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Abstract

We introduce a new lambda calculus with futures, λ(fut), that models the oper-
ational semantics of concurrent statically typed functional programming languages
with mixed eager and lazy threads such as Alice ML, a concurrent extension of
Standard ML. λ(fut) is a minimalist extension of the call-by-value λ-calculus that
is sufficiently expressive to define and combine a variety of standard concurrency
abstractions, such as channels, semaphores, and ports. Despite its minimality, the
basic machinery of λ(fut) is sufficiently powerful to support explicit recursion and
call-by-need evaluation.

We present a static type system for λ(fut) and distinguish a fragment of λ(fut)
that we prove to be uniformly confluent. This result confirms our intuition that
reference cells are the sole source of indeterminism. This fragment assumes the
absence of so called handle errors that violate the single assignment assumption of
λ(fut)’s handled future-construct.

Finally, we present a linear type system for λ(fut) by which to prove the absence
of handle errors. Our system is rich enough to type definitions of the above men-
tioned concurrency abstractions. Consequently, these cannot be corrupted in any
(not necessarily linearly) well-typed context.

Keywords: functional programming languages, semantics, concurrency.

1 Introduction

Alice ML [1,2] is a concurrent programming language extending on Standard
ML (SML) [3], where all synchronisation is based on futures, rather than
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channels [4–6] or joins [7]. The core language of Alice ML features functional
programming with static type inference, extended by futures and concurrent
threads, that may be eager or lazy and can be mixed. Alice extends further on
SML by higher-order modules, packages that integrate dynamic typing, net-
work distribution, and constraint programming [1,8,9]. Many ideas in Alice
ML (except those for typing) are inspired by, and inherited from, the concur-
rent constraint programming language Mozart-Oz [10–12].

The original motivation of this paper has been to formally model the opera-
tional semantics of Alice ML. As usual, we have to be less ambitious, so here
we restrict ourselves to the basic concepts of Alice ML’s core language, con-
cerning futures, concurrency, and typing. We will try to capture their essence
rather than their concrete appearance.

Futures [13,14] are a restricted form of logic variables, which carefully separate
read and write permissions. Otherwise, they share many characteristics of the
logic variables in concurrent logic and concurrent constraint programming
[15,16]:

Unknown information. A future is a placeholder, referring to a value that is
completely described by some expression (possibly containing other futures).
As long as this expression has not been evaluated, the value of the future is
unknown.

Future value identification. Once the value of a future becomes available,
the future is identified with it. More complex forms of unification are not
needed, in contrast to partial descriptions by logic variables.

Implicit synchronisation. Synchronisation is implicit and data-driven, by
suspending a computation whenever a future with unknown value is ac-
cessed, and resuming computation once this value has been determined.

Implicit synchronization by futures provides a convenient mechanism to deal
with network latency, since it achieves low coupling between concurrent and
possibly distributed computation threads. Calls to a remote site immediately
return a future that refers to the result of the call; the actual result may
be supplied much later. Since operations may simply continue with a place-
holder as long as they do not need its value, the potential for concurrent and
distributed computation is maximised by this form of automatic data-driven
synchronisation.

As an example consider an application f e of some function f , where the
evaluation of the argument e takes considerable time, e.g., a communication
with a remote process or an expensive internal computation. In this case it
may be advantageous to use instead

f (thread λy.e)
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which applies f to a fresh future y and delegates the evaluation of e to a
concurrent and possibly distributed thread y⇐e. The point here is that f
will only block on y if it really needs the value of its argument, so that the
latest possible synchronisation is obtained automatically. The only way we
can simulate this effect with channels is by rewriting the function f (even the
argument type of f changes).

In contrast to logic variables, futures allow us to statically determine the data
flow. Static data flow is an indispensable prerequisite for static type inference
with parametric polymorphism as found in SML, CAML, or Haskell. This fact
is well-known, as it led to serious problems in several previous approaches to
concurrent programming: It prohibited type inference in programming lan-
guages with unrestricted logic variables such as Oz [17,10] and in π-calculus
based extensions of SML such as Pict [18]. The problem for π-calculus based
channel approaches was solved with the join-calculus [6,19] and the corre-
sponding programming language JoCaml [7] which extends on CAML [20].
The join-calculus, however, relies on the alternative mechanism of join pat-
terns for synchronisation and does not model futures.

Previous λ-calculi with futures by Felleisen and Flanagan [21] were proposed
to model the parallel execution of purely functional programs. They serve to
describe a set of parallel threads that communicate through futures. Work by
Moreau [22] showed how to extend this to a Scheme-like language with control
operators. These calculi model languages that are confluent, and where the
construction of cyclic data-structures is not possible.

In this article, we present a new lambda calculus with futures that we call
λ(fut). It models the operational semantics of concurrent, statically typed,
functional programming languages extending SML, as provided by Alice ML.
The requirements raised by concurrent computation necessitate a number of
technically nontrivial extensions compared to the previous calculi of [21,22].

Indeterminism. Standard concurrency constructs are indeterministic, which
is incompatible with previous confluence assumptions. We propose to add
indeterminism via reference cells. These are the base components of tradi-
tional stores, already available in SML.

Single assignment. For expressing streams, ports, or channels, we will need
a particular form of futures that we call handled futures which are introduced
before any value descriptor is available. Handled futures come with a handle
that grants once-only permission to write the value of the future. Any further
attempt to use the same handle will raise a programming error, that we
call a handle error. Handled futures have previously been known as Id’s
I-structures [23] and alternatively as promises [24].

Cyclic data-structures and explicit recursion. It is known that cells en-
able the construction of cyclic data structures, and that this is difficult to
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exclude statically by purely syntactical means. Handles have the same prop-
erty. This raises a number of technical problems, since we cannot simply
always replace a future by its value. The same problem is known for explicit
recursion [25], which is indeed most naturally expressible by the concept of
threads in λ(fut).

Mixed eager and lazy theads. As we will see, the machinery we set up is
already able to deal with lazy theads, whose values are evaluated by need
[26,27]. Furthermore, lazy and eager threads can be mixed freely.

We present a static type system for λ(fut). The experience with Alice ML’s
type system shows that it can be smoothly extended by parametric polymor-
phism in the style of SML 1 . We distinguish a statically typed fragment of
λ(fut) that we prove to be uniformly confluent. This result confirms our in-
tuition that the reference cell construct is the sole source of indeterminism.
Besides well-typedness, it assumes that programs do not exhibit handle errors,
i.e., no attempts are made to use the same handle twice.

Finally, we present a linear type system for λ(fut) inspired by [30], by which
to prove the absence of handle errors. Our system is sufficiently rich to type
definitions of the above mentioned concurrency abstractions, so that these
cannot be corrupted in any (not necessarily linearly) well-typed context.

Outline. We present λ(fut) in Section 2 and its static type system in Section
3. A confluent fragment is identified in Section 4. We show how to express
diverse concurrency constructs in Section 5. Section 6 presents a linear type
system for excluding handle errors and shows that it is sufficiently expressive
to type implementations of channels and ports in λ(fut).

An extended abstract of this article has appeared as [31]. In comparison, we
have added the description of lazy threads, the confluence results, and included
proofs.

