ1

C

ψ

¬ (¬ x3 (ϕ1 ∧ ϕ2) ; i3 ψ)

ϕ2ϕ1

AC

ψ
¬ (¬ x3 ϕ1 ; i3 ψ)

∧ ¬ (¬ x3 ϕ2 ; i3 ψ)

χ

ϕ

D

ψ
x2 (ψ → ϕ ∧ χ) χ

ϕ

C

ψ
¬ (¬ x3 (ϕ) ; i3 ψ)

∧ ¬ (¬ x3 (χ) ; i3 ψ)

Fig. 2. Formal semantics of fault trees

sitional connectives and the following temporal operators 1 : i2 ϕ (“in all initial

intervals ϕ”), x2 ϕ (“in all subintervals ϕ”), i3 ϕ (“in some initial interval ϕ”), x3

ϕ (“in some subinterval ϕ”), and ϕ ; ψ (read ϕ chop ψ: “the interval can be split,

such that ϕ holds in the first part and ψ in the second”).

The formalization of FTA showed, that defining the semantics of an OR-gate

simply as a disjunction is insufficient, since it does not take into account that the

sub-events (causes) usually happen before the main event (consequence), and that

events may have duration. Therefore, it is necessary to distinguish decomposi-

tion gates (D-gates) with boolean semantics and cause-consequence gates (C-gates),

which describe temporal dependencies. This results in 7 types of gates. The gates

and there formalizations are shown in Fig. 2. For example the FTA formula for

D-gates (left column) and C-gates (right column) are shown.

D-OR- and D-AND-gates (D , D) can be defined canonically: for example

the D-AND-gate (D) states, that whenever the effect ψ happens, both causes

ϕ1 and ϕ2 must happen as well. A C-OR-gates (C) states, that it must not be

possible to split a run, such that none of the causes ϕ1 and ϕ2 ever happens in the

first half, but the consequence ψ happens at the beginning of the second half. In

other words: if the consequence happens, one of the causes must have happened

before (completely, if it has duration, therefore the chop is necessary). Causes

and consequences must not overlap. The asynchronous and synchronous C-AND-

gates (C , AC) are similar, they require that both causes must have happened (at

the same time) before the consequence. The conditions for D-INHIBIT- and C-

INHIBIT-gates (D , C) are the same as for the D-AND-gate and AC-gate.

Hansen et al. [8] defines cause-consequence gates in Duration Calculus (DC,

[17]), but their definition does not meet the requirement, that causes are completed

1 ITL also defines quantification and many other derived operators not needed here. More information may
be found in [1]

122

Ortmeier and Schellhorn

before the consequence. A subsequent publication [7] is restricted to decomposition

gates. Bruns and Andersen [4] also define a fault tree semantics using µ-calculus.

They also distinguish between cause-consequence and decomposition gates. Only

events without duration are considered. For this special case, our semantics is

equivalent (see [15] for details).

For the semantics in Fig. 2, the following theorem was proven:

Theorem 2.1 (minimal cut set theorem) If all conditions of a fault tree are

verified, and if for each minimal cut set at least one of its basic events is prevented

from happening, then the top-level event will never happen.

This means in practice, that if you verify for every gate in the fault tree the cor-

responding formula, then you can be sure, that you have not forgotten any branches

in the fault tree (i.e. no combination of failure modes has been ”overlooked”).

In other words, it is sufficient to prevent only one primary event of each minimal

cut set, to avoid system failure. A complete fault tree is therefore a partial proof

for the safety of the system. It shows what combinations of component failures are

necessary reason for system failure. The completeness theorem also gives formal

justification for the use of minimal cut sets in quantitative safety analysis, even for

cases where timing conditions are relevant [13].

The theorem is proved using structural induction over the size of the fault tree.

The basic fact underlying the proof is transitivity of the cause-consequence rela-

tion. The proof was done formally with the KIV system ([2]), using an algebraic

specification of the syntax and semantics of continuous Interval Temporal Logic.