2 Lambda Calculus with Futures

λ(fut) is an extension of the call-by-value λ-calculus by reference cells (as
featured by SML and CAML, but with exchange), concurrent threads, futures,
and handles. We start with a minimalist variant of λ(fut) that omits lazy
threads, give some examples, and then show how to add lazy threads for free.
A static type system for λ(fut) will be given in Section 3.

1 As in SML, the usual value restriction is to be imposed [28]. All more interesting
question on Alice’s type system are related to its module system [29].
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x, y, z, f, g ∈ Var

c ∈ Const ::= unit | cell | exch | thread | handle

e ∈ Exp ::= x | c | λx.e | e1 e2

v ∈ Val ::= x | c | λx.e | exch v

C ∈ Config ::= C1 |C2 | (νx)C | x c v | x⇐e | y h x | y h •

Fig. 1. Syntax of λ(fut)

2.1 Syntax

The syntax of λ(fut) has two levels, the layer of λ-calculus expressions e ∈
Exp for sequential functional computation inside of threads, and the layer of
configurations C ∈ Config for concurrent computation composing multiple
sequential threads in parallel.

Fig. 1 introduces the syntax of λ(fut). The expressions e of λ(fut) are standard
λ-terms with variables x, y and constants c. All new operations are introduced
by (higher-order) constants. There are 5 constants, 3 of which are standard:
unit is a dummy value, cell serves for introducing reference cells, and exch
for atomic exchange of cell values. The new constants thread and handle
serve for introducing futures concomitantly with threads or handles that can
bind their values.

Values v are defined as usual in a call-by-value λ-calculus. They consist of
variables, constants, abstractions, and partial applications of the curried two-
argument operation exch.

Configurations C are reminiscent of expressions of the π-calculus. They are
built from base components by parallel composition C1 |C2 and new name
operators (νx)C. We distinguish four types of base components: a thread x⇐e
is a concurrent component whose evaluation will eventually bind the future
x to the value of expression e unless it diverges or suspends. We call such
variables x concurrent futures. A cell x c v associates a name x to a cell with
value v. A handle component y h x associates a handle y to a future x, so that
y can be used to assign a value to x. We call x a future handled by y, or more
shortly a handled future. Finally, a used handle component y h • means that y
is a handle that has already been used to bind its future.

An original idea we contribute with λ(fut) is to consider threads x⇐e as possi-
bly recursive equations x = e, but directed from right to left. This is since the
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C1 |C2 ≡ C2 |C1 (C1 |C2) |C3 ≡ C1 | (C2 |C3)

(νx)(νy)C ≡ (νy)(νx)C ((νx)C0) |C1 ≡ (νx)(C0 |C1) if x /∈ fv(C1)

Fig. 2. Structural congruence

C1 −→ C2

C1 |C −→ C2 |C

C1 −→ C2

(νx)C1 −→ (νx)C2

C1 ≡ C ′
1

C ′
1
−→ C ′

2
C ′

2
≡ C2

C1 −→ C2

Fig. 3. Thread selection

concurrent future x may occur in the expression e whose evaluation computes
its future value. Such a thread can be created by evaluating thread λx.e,
where x may occur in e. The expression handle λx.λy.e introduces a han-
dle component y h x with static scope in e; an application y v “consumes” the
handle y and binds x to v, resulting in a used handle y h • and thread x⇐v.

We define free and bound variables as usual; the only scope bearing constructs
are λ-binder and new operators (νx). We identify expressions and configura-
tions up to consistent renaming of bound variables. We write fv(C) and fv(e)
for the free variables of a configuration and expression, respectively, and e[e

′
/x]

for capture-free substitution of e′ for x in e. Moreover, we use the usual syn-
tactic sugar, writing let x1=e1 in e for (λx1.e) e1, and λ .e for λx.e where x is
not free in e, and e1; e2 for (λ .e2) e1.

2.2 Operational Semantics

The operational semantics of λ(fut) is given by a binary relation C1 −→ C2 on
configurations called (one-step) reduction. We assume that reduction is fair,
i.e. that every redex will be eventually reduced in every complete reduction
sequence (infinite or terminating).

2.2.1 Configurations

We do not want the order of components in configurations to matter, so we
use the structural congruence ≡ of the π-calculus in [32]. This is the least
congruence relation on configurations containing the identities in Fig. 2. The
first two axioms render parallel composition associative and commutative. The
third identity expresses that the order of restricting names does not matter.
The final rule is known as scope extrusion in π-calculus and is used to extend
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the scope of a local variable.

Every reduction step of λ(fut) involves either one or two threads of a con-
figuration. These threads can be freely selected according to the inference
rules stated in Fig. 3: given a configuration C we choose a representation
(νx1) . . . (νxn)(C ′ |C ′′) congruent to C and replace C ′ by one of its reducts.

2.2.2 Threads and Expressions

The strategy for reducing threads and expressions in λ(fut) is specified using
the evaluation contexts defined in Fig. 4. We base it on standard evaluation
contexts F for call-by-value reduction and lift them to threads. Formally, a
context is a term with a single occurrence of the hole marker [ ] which is a
special constant. Evaluation contexts F are expressions where some subex-
pression in call-by-value reduction position is replaced by the hole marker. An
evaluation context E is a thread where a subexpression in reduction position
is left out. We write E[e], and F [e], respectively, for the object obtained by
filling the hole in the context with an expression.

A nontrivial question is when to allow replacement of futures by their values.
The naive approach to always do so once the value becomes available fails,
in that it introduces non-terminating unfolding in the presence of recursion.
For instance, consider a thread x⇐λy.xy. The thread’s expression contains an
occurrence of the future x whose value the thread has computed. Replacing
this occurrence of x by its value yields x⇐λy.((λy′.xy′) y) which again contains
an occurrence of x because of recursion, so the substitution process can be
repeated indefinitely.

The alternative to permit future substitution in all evaluation contexts leads
to confluence problems. Suppose that x is bound to value 5 by some thread
x⇐5 and that another thread is evaluating the expression (λy.λz.y) x which
contains an occurrence of x in evaluation position. We could thus first replace
x by 5 and then β-reduce, resulting in λz.5. Or else, we could β-reduce first,
yielding λz.x. Now the problem is that the occurrence of x has escaped the
evaluation context, so that replacing the future by its value is impossible and
we are left with two distinct, irreducible terms.

We propose to replace a future only if its value is needed to proceed with the
computation of the thread. In order specify this need, we define future evalua-
tion contexts Ef and Ff in Fig. 4 that we will use in the rule (future.deref)
of the operational semantics in Fig. 5. In the version of λ(fut) presented here,
the value of a future x is needed in two situations, in function applications xv
and for cell exchange exch x v in evaluation contexts. Apart from technical
considerations, the adoption of future evaluation contexts is motivated by the
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E ::= x⇐F Ef ::= x⇐Ff

F ::= [ ] | F e | v F Ff ::= F [[ ] v] | F [exch [ ] v]

Fig. 4. Evaluation contexts E, F and future evaluation contexts Ef , Ff .