2.1 State charts

In this paper systems are modeled as State charts. State charts exist in several dif-

ferent variations. The most commonly known are UML State charts and Statemate

State charts. For Statemate State charts a formal semantics has been defined by

Harel and Damm [6]. In this paper Statemate State charts are used as system mod-

els. This semantics has been integrated in a model checking extension to Statemate

[3] and is also supported by the interactive theorem prover KIV [2].

State charts may be seen as an extension to traditional state-transition-systems.

A single state chart comprise a set of (sub-)State charts, a set of labeled transitions

and an initial state. Figure 3 shows a very basic state chart.

My_Chart

State_A State_B

ev[cond]/act

Fig. 3. A basic state chart

The state chart My Chart has two (sub-)State charts: State A and State B. A

transition from State A to State B happens if and only if, the event ev is triggered

and the condition cond holds. If the transition is taken, the action act will be

executed. The difference between events and conditions is that events are only one

time step active (there is no event queue like in UML State charts) while conditions

123

Ortmeier and Schellhorn

may be arbitrary (non-temporal) formulas. Thus conditions may in general hold

several time steps. Act is a C-like program which is executed atomically when

the transition is taken. If several transition are simultaneously possible, then one

will be chosen indeterministically. A more detailed description of the semantics of

Statemate State charts may be found in the tool’s documentation or in [6].

For the purpose of formal proofs events and conditions may be treated analo-

gously. From now on we write event ∧ cond/act for event[cond]/act. If no action

is defined we simply write event ∧ cond. If no condition and no event is guarding

the transition (spontaneous transition) then we use /act. Unlabeled transitions are

spontaneous transitions with no action defined.

3 A case study

As an example for the application of formal FTA, we present an analysis of a radio-

based railroad crossing. The case study was done using the interactive theorem

prover KIV [2] and the proof effort was about 1.5 person months. This case study

is the reference case study of the german research councils (DFG) priority program

1064. This program aims at bringing together field-tested engineering techniques

with modern methods of the domain of software engineering.

The German railway organization, Deutsche Bahn, prepares a novel technique

to control railroad crossings: decentralized, radio-based railroad crossing control.

This technique aims at medium speed routes, i.e. routes with maximum speed of

160 km/h. An overview is given in [10].
radio communication

central office

route
profile defects

Fig. 4. Radio-based railroad crossing

The main difference between this technology and the traditional control of rail-

road crossings is that signals and sensors on the route are replaced by radio com-

munication and software computations in the train and railroad crossing (see Fig.

4). This offers cheaper and more flexible solutions, but also shifts safety critical

functionality from hardware to software.

Instead of detecting an approaching train by a sensor, sending this information

to a central office which closes the railroad crossing, the train continously computes

the position where it has to send a signal to secure the level crossing. This effectively

saves money (not so much equipment on the track is needed) and removes the central

control office (this is a single point of failure for all trains in the region). To calculate

the activation point the train uses data about its position, maximum deceleration

and the position of the crossing. Therefore the train has to know the position of the

railroad crossing, the time needed to secure the railroad crossing, and its current

speed and position. The first two items are memorized in a data store and the

last two items are measured by an odometer. For safety reasons a safety margin is

124

Ortmeier and Schellhorn

added to the activation distance. This allows compensating some deviations in the

odometer. The system works as follows:

The train continuously computes its position. When it approaches a crossing, it

broadcasts a ‘secure’-request to the crossing. When the railroad crossing receives

the command ‘secure’, it switches on the traffic lights, first the ‘yellow’ light, then

the ‘red’ light, and finally closes the barriers. When they are closed, the railroad

crossing is ‘secured’ for a certain period of time. The ‘stop’ signal on the train route,

indicating an insecure crossing, is removed and substituted by computation and

communication. Shortly before the train reaches the ‘latest braking point’ (latest

point, where it is possible for the train to stop in front of the crossing), it requests

the status of the railroad crossing. When the crossing is secured, it responds with a

‘release’ signal which indicates, that the train may pass the crossing. Otherwise the

train has to brake and stop before the crossing. The railroad crossing periodically

performs self-diagnosis and automatically informs the central office about defects

and problems. The central office is also responsible for repair and provides route

descriptions for trains. These descriptions indicate the positions of railroad crossings

and maximum speed on the route. The safety goal of the system is clear: it must

never happen, that the train passes a crossing which is not secured.

A well designed control system must assure this property at least as long as no

component failures occur. The corresponding hazard is “a train passes the crossing

and the crossing is not secured”. This is the only hazard which we will consider in

this case study

3.1 The formal model

In the following part a brief description of the state chart model of this system is

given. Note, that the model not only includes intended behavior but failure modes

as well. This is necessary for all types of formal safety analysis. Details on how

such models may be derived from functional models of the intended behavior may

be found in [12] and [11].

The model of the radio-based railroad crossing is split in three parallel charts.

One chart models the crossing another one models the communication and a third

models the train. These three charts are explained below.

3.1.1 Model of the crossing

The state chart in figure 5 shows the model of the crossing which is reacting to the

signals sent by the train. Initially the crossing is in state Opened, which means

the bars are open. When the crossing receives the signal Close Request Rcv from

the train, it goes into state Closing. This activates a timer called Closing Count

which simulates the time needed for turning on the light signals at the crossing and

the closing of the bars. This takes the time (T Max Closing). After the expiration

of this time the crossing is closed (state Closed). Another timer Closed Count is

started to assure that the bars are not closed too long. This is a standard procedure

in railroad organization. The crossing reopens if either the train passes the danger

spot (Pos > DS) or the timer reached T Max Closed. The crossing also opens

its bars if a fault in the sensor, which detects the passing of the train, occurs

125

Ortmeier and Schellhorn

Closed

Closing_Count = 0

Crossing

Closing

Closed_Count = 0

Opened

Unwanted_Open

Error_Closed

Closing Count ≥ T Max Closing /

Close Request Rcv /
Closed Count ≥ T Max Closed
Pos > DS ∨

SR CROSSING: Status Request Rcv ∧ (Closed ∨) / Release Snd

Fig. 5. Model of the crossing-chart

(Unwanted Open). The response of the crossing on the train’s status request is

modeled by a static reaction (SR CROSSING). If it receives a status request

(Status Request Rcv), a release message (Release Snd) will be sent if the bars are

closed (intended behavior) or if there is a faulty detection at the sensor for the bars’

position (Error Closed).

3.1.2 Model of the train

The model of the train is divided into two parts: one for modeling the physics of

the train and one for modeling the controller logic. From a theoretical point of

view, it is advisable to model the control and the physics of the train separately.

But in this example, the physical model consists only of some static reactions (see

fig. 6). These static reactions basically state, that the position of the train updates

according to the speed and that the speed updates according to the acceleration.

So for an easier representation these two parts have been combined.

The train control supervises the position of the train, issues closing requests to

the crossing and ultimately decides, if an emergency stop is necessary or not. The

train control is implemented in software on-board the train. The formal model is

given in figure 6. Starting from its initial state Idle the chart goes into state Wfc

(’wait for close’), when the train approaches the crossing and the control sends a

close request (Close Request Snd) to the crossing. The point when this signal is

sent is continously calculated depending on the actual speed, estimated closing and

communication time, and the maximum deceleration of the train. This is modeled

in the predicate Close(Pos, V,AccMAX , DS). Some time later, the train reaches

another virtual control point which is also calculated continously and modeled in

predicate Request(Pos, V,AccMAX , DS). This is the position when the train sends

a status request (Status Request Snd) to the crossing. The control is then in state

Wfs (’wait for status answer’). If the train receives a release signal within the next

126

Ortmeier and Schellhorn

Wfs Count time units the controller will go into state Go and the train may pass

the crossing. Otherwise an emergency stop must be issued. In this case the brakes

are activated (A = AccMAX) and the controller goes into state Brake. A failure of

the brakes is also modeled. If the brakes fail, the controller will still go into state

Brake, but there will be no real deceleration. The two states Brake and Go are

final states of the chart, so they won’t be left anymore.