(beta) E[(λy.e) v] −→ E[e[v/y]]

(thread.new) E[thread v] −→ (νy)(E[y] | y⇐v y) (y /∈ fv(E[v]))

(future.deref) Ef [y] | y⇐v −→ Ef [v] | y⇐v

(handle.new) E[handle v] −→ (νy)(νz)(E[v y z] | z h y) (y, z /∈ fv(E[v]))

(handle.bind) E[z v] | z h y −→ E[unit] | y⇐v | z h •

(cell.new) E[cell v] −→ (νy)(E[y] | y c v) (y /∈ fv(E[v]))

(cell.exch) E[exch y v1] | y c v2 −→ E[v2] | y c v1

Fig. 5. Reduction rules of operational semantics

behaviour of the Alice ML implementation 2 . The same mechanism has also
proved useful to model more implementation oriented issues in [21]. Future
evaluation contexts are called placeholder strict there.

Reduction inside threads x⇐e means to reduce a subexpression e′ in an evalu-
ation context F where e = F [e′]. Evaluation inside expressions is call-by-value,
i.e., all arguments of a function are evaluated before function application. Se-
quential computation is induced by the standard call-by-value beta reduction
rule (beta) in Fig. 5.

Concurrent Futures and Threads. Besides β-reduction, there are six re-
duction rules in Fig. 5. Concurrent futures are created by rule (thread.new).
Evaluating thread λy.e has the following effects:

- a new concurrent future y is created,
- a new thread y⇐e is spawned which evaluates the expression e concurrently

and may eventually assign its value to y,
- the concurrent future y is returned instantaneously in the original thread

so that it is free to proceed, independent of the evaluation of e.

Note that the expression e may also refer to y, i.e., our notion of thread
creation incorporates explicit recursion.

2 In Alice ML, pattern matching gives rise to further future evaluation contexts.
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Rule (future.deref) states when to replace futures y by their value v. It
applies to futures in future evaluation contexts, once the value of the future
has been computed by some concurrent thread y⇐v in the configuration.

We illustrate the first three rules at the following example where I is the
lambda expression λz.z.

x⇐ (thread (λy.I I)) (I unit)→ (νy)(x⇐y (I unit) | y⇐ (λy.I I)y )

→ (νy)(x⇐y (I unit) | y⇐I I)

The thread.new step for thread creation is followed by a trivial beta step,
that we left implicit in the previous explanation. The result is a configuration
with two threads that we can reduce concurrently. We have a choice of beta

reducing the left or right thread first. We do the former:

(νy)(x⇐y ( I unit ) | y⇐I I)→ (νy)(x⇐y unit | y⇐ I I )

→ (νy)(x⇐y unit | y⇐I)

In fact, any other reduction sequence would have given the same result in this
case. At this point, both threads need to synchronize to exchange the value of
y by applying future.deref; this enables a final beta step:

(νy)( x⇐y unit | y⇐I )→ (νy)(x⇐ I unit | y⇐I)

(νy)(x⇐unit | y⇐I)

Handled Futures. Handles are needed together with cells in order to safely
express nondeterministic concurrency abstractions as in Section 5 below. The
idea of handled futures appeared before in the form of I-structures [23] and
promises [24]. Rule (handle.new) introduces a handled future jointly with
a handle. Evaluating applications handleλx.λy.e has the following effects:

- a new handled future x is created,
- a new handle y is created,
- a new handle component y h x associates handle y to future x,
- the current thread continues with expression e.

Handles can be used only once. According to rule (handle.bind) an appli-
cation of handle z to value v reduces by binding the future associated to z to
v. This action consumes the handle component z h y; what remains is a used
handle component z h • as well as the binding y⇐v. Restricting the binding of
handled futures to values, rather than forking a thread y⇐e for any expression
e, is not essential and merely reflects the call-by-value evaluation of Alice ML.
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Trying to apply a handle a second time leads to a handle error :

E[y v] | y h • (handle error)

We call a configuration C error-free if it cannot be reduced to any erroneous
configuration, i.e., none of its reducts C ′ with C →∗ C ′ contains a handle error
as a subconfiguration.

Cells. Evaluating cell v with rule (cell.new) creates a new cell y with
content v represented through a cell component y c v. The exchange operation
exch y v writes v to the cell and returns the previous contents. The first (cell)
argument must be known, as expressed by the definition of future evaluation
contexts Ef . Cell exchange is atomic, i.e., no other thread can interfere.

Suppose that r is a reference cell. While the primitive for cell access is atomic
exchange, it is also possible to define a more conventional access operation
get content(r) that does not change its contents. The naive approach of using
two exchanges, writing an arbitrary intermediate value before writing back
the correct one, is not thread-safe: Other threads might access the cell while
it is in the inconsistent intermediate state. The solution is to use a handled
future:

get content(r) ≡ handle(λxλh. let v = exch r x in (h v; v))

The stored value, yet unknown, is exchanged with a future by v = exch r x.
Next, this future is replaced by the value v itself, by an application h v of
the handle. Finally, the value is returned as result. Other threads accessing
the cell inbetween will find the future inside, which guarantees consistency. A
similar idea is used in Section 5.1 to obtain a mutual exclusion mechanism.

Explicit Recursion. Threads of λ(fut) are more general than previous fu-
ture operators in that they can spawn recursive equations, binding a future to
a value that may contain the future itself. Indeed, thread can replace a fixed
point operator fix. Consider x⇐(threadλf.λx.(f x)) z for instance. Thread
creation thread.new yields a thread assigning a recursive value to f , so that
the original thread can future.deref and beta reduce forever.

(νf) ( x⇐f z | f⇐λx.(f x) ) → (νf) (x⇐ (λx.(f x)) z | f⇐λx.(f x))

→ (νf) ( x⇐f z | f⇐λx.(f x) )

The first future.deref step indeed simulates the unfold rule of the fixed
point operator.
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Handles introduce yet another mechanism for recursion, similar to cells that
enable construction of cyclic heap structures and what is sometimes referred
to as recursion through the store [33]. Such cyclic bindings are difficult to avoid
by purely syntactic means:

x⇐ handleλz.λy.y z →3 (νy)(νz)(x⇐ y z | y h z)

→ (νy)(νz)(x⇐unit | z⇐z | y h •)

Reduction starts with handle.new and two beta steps. The final step by
handle.bind binds the future z to itself. Analogously, longer cyclic chains of
futures may be constructed.

Futures in Alice ML. There are two main differences between the formali-
sation of futures in λ(fut) just presented, and their implementation in the Alice
ML language. First, concurrent futures in λ(fut) are slightly more general, by
directly permitting recursive use in the spawned expressions.

Second, handled futures are realised as promises in Alice ML. Rather than
introducing handle and associated future simultaneously, as done by λ(fut)’s
handle construct, the expression promise e creates the explicit handle p with
type α promise. The future can be extracted as future p : α, and by applying
fulfill(p, v) it is replaced by the value v. In λ(fut), this is simplified by identify-
ing the abstract type α promise with α→ unit and replacing fulfill by ordinary
function application. Finally, in Alice ML an exception is raised in the case of
handle errors.

The combination of futures and exceptions leads to the concept of a failed
future: if the expression associated with a future evaluates to an exception
packet, the exception is propagated if and when the future is touched to deref-
erence its value, i.e., it is re-raised in the respective thread.

2.3 Extension by Lazy Futures and Threads

Even though eager in principle, it is trivial to extend λ(fut) by mixed eager
and lazy threads. This is since the base machinery for resolving futures (the
future.deref rule) works by need. In contrast to Concurrent Haskell [34],
all applications remain eager, only some designated threads become lazy.

We extend λ(fut) by a single constant lazy, for introducing by-need threads
that are suspended until their value is needed. We add one more additional
basic component, x

susp
⇐= e, to represent a suspended computation in a config-

uration. The associated transition rules given in Fig. 6 are analogous to the
ones for concurrent threads.

11



(lazy.new) E[lazy v] → (νx)(E[x] |x
susp
⇐= v x) (x /∈ fv(E[v]))

(lazy.trigger) Ef [x] | x
susp
⇐= e → Ef [x] | x⇐e

Fig. 6. Operational semantics of lazy threads

The transition (lazy.new) introduces a new suspended computation x
susp
⇐=

v x to the configuration; as with concurrent threads, the associated (by-need)
future x may be used to evaluate v x. A suspended computation is triggered if
(and when) its value is needed for the first time, i.e., if the associated future
x occurs in a future dereference context.

2.4 Are Handled Futures Redundant?

It is natural to ask if handled futures have to be included as primitive con-
struct in λ(fut). We conjecture that they cannot be expressed in terms of the
remaining constructs of λ(fut), unless one is willing to change the termination
behaviour of programs.

It is instructive to see what goes wrong with the naive encoding approach: The
idea is to introduce a cell for every handled future that contains the value of the
future once available, and some distingushed dummy value initially. To access
the value of a future, the reader needs to wait until the cell’s content becomes
distinct from the dummy value. Testing for this can be done by polling, i.e.
by accessing the cell’s content repeatedly until the dummy value is replaced
by a proper value.

The problem with this kind of encoding is that future access may lead to un-
wanted nontermination; this will happen in contexts where the future’s value
will never be written. Implementations of handled futures avoid this kind of
polling, by the same technique that is used for implementing concurrent fu-
tures: All threads waiting for the value of a future are written into a suspension
list. When a value is assigned to the future, all threads in that list are notified
and re-actived. It is not obvious, however, how to express this implementa-
tion trick as a λ(fut) program such that termination is preserved in arbitrary
contexts.

3 Static Typing

Since our intention is to model extensions of the statically typed language ML
we restrict our calculus to be statically typed. We present a simple type system
that provides function types α→ β, the type α ref of reference cells containing
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Types α, β ∈ Type ::= unit | α→ β | α ref

Typing of constants

unit : unit cell : α→ (α ref)

thread : (α→ α)→ α exch : α ref → α→ α

handle : (α→ (α→ unit)→ β)→ β

Typing of expressions

Γ ⊢ c : TypeOf(c) Γ, x:α ⊢ x : α

Γ, x:α ⊢ e : β

Γ ⊢ λx.e : α→ β

Γ ⊢ e1 : α→ β Γ ⊢ e2 : α

Γ ⊢ e1 e2 : β

Fig. 7. Typing of expressions

elements of type α, and the single base type unit. Typing of expressions is
standard and integrates well with ML-style polymorphism and type inference.

3.1 Well-Formedness

On the level of configurations, types allow us to state a type preservation
theorem during evaluation. Besides, the type system will ensure a number of
natural and more basic well-formedness conditions : Every future in a config-
uration is either concurrent or handled, i.e., its status is unique. Moreover,
the binding of a concurrent future must be unique, and a handle must give
reference to a unique future. Since parallel compositions of components are
reminiscent of (mutually recursive) declarations, all of the following configu-
rations are ill-formed:

- x h x, or x⇐e |x′ h x, or x⇐e |x h x′, or x⇐e |x h •
- x⇐e1 |x⇐e2, or y h x1 | y h x2

More precisely, a configuration C is well-formed if there is no C ′ ≡ C such
that C ′ contains one of the above as a subconfiguration.

The type system given next will require that the variables introduced by C1

and C2 are disjoint in concurrent compositions C1 |C2, thereby entailing well-
formedness of well-typed configurations: none of the above configurations is
typable. That well-formedness is preserved by reduction for typable configura-
tions is therefore an immediate consequence of the subject reduction theorem.
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Γ, Γ1 ⊢ C1 : Γ2 Γ, Γ2 ⊢ C2 : Γ1

Γ ⊢ C1 |C2 : Γ1, Γ2

Γ, x:α ref ⊢ v : α

Γ ⊢ x c v : (x:α ref)

Γ ⊢ C : Γ′

Γ ⊢ (νx)C : Γ′ − x

Γ, x:α ⊢ e : α

Γ ⊢ x⇐e : (x:α)

x, y /∈ dom(Γ)

Γ ⊢ y h x : (x:α, y:α→ unit)

y /∈ dom(Γ)

Γ ⊢ y h • : (y:α→ unit)

Fig. 8. Typing rules for configurations

3.2 Typing of Expressions and Configurations

According to the operational semantics described in Section 2, the constants
obtain their natural types. For instance, thread has type (α → α) → α for
any type α since its argument must be a function that maps a future of type
α to a value of type α. The operation thread then returns the future of type
α. The types of the other constants are listed on the left of Figure 7 and can
be justified accordingly.

Let Γ and ∆ range over type environments, i.e. finite functional relations be-
tween Var and Type which we write as x1:α1, . . . , xn:αn where all xi are dis-
tinct. In particular, in writing Γ1, Γ2 we assume that the respective domains
are disjoint. Writing TypeOf(c) for the type of constant c we have the usual
type inference rules for simply typed lambda calculus, with judgments of the
form Γ ⊢ e : α (Figure 7).

Types are lifted to configurations according to the inference rules in Fig. 8.
The judgment Γ ⊢ C : Γ′ informally means that, given type assumptions Γ,
the configuration C is well-typed. The type environment Γ′ keeps track of the
variables declared by C. In fact, the rules guarantee that dom(Γ′) is exactly
the set of variables declared by C, and that dom(Γ) ∩ dom(Γ′) = ∅.

To type a thread x⇐e we can use the environment Γ as well as the binding x:α
that is introduced by the component. Note that writing Γ, x:α in the premise
implies that x is not already declared in Γ. Similarly, when typing a reference
cell x c v both Γ and the assumption x:α ref can be used to derive that the
contents v of the cell has type α. The typing rule for handle components y h x
and y h • take care that the types of the handled future x and its handle y are
compatible, and that they are not already declared in Γ.

A restriction (νx)C is well-typed under assumptions Γ if the configuration C
is. The name x is kept local by removing any occurrence x:α from Γ′, which we
write Γ′− x. The typing rule for a parallel composition C1 |C2 is reminiscent
of the circular assume-guarantee reasoning used in compositional verification
of concurrent systems [35]. Recall that the combined environment Γ1, Γ2 in

14



the conclusion is only defined if the variables appearing in Γ1 and Γ2 are
disjoint. So the rule ensures that the sets of variables declared by C2 and C1

respectively, are disjoint. Note how this prevents ill-formed configurations, as
on page 13, to be typed. Moreover, by typing C1 in the extended environment
Γ,Γ1 the rule allows variables declared by C2 to be used in C1, and vice versa.
For example, we can derive

⊢ (x⇐y unit | y h z) : (x:unit, z:unit, y:unit→ unit) (1)

The thread on the left-hand side declares x and can use the assumption
y:unit → unit about the handle declared in the component on the right. No
further assumptions are necessary.