Train−Control

Idle

Brake

Train

Close_Request_Snd

Wfc

Wfs_Count = 0

Wfs

Status_Request_Snd

Release_Rcv Go

SR_TRAIN: Tick / Pos := Pos + V ; if V > A then V := V − A else if V > 0 then V := 0

Wfs Count > 1 ∧¬ Error Brake /

Wfs Count > 1 ∧ Error Brake

Close(Pos, V, AccMax, DS) /

Request(Pos, V, AccMax, DS) /

A = AccMax

Fig. 6. Model of the train-control-chart

3.1.3 Model of the communication

The communication is modeled by three static reactions, see figure 7. These static

reactions represent the function and disfunction of the communication. The func-

tional communication relays all incoming messages, e.g. (SR COMM1) the close

request of the train (Close Request Snd) is forwarded to the crossing as Close Request Rcv.

If the communication fails (Failure Comm) then no messages will reach their re-

ceiver. The other two static reactions represent the status request (SR COMM2)

and the release message (SR COMM3).

Communication

SR COMM2: Status Request Snd

SR COMM1: Close Request Snd

SR COMM3: Release Snd

∧¬ Failure Comm

∧¬ Failure Comm

∧¬ Failure Comm / Release Rcv

/ Close Request Rcv

/ Status Request Rcv

Fig. 7. Model of the communication-chart

3.2 Fault Tree Analysis

This model is now analyzed with formal FTA (see Sect. 2). The interesting hazard

is a situation, where a train passes the crossing, while the bars are not closed. We

127

Ortmeier and Schellhorn

will call this hazard ”collision”. The fault tree for this hazard is shown in figure 8.

gate−7

too short

gate−1

a)

b)

gate 2

gate 3

gate−4

gate−5 gate−6

D

D

D

D

of barsensors

faulty positionsignal opening because of

sensorfault

gate−8

train at dangerspot,

train at dangerspot,

release signal sent

train at dangerspot,

train at dangerspot,

no release signal received

crossing not closed,

crossing not closed

crossing not closed,

gate−9
D

sensorfault

opening because of
Timeout

crossing is opening,

release signal sent

train at dangerspot,

train at dangerspot,

no release signal received

emergency brake, emergency brake,

no release signal receivedno release signal received

brakingtime brake faulty

crossing not closed,

train at dangerspot, A 0,

crossing not closed

release signal send

CC

no release signal received

C

C

train has not reached ds, train has not reached ds,

c)

o)n)

train at dangerspot, A = 0,m)l)

k)j)j)i)

h)

g)f)

e)

d)

emergency brake,

6=

Fig. 8. Fault tree for hazard collision

The top event of the fault tree (collision) may have two different causes. One is

that the train passes the crossing, while the bars are not closed, although no release

signal has been sent. The other is a situation where the train passes the crossing,

while the bars are not closed, but a release signal has been sent. The first cause

corresponds to a misbehavior of the train and the second to one of the crossing. The

”or” relationship is modeled by a decomposition gate. These two different situations

must be further analyzed.

The left node — train passes the crossing (while the crossing is not closed)

although no release signal has been received, is caused by a failure in the train’s

behavior, so no information about the crossing is needed. This is phrased by a D-

INHIBIT-gate. The right node, train passing the not closed crossing and a release

signal has been sent, can be caused by two different situations. One is given by the

train approaching the not closed crossing and the release signal is being sent (while

the crossing is not closed). The reason for this can be a fault in the position sensors

of the bars 2 . The other possible reason is, that the bars open after a release signal

has been sent but before the train has passed the crossing. The reason for this can

be either a timeout or a faulty request to open the bars.The other cause is given by

the train passing the opening/opened crossing and the signal has been sent some

time before.

As an example, the formalization of the first three nodes is shown in table 1.

2 or if SIMULTANEOUSLY with the train status request a (faulty) request to open the bars reaches the
crossing. This branch of the faulty tree will usually only be found with formal FTA. It is not detected with
informal FTA.