Theorem 1 (Subject Reduction) If Γ ⊢ C1 : Γ′ and C1 −→ C2 then Γ ⊢
C2 : Γ′.

PROOF SKETCH. The proof of Theorem 1 proceeds by first establishing
that typing is preserved by the replacement of well-typed subconfigurations
and by structural congruence, and then considering the basic reductions of
Fig. 5. This is analogue to the (more complicated) subject reduction proof for
linear types which is given in detail in Section 6.3.

Program errors are notorious even for a statically typed programming lan-
guage. In particular, it turns out that the class of handle errors is not excluded
by the type system just presented. One approach to address such shortcomings
is to refine the type system so that typing provides additional guarantees. Sec-
tion 6 presents a linear type system that guarantees that every handled future
is initialised only once.

4 Uniform Confluence

Uniform confluence is a strong notion of confluence that has been shown for
fragments of concurrent calculi [12,36–39]. A number of similar confluence
results have been proved previously for calculi with futures [21].

Definition 2 (Uniform Confluence, [12]) A relation → is uniformly con-
fluent if, whenever C1 ← C → C2 and C1 6≡ C2, there exists C ′ such that
C1 → C ′ ← C2.
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This is depicted on the right. Uniform confluence implies
confluence, and if→ is uniformly confluent then all maximal
→ sequences beginning from C have the same length (which
may be finite or infinite). In [12] this fact has been exploited
to compare the (time) complexity of different evaluation
strategies for lambda calculus. Clearly, the availability of
mutable state in the calculus breaks confluence. For instance, the configuration

x⇐exch r 1 | y⇐exch r 2 | r c v

may lead to distinct irreducible configurations, where the cell r contains either
1 or 2. However, assuming programs are free of handle errors, in the sense
that they will never reduce to configurations containing such an error, we can
establish uniform confluence for the fragment of λ(fut) without reference cells.
It is comparatively easy to prove, basically because reduction within each
thread is deterministically call-by-value due to the use of evaluation contexts;
this is the essence of Lemma 3.

Lemma 3 (Unique Decomposition) If e ∈ Exp then either e ∈ Val or
else there exists a unique decomposition of e into an evaluation context F and
a subexpression, of the form F [x v], F [(λx.e) v], F [c v] where c 6= exch, or
F [exch v v′].

PROOF. By induction on the structure of e.

Theorem 4 (Uniform Confluence) The reduction relation −→ of λ(fut),
restricted to well-typed 3 and handle error-free configurations not containing
exch, is uniformly confluent.

PROOF. First observe that whenever C → C ′ then there are variables x
and configurations C1, C

′
1

and C2 such that C ≡ (νx)(C1 |C2) and C ′ ≡
(νx)(C ′

1
|C2); and C1 and C ′

1
are lhs and rhs instances of one of the rules of

Fig. 5. This can be proved by induction on the derivation of C → C ′.

It suffices to consider all possible combinations of reduction axioms leading to
a situation C1 ← C → C2 with C1 6≡ C2. We treat only some representative
cases here.

- Case (beta) and (beta): This is established easily, since by unique decom-
position (Lemma 3), the reductions to C1 6≡ C2 must originate in different
threads, i.e.,

C ≡ (νx)(x⇐F [(λy.e) v] |x′⇐F ′[(λy′.e′) v′] |C ′)

3 In fact, only well-formedness is used.
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Thus, C1 and C2 can be joined by another (beta) step,

C1 → (νx)( x⇐F [e[v/y]] | x′⇐F ′[e′[v′/y′]] |C ′) ← C2

- Case (handle.bind) and (handle.bind): Again, by unique decomposition
(Lemma 3), the reductions must originate in different threads, so that

C ≡ (νx)(x⇐F [z v] |x′⇐F ′[z′ v′] |C ′′)

where C ′′ ≡ z h y |C ′
1
≡ z′ h y′ |C ′

2
for some C ′

1
, C ′

2
, and

C1 ≡ (νx)( x⇐F [unit] | y⇐v | z h • |x′⇐F ′[z′ v′] |C ′
1
)

C2 ≡ (νx)(x⇐F [z v] | x′⇐F ′[unit] | y′⇐v′ | z′ h • |C ′
2
)

By well-formedness of the configuration, there is at most one component
that introduces z as handle, and similarly for z′. Therefore, by the assump-
tion of error-freeness of C, it follows that z and z′ are indeed distinct handles.
Hence, there exists C3 such that C ′′ ≡ z h y | z′ h y′ |C3 and such that C1

and C2 may be joined by (handle.bind) steps to obtain

C ′ ≡ (νx)( x⇐F [unit] | y⇐v | z h • | x′⇐F ′[unit] | y′⇐v′ | z′ h • |C3)

- Case (future.deref) and (future.deref): There must be configurations
C ′

1
and C ′

2
and decompositions of C,

C ≡ (νx)( x⇐Ef [y] | y⇐v |C ′
1
), C1 ≡ (νx)( x⇐Ef [v] | y⇐v |C ′

1
),

C ≡ (νx)( x′⇐E ′
f
[y′] | y′⇐v′ |C ′

2
), C2 ≡ (νx)( x′⇐E ′

f
[v′] | y′⇐v′ |C ′

2
)

By the well-formedness assumption, x 6= x′, for otherwise also y = y′ and
v = v′, contradicting the assumption C1 6≡ C2. Thus, assuming y 6= y′, there
exists C ′′ such that C ≡ (νx)(x⇐Ef [y] | y⇐v |x′⇐E ′

f
[y′] | y′⇐v′ |C ′′) and

C1 and C2 can be joined by further (future.deref) steps to

(νx)( x⇐Ef [v] | y⇐v | x′⇐E ′
f
[v′] | y′⇐v′ |C ′′)

Similarly, if y = y′ then v = v′, C ≡ (νx)(x⇐Ef [y] | x′⇐E ′
f
[y] | y⇐v |C ′′)

for some C ′′, and C1 and C2 can be joined by (future.deref) steps to

(νx)( x⇐Ef [v] |x′⇐E ′
f
[v] | y⇐v |C ′′)

- The remaining cases are similar; in particular those reductions C1 ← C →
C2 caused by different rules tend to be more straightforward.
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mutex ≡ let t = λa.(a unit) in let r = cell t
in λa.(handle λxλh. let v = (exch r x) a in h t; v)

Fig. 9. Mutual exclusion in λ(fut)

5 Concurrency Constructs

We now show how to express various concurrency abstractions in λ(fut) which
demonstrates the expressive power of handled futures.

5.1 Mutual Exclusion

When concurrent threads access shared data it is often necessary that they do
not interfere, in order to prevent any data inconsistencies. Mutual exclusion
is a technique for avoiding such inconsistencies. The idea is that at most one
thread can access a critical region in which to do its actions. We implement an
operation mutex of type (unit→ α)→ α in Fig. 9. As its argument, it receives
an action of type unit → α which it applies under mutual exclusion in some
critical region. At every time point, there is a unique permission t provided by
the mutex that is needed to trigger actions a passed to the mutex. The trigger
resides in the cell r of the mutex when available. Otherwise, the cell contains
a future that will get bound to t when it is given back.

x⇐mutex | y1⇐x a1 | y2⇐x a2

Future evaluation contexts are important for the application (exch r x) a where
the trigger exch r x needs to be known before it can trigger the action a.

5.2 Ports and Channels

We assume that there are pairs and a list data type, and write v :: l for the list
with first element v, followed by the list l. A stream is an “open-ended” list
v1:: · · · ::vn::x where x is a (handled) future. Thus, the stream can be extended
arbitrarily often by using the handle of the future, provided each new element
is again of the form v::x′, with x′ a handled future. We call the elements
v1, . . . , vn on a stream messages.

A function newPort : unit → (αlist × α→unit) that creates a new port can be
implemented as follows.

newPort ≡ λ .handle(λsλbinds.
let putr = cell binds
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newChannel ≡ λ .handle(λinitλbindinit.
let putr = cell bindinit

getr = cell init
put = λx.handle(λnλbindn.(exch putr bindn) (x :: n))
get = λ .handle(λnλbindn.case(exch getr n))

of x :: c ⇒ bindn(c); x)
in (put, get))

Fig. 10. Channels in λ(fut)

put = λx.handle(λsλbinds.(exch putr binds) (x :: s))
in (s, put))

The port consists of a stream s : αlist and an operation put : α→unit to append
new messages to the stream. The stream is ended by a handled future, which
in the beginning is just the future s itself. Its handle binds is stored in the cell
putr : (α→unit) ref and used in put to send the next message to the port. put
introduces a new handled future before writing the new value to the end of
the stream. The new handle is stored in the cell.

By extending ports with a receive operation of type unit → α we obtain
channels, which provide for indeterministic many to many communication. A
function newChannel : unit→ (α→ unit)× (unit→ α) that generates channels
for α values is listed in Fig. 10.

Given a channel, applying get : unit → α yields the next message on the
stream. If the stream contains no further messages, get blocks: We assume
that the matching against the pattern x :: c is strict. Note how get uses a
handled future in the same way as the dereferencing and mutual exclusion
above to make the implementation thread-safe.

6 Linear Types for Single Assignment by Handles

We refine the type system by linear types, which serve as a proof tool to
facilitate reasoning about the absence of handle errors (we do not want to
argue that linear types should be used in programming practice). It can be
used to prove the safety of libraries (for instance of concurrency abstractions)
implemented in λ(fut) with respect to the usage of handles.

Most previous uses of linear type systems in functional languages, such as the
uniqueness typing of Clean, aimed at preserving referential transparency in
the presence of side-effects, and taking advantage of destructive updates for
efficiency reasons [40,41]. In contrast, our system rules out a class of program-
ming errors, by enforcing the single-assignment property for handled futures.
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Multiplicities κ ::= 1 | ω

Linear types α, β ∈ LinType ::= unit | α
κ
−→ β | α ref

Multiplicities of linear types

|unit|
def
= ω, |α

κ
−→ β|

def
= κ, |α ref|

def
= ω

Typing of constants where κ, κ′, κ′′ arbitrary

unit : unit

thread : (α
κ
−→ α)

κ
′

−→ α where |α| = ω

handle : (α
κ
−→ (α

1
−→ unit)

κ
′

−→ β)
κ
′′

−→ β where |α| = ω

cell : α
κ
−→ (α ref)

exch : α ref
κ
−→ α

κ
′

−→ α

Operations on type environments

once(Γ)
def
= {x | x:α in Γ, |α| = 1}

Γ1 ·Γ2

def
= Γ1 ∪ Γ2 provided Γ1 ∩ Γ2 = {x:α | x:α ∈ Γ1 ∪ Γ2, |α| = ω}

Fig. 11. Linear types

The linear type system is sufficiently expressive to type the concurrency ab-
stractions of Section 5 and others. Moreover, the linear types of the handles
implementing these abstractions will be encapsulated. Thus, users of these
abstractions need not know about linear types at all.

6.1 Multiplicities and Linear Typing of Expressions and Configurations

We annotate types with usage information in the sense of [30]. In our case
it suffices to distinguish between linear (i.e., exactly one) and nonlinear (i.e.,
any number of times) uses, where “use” means a safe approximation of the
number of applications to a term. Multiplicities 1 and ω are ranged over by
κ. Moreover, for our purposes of ruling out handle errors we annotate only
function types, values of other types can be duplicated without restriction
(recall that handles have functional types α −→ unit). In particular, α

κ
−→ β

denotes functions from α to β that can be applied κ times, and so α
ω
−→

β corresponds to the usual function type. We write |α| for the multiplicity
attached to a type α (see Fig. 11).

For a context Γ we write once(Γ) for the set of variables occuring in Γ with
linear multiplicity. We write Γ = Γ1 ·Γ2 if Γ can be “split” into Γ1 and Γ2, in
the sense that Γ1 and Γ2 consist of a partition of once(Γ), and each contains
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once(Γ) = ∅

Γ ⊢ c : TypeOf(c)

once(Γ) = ∅

Γ, x:α ⊢ x : α

Γ, x:α ⊢ e : β once(Γ) = ∅

Γ ⊢ λx.e : α
ω
−→ β

Γ, x:α ⊢ e : β

Γ ⊢ λx.e : α
1
−→ β

Γ1 ⊢ e1 : α
κ
−→ β Γ2 ⊢ e2 : α

Γ1 ·Γ2 ⊢ e1 e2 : β

Γ, x:α ⊢ e : α |α| = ω

Γ ⊢ x⇐e : (x:α; x:α)

Γ, x:α ref ⊢ v : α

Γ ⊢ x c v : (x:α ref; x:α ref)

x, y /∈ dom(Γ) |α| = ω

Γ ⊢ y h x : (x:α, y:α
1
−→ unit; x:α, y:α

1
−→ unit)

y /∈ dom(Γ)

Γ ⊢ y h • : (y:α
1
−→ unit; ∅)

Γ ⊢ C : Γ1; Γ2

Γ ⊢ (νx)C : Γ1 − x; Γ2 − x

Γ, ∆2 ⊢ C1 : Γ1; Γ2 ·Γ3 ∆, Γ2 ⊢ C2 : ∆1; ∆2 ·∆3

Γ·∆ ⊢ C1 |C2 : Γ1, ∆1; Γ3 ·∆3




dom(Γ) ∩ dom(∆1) = ∅

dom(∆) ∩ dom(Γ1) = ∅





Fig. 12. Linear typing rules for λ(fut) expressions and configurations

all the variables of Γ with multiplicity ω. Table 11 defines this formally.