128

Ortmeier and Schellhorn

Informal node formalization

train at danger spot and Pos < ds ∧ ds ≤ Pos+ V ∧

crossing not closed ¬Closed

train at danger spot and Pos < ds ∧ ds ≤ Pos+ V ∧

crossing not closed and ¬Closed∧

no release signal received ¬Release Signal Rcv

train at danger spot and Pos < ds ∧ ds ≤ Pos+ V ∧

crossing not closed and ¬Closed∧

release signal sent Release Signal Snd

Table 1
Formalization of fault tree nodes

The resulting proof obligation is then constructed by inserting these formal

descriptions of the nodes into the D-OR-gate formula of Fig. 1. The other fault

tree gates are handled analogously. The fault tree above has been proven complete.

This means that for every gate the corresponding proof obligation has been shown.

The conclusion is, that – for this example – all minimal cut sets are single-point-of-

failures. So there is no redundancy in the system. On the other hand the fault tree

also shows, that if these failures are prevented then the hazard will not occur. In

other words if nothing fails, the system will work as intended or even shorter: the

system is functionally correct.

4 Lessons learned

As already mentioned in the abstract the here presented case study is to our knowl-

edge the first formal safety analysis of an infinite state system. In this section we

will briefly present our experiences with proving FTA formulas over an infinite state

model. To prove the correctness of the fault tree, we used KIV [2] as an interactive

verification tool.

One big advantage of the KIV system is, that it natively supports state charts as

specification mechanism. The state chart model shown in section 3 can be directly

used as a system specification in KIV. The proof obligations are derived from the

fault tree as shown in the previous section. They can also be generated by the

fault tree module of KIV. KIV allows to prove temporal properties with symbolic

execution and induction [1]. This means every temporal formula is split into a

predicate logic part and some property which must hold from the next step onwards.

In practice this results in stepping through all reachable states of the state chart

until a loop is found and induction can be applied. State explosion can be avoided

by generalization. Generalization means that instead of proofing a formula a more

general theorem is proven. The starting formula is then a specialization of the more

general theorem. This type of strategy often helps when verifying interactively.

Altogether the case study required an effort of about one and a half person months.

129

Ortmeier and Schellhorn

We made the following experiences during this case study:

FFTA proofs are easy, but time consuming. Almost all proof steps can

be done automatically. Only finding adequate generalizations and identifying the

correct inductive argument (i.e. the corresponding state) requires human interaction

and skill. In most cases, generalizations can only be found manually. In particular

for big proofs it can be very time consuming to find this position (i.e. the part of

the proof where a similar subgoal had already been proven) in the proof tree. For

locating the correct spot it seems to be possible to use hash functions. This will

make state chart proofs much easier and faster.

Generalization are a great help, but are not easy to be found (see above).

It is clear that the more generalizations are made in the more possible successor

states will be possible in and vice versa. For example if you analyze a deterministic

state chart, then with no generalization each step in time will result in exactly one

new state. If you generalize this state chart (i.e. you throw away all information on

the current) state, then you will get all possible states as possible candidates for the

next step in time. In many cases even this ”brutal“ generalization can be helpful

(i.e. if you have to prove that the train moves in one direction). Although you can

get as many as 200 case distinctions in your proof, the KIV system can close all of

them with its built-in predicate logic simplifier.

This leads to two approaches to prove FTA properties: depth-first-search and

breath-first-search. Depth-first-search is more useful as an strategy, if it is unclear

if a proof obligation holds or not (i.e. if the nodes of the fault tree have been

formalized correctly or not). This is useful in particular to validate a formula and

find faults early. Breadth-first search is in general faster, but will only discover

specification errors at the very end. But for some properties it is even possible to

fully generalize the state of the system and close the proof in one step.

Formalizing FTA nodes is difficult. Even for simple systems it can be

very hard to correctly formalize the nodes of the fault tree. This is because the

informal understanding of a fault tree (decomposition of causes into components)

is not enough for a formal description. This problem can be attenuated if all proof

obligation are at the beginning validated with depth-first-search. It is our experience

that this additional effort is really worth the time, because formalizing nodes of a

fault tree is very error-prone.

5 Conclusion

We showed the first verification of an infinite state system with FTA. Our Experi-

ences show, that formal FTA with interactive verification is a promising, but not an

easy topic. Many problems arise from specification errors. These problems may be

countered with good methodology. Compared to other formal safety analysis meth-

ods, formal FTA is the only one which has a human readable and understandable

logic background structure and will thus be more easily accepted in industry than

push-the-button techniques (like pure model checking).