The types of constants are now refined to reflect that handles must be used
linearly. However, we do not want to restrict access to futures through the
rule (future.deref). Hence it must be guaranteed that futures will never
be replaced by values of types with linear multiplicity. We achieve this by
restricting the types of thread and handle by the condition |α| = ω. On
the other hand, note that no such restriction is necessary for cells which may
contain values of any (i.e., multiplicity 1 or ω) type. Intuitively this is sound
because cells can be accessed only by the exchange operation. In particular, the
contents of a cell (potentially having multiplicity 1) cannot be copied through
cell access 4 .

The type rules for expressions are given in Fig. 12. The rules guarantee that
every variable of type α in Γ with |α| = 1 appears exactly once in the term: In
the rules for constants and variables, the side-condition once(Γ) = ∅ ensures
that Γ contains only variables with use ω. There are two rules for abstraction,
reflecting the fact that we have function types with multiplicities 1 and ω.
The condition once(Γ) = ∅ in the first abstraction rule allows us to derive
a type α

ω
−→ β (whose values are freely copyable) only if e does not contain

any free variables with multiplicity 1. However, with the second rule it is

always possible to derive a type α
1
−→ β. Finally, the rule for application splits

the linearly used variables of the environment; this prevents duplication of
linear values. The annotation κ is irrelevant here, but the type of function and
argument must match exactly.

4 The derived dereferencing operation get content(r) permits duplication of the
contents. However, in this case the cell r is forced to have type α ref where |α| = ω.
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The rules for configurations (Fig. 12) have changed: Judgements are now of
the form Γ ⊢ C : ∆1; ∆2, and the type system maintains the invariants (i)
Γ ∩∆1 = ∅ and (ii) ∆2 ⊆ ∆1. The intended meaning is the following.

- As before, Γ contains the type assumptions and ∆1 is used to keep track
of the variables which C provides bindings for. In particular, the use of ∆1

allows to ensure the well-formedness conditions in configurations (cf. the
ill-formed configurations on page on page 13) by means of invariant (i).

- Variables with multiplicity 1 declared by C may not be used both by a
surrounding configuration and within C. The environment ∆2 ⊆ ∆1 lists
those variables “available for use” to the outside.

The example configuration (1) on page 15 shows the need for the additional
environment ∆2: Although a binding for the handle y is provided in y h z, y is
already used internally to bind its future, in the thread x⇐y unit.

The rules for typing thread and handle components now contain the side con-
dition |α| = ω corresponding to the type restriction of the respective constants.
Moreover, the type of y in y h x must have multiplicity 1. Note that in each
case we have ∆1 = ∆2, i.e., all the declared variables are available.

In y h • the variable y is declared, but not available anymore, i.e. it cannot
be used in a surrounding configuration. Thus ∆2 = ∅. The rule for restriction
keeps declarations local by removing all occurrences of x from ∆1 and ∆2.

The rule for parallel composition is the most complex one. Compared to the
corresponding inference scheme of Section 3, it splits the linearly used assump-
tions (in Γ·∆) as well as the linearly used variables available from each of the
two constituent configurations (Γ2 ·Γ3 and ∆2 ·∆3, respectively). A variable
with multiplicity 1 declared by C1 can then either be used in C2 (via Γ2), or
is made available to a surrounding configuration (via Γ3) but not both. The
environment of declared variables of C1 |C2 is Γ1, ∆1 and therefore contains
all the variables declared in C1 (i.e., those in Γ1) and C2 (in ∆1) as before. By
our convention, Γ1 and ∆1 have disjoint domains which in particular ensures
that C1 and C2 do not contain multiple bindings for the same variable. Finally,
the side-condition of the rule is necessary to establish the invariant (i).

Theorem 5 (Subject Reduction) If Γ ⊢ C1 : ∆1; ∆2 and C1 → C2 then
Γ ⊢ C2 : ∆1; ∆2.

Error-freeness of well-typed configurations follows by combining the absence of
handle errors in the immediate configuration and Subject Reduction as usual.

Corollary 6 (Absence of Handle Errors) If Γ ⊢ C : ∆1; ∆2 then C is
error-free.
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actionκ(α) = unit
κ
−→ α trigger

κ
(α) = actionκ(α)

ω
−→ α

Γ(r) = trigger
κ
(α) ref Γ(h) = trigger

κ
(α)

1
−→ unit Γ(t) = trigger

κ
(α)

Γ(x) = trigger
κ
(α) Γ(a) = actionκ(α) Γ(v) = α

. . .

Γ(r, a, x) ⊢ (exch r x) a : α

. . .

Γ(t, h, v) ⊢ h t ; v : α

Γ(r, t, a, x, h) ⊢ let v = (exch r x) a; in h t ; v
︸ ︷︷ ︸

e

: α

Γ(r, t, a, x) ⊢ λh.e : Γ(h)
κ
−→ α

Γ(r, t, a) ⊢ λx.λh.e : Γ(x)
κ
−→ Γ(h)

κ
−→ α

Γ(r, t, a) ⊢ handle λx.λh.e : α

. . .

⊢ mutex : actionκ(α)
ω
−→ α

Fig. 13. Safety proof for mutual exclusion protocol

The proofs of Theorem 5 and Corollary 6 are given in Section 6.3 below.

6.2 Proving Safety

The abstractions defined in Section 5 are safe, in the sense that no handle
errors are raised by using them. For instance, we can always send to a port
without running into an error. Intuitively, this holds since nobody can access
the (local) handle to the future at the end of the stream s, and the implemen-
tation itself uses each handle only once.

The linear type system can be used to make this intuition formal: By Corol-
lary 6, typability guarantees the absence of handle errors. Moreover, all the
abstractions we have given obtain “non-linear” types with multiplicity ω. The
use of handled futures is thus properly encapsulated and not observable from
the types. This suggests to provide concurrency abstractions through safe li-
braries to users.

As the derivation in Fig. 13 shows, the mutual exclusion mutex may be typed
as

⊢ mutex : (unit
κ
−→ α)

ω
−→ α

in the linear type system. Both κ = 1 and κ = ω are possible. More impor-
tantly, the type of mutex itself has multiplicity ω, which allows mutex to be
copied and applied any number of times.
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In the derivation, we write Γ(x1, . . . , xn) for the environment Γ(x1), . . . , Γ(xn).
Let us consider the case where κ = ω. In this case, the single once-only type
introduced by the derivation is the type of the handle Γ(h). This once-only
type is removed from the type environment when lambda abstracting over h.
This permits to abstract over x with multipicity ω, since once(Γ(r, t, a)) = ∅.
In the case κ = 1, we cannot apply this rule, but we can abstract over x with
the other rule for multiplicity 1.

For the list and pair types, the linear type system has to be extended ac-
cordingly; the details of such an extension are quite standard (see [30], for
instance). Just as with function types these new types α ×κ β and α listκ are
annotated with multiplicities, satisfying the additional constraint that when-
ever |α| = 1 or |β| = 1 then also κ = 1.

The subject reduction theorem can be extended, as can Corollary 6. For the
port abstraction, we may then derive

⊢ newPort : unit
ω
−→ (α listω ×κ α

ω
−→ unit) (|α| = ω)

for any κ. In particular, both newPort itself and the put operation (the second
component of the result pair) can be used unrestrictedly. Similarly, if |α| = ω,

⊢ newChannel : unit
ω
−→ ((α

ω
−→ unit)×ω (unit

ω
−→ α))

can be derived for the implementation of channels.