130

Ortmeier and Schellhorn

References

[1] M. Balser. Verifying Concurrent System with Symbolic Execution – Temporal Reasoning is Symbolic
Execution with a Little Induction. PhD thesis, University of Augsburg, Augsburg, Germany, 2005.

[2] M. Balser, W. Reif, G. Schellhorn, K. Stenzel, and A. Thums. Formal system development with KIV. In
T. Maibaum, editor, Fundamental Approaches to Software Engineering, number 1783 in LNCS, pages
363–366. Springer-Verlag, 2000.

[3] T. Bienmöller, W. Damm, and H. Wittke. The STATEMATE verification environment – making it
real. In E. A. Emerson and A. P. Sistla, editors, CAV’00: 12th international Conference on Computer
Aided Verification, number 1855 in LNCS, pages 561–567, Chicago, IL, USA, 2000. Springer.

[4] G. Bruns and S. Anderson. Validating safety models with fault trees. In J. Górski, editor, SafeComp’93:
12th International Conference on Computer Safety, Reliability, and Security, pages 21 – 30. Springer-
Verlag, 1993.

[5] A. Cau, B. Moszkowski, and H. Zedan. ITL – Interval Temporal Logic. Software Technology
Research Laboratory, SERCentre, De Montfort University, The Gateway, Leicester LE1 9BH, UK,
2002. www.cms.dmu.ac.uk/

˜
cau/itlhomepage.

[6] W. Damm, B. Josko, H. Hungar, and A. Pnueli. A compositional real-time semantics of STATEMATE
designs. In W.-P. de Roever, H. Langmaack, and A. Pnueli, editors, COMPOS’ 97, volume 1536 of
LNCS, pages 186–238. Springer, 1998.

[7] K. Hansen, A. Ravn, and V. Stavridou. From safety analysis to software requirements. IEEE
Transactions on Software Engineering, 24(7):573 – 584, July 1998.

[8] K. M. Hansen, A. P. Ravn, and V. Stavridou. From safety analysis to formal specification. ProCoS II
document [ID/DTH KMH 1/1], Technical University of Denmark, 1994.

[9] D. Harel and A. Naamad. The statemate semantics of statecharts. ACM Transactions on Software
Engineering and Methodology, 5(4):293–333, October 1996.

[10] J. Klose and A. Thums. The STATEMATE reference model of the reference case study
‘Verkehrsleittechnik’. Technical Report 2002-01, Universität Augsburg, 2002.

[11] F. Ortmeier, A. Thums, G. Schellhorn, and W.Reif. Combining formal methods and safety analysis
– the ForMoSA approach. In Integration of Software Specification Techniques for Applications in
Engineering. Springer LNCS 3147, 2004.

[12] Frank Ortmeier and Wolfgang Reif. Formal safety analysis of transportation control systems. In
Proceedings of SEFM 2005, 2005.

[13] G. Schellhorn, A. Thums, and W. Reif. Formal fault tree semantics. In Proceedings of The Sixth World
Conference on Integrated Design & Process Technology, Pasadena, CA, 2002.

[14] A. Thums. Formale Fehlerbaumanalyse. PhD thesis, Universität Augsburg, Augsburg, Germany, 2004.
(in German).

[15] A. Thums, G. Schellhorn, and W. Reif. Comparing fault tree semantics. In D. Haneberg, G. Schellhorn,
and W. Reif, editors, FM-TOOLS 2002, Technical Report 2002-11, pages 25 – 32. Universität Augsburg,
2002.

[16] W. E. Vesely, F. F. Goldberg, N. H. Roberts, and D. F. Haasl. Fault Tree Handbook. Washington,
D.C., 1981. NUREG-0492.

[17] Zhou Chaochen and M. R. Hansen. Duration calculus: Logical foundations. In Formal Aspects of
Computing, pages 283–330, 1997.

131

	Introduction
	Formal Fault Tree Analysis
	State charts

	A case study
	The formal model
	Fault Tree Analysis

	Lessons learned
	Conclusion
	References