6.3 Proof of Subject Reduction

In the remainder of this section we sketch the proof of Theorem 5. The fol-
lowing lemmas relate to (linear) variables in contexts and substitution. All of
these are fairly standard properties of linear type systems.

Lemma 7 Suppose Γ ⊢ e : α.

(1) If e ∈ Val and once(Γ) 6= ∅ then |α| = 1.
(2) If |β| = ω then Γ, x:β ⊢ e : α.
(3) If x /∈ fv(e) then Γ− x ⊢ e : α.
(4) If x does not occur in Γ then x is not free in e.
(5) If x:β ∈ Γ and |β| = 1 then there is exactly one free occurrence of x in e.

PROOF. The claims can be proved by induction on the derivation Γ ⊢ e : α.

Lemma 8 (Substitution) Suppose Γ, x:β ⊢ e : α and Γ′ ⊢ v : β. Then
Γ·Γ′ ⊢ e[v/x] : α.
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PROOF. By induction on the structure of e.

- Case e is of the form c ∈ Const: By the typing rules for constants, also
Γ ⊢ e : α, and once(Γ) = ∅ and |β| = ω. By Lemma 7(1), |β| = ω implies
once(Γ′) = ∅, and so by repeated applications of Lemma 7(2) and the fact
e[v/x] ≡ c we obtain Γ·Γ′ ⊢ e[v/x] : α.

- Case e is y ∈ Var: If x = y then once(Γ) = ∅ and α = β by the type rule
for variables. But then e[v/x] ≡ v and repeated applications of Lemma 7(2)
yield the desired result.

If x 6= y then by the rule for variables |β| = ω. So by Lemma 7(1) this
yields once(Γ′) = ∅, and Lemma 7(2) and e[v/x] ≡ y show Γ·Γ′ ⊢ e[v/x] : α.

- Case e is e1 e2: If |β| = ω then there are Γ1 and Γ2 such that Γ = Γ1 ·Γ2

and we have Γ1, x:β ⊢ e1 : α′ κ
−→ α and Γ2, x:β ⊢ e2 : α′. By induction,

Γ1 ·Γ
′ ⊢ e1[v/x] : α′ κ

−→ α and Γ2 ·Γ
′ ⊢ e2[v/x] : α′. By |β| = ω Lemma 7(1)

implies once(Γ′) = ∅. Hence, Γ·Γ′ ⊢ (e1 e2)[v/x] : α by Lemma 7(2).
If |β| = 1 then Γ1 ⊢ e1 : α′ κ

−→ α and Γ2 ⊢ e2 : α′ where Γ1 ·Γ2 is defined
and x:β occurs in exactly one of Γ1 and Γ2. Suppose x:β ∈ Γ1. Then by
induction hypothesis, (Γ1 − x) ·Γ′ ⊢ e1[v/x] : α′ κ

−→ α. By Lemma 7(4) we
know e2[v/x] ≡ e2. Using Lemma 7(2) on Γ2 ⊢ e2 : α′ (with the non-linear
variables of Γ′) we obtain Γ·Γ′ ⊢ (e1 e2)[v/x] : α. The case where x:β ∈ Γ2

is symmetric.
- Case e is λy.e1: Suppose Γ, x:β ⊢ λy.e1 : α1

κ
−→ α2. By bound renaming,

we can assume that y is different from x and all the variables occurring
in Γ and Γ′. By either rule for abstraction we get Γ, x:β, y:α1 ⊢ e1 : α2.
By induction, (Γ, y:α1)·Γ

′ ⊢ e1[v/x] : α2. Now if κ = ω then the condition
in the abstraction rule implies once(Γ, x:β) = ∅, in particular, |β| = ω.
Hence by Lemma 7(1), once(Γ′) = ∅ as well. So for any κ we can derive
Γ·Γ′ ⊢ (λy.e1)[v/x] : α1

κ
−→ α2.

Lemma 9 Suppose Γ ⊢ C : ∆1; ∆2. Then the following hold.

(1) dom(Γ) ∩ dom(∆1) = ∅ .
(2) ∆2 ⊆ ∆1 .
(3) If x /∈ dom(Γ) ∪ dom(∆1) and |α| = ω, then Γ, x:α ⊢ C : ∆1; ∆2.
(4) If x /∈ fv(C) then Γ− x ⊢ C : ∆1; ∆2 .

PROOF. The proof is by an easy induction on Γ ⊢ C : ∆1; ∆2 .

Note that the side condition dom(Γ) ∩ dom(∆1) = dom(∆) ∩ dom(Γ1) = ∅ in
the rule for parallel composition is essential for Lemma 9(1).

Lemma 10 (Congruence) If Γ ⊢ C1 : ∆1; ∆2 and C1≡C2 then Γ ⊢ C2 :
∆1; ∆2.
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PROOF. By induction on the derivation of C1≡C2. The congruence rules
are straightforward; associativity and commutativity follow from the parallel
composition rule by observing that the operations Γ, ∆ and Γ·∆ on contexts
are both associative and commutative. The case of name restriction is imme-
diate. The left-to-right direction in the case of scope extrusion follows with
Lemma 9(3); the direction from right to left follows by Lemma 9(4).

Lemma 11 (Context)

(1) Suppose Γ ⊢ F [e] : α. Then there exist x, Γ1, Γ2 and β such that Γ = Γ1·Γ2

and Γ1, x:β ⊢ F [x] : α and Γ2 ⊢ e : β.
(2) Suppose Γ ⊢ C1 |C : ∆1; ∆2. Then there are Γ′, ∆′

1
and ∆′

2
such that

Γ′ ⊢ C1 : ∆′
1
; ∆′

2
, and whenever Γ′ ⊢ C2 : ∆′

1
; ∆′

2
then Γ ⊢ C2 |C : ∆1; ∆2.

(3) Suppose Γ ⊢ (νx)C1 : ∆1; ∆2. Then there are Γ′, ∆′
1

and ∆′
2

such that
Γ′ ⊢ C1 : ∆′

1
; ∆′

2
, and if Γ′ ⊢ C2 : ∆′

1
; ∆′

2
then Γ ⊢ (νx)C2 : ∆1; ∆2.

Note that the first part holds in particular for future evaluation contexts Ff ,
since these form a subset of evaluation contexts.

PROOF. The first part is by induction on the evaluation context F ; parts
(2) and (3) follow immediately from the typing rules.

PROOF of Subject Reduction (Theorem 5). It suffices to consider the
case where C1 and C2 are the left-hand side and right-hand side, respectively,
of one of the basic reductions of Fig. 5. The theorem then follows by Lemmas
10 and 11(2,3) that show soundness of the rules in Fig. 3.

- Case (beta): So x⇐F [(λy.e) v] reduces to x⇐F [e[v/y]]. By assumption,
Γ ⊢ x⇐F [(λy.e) v] : ∆1; ∆2 so that by the typing rule for threads,

Γ, x:α ⊢ F [(λy.e) v] : α

with |α| = ω and ∆1 = ∆2 = x:α. By Lemma 11(1), Γ1, x:α, y:β ⊢ F [y] : α
and Γ2, x:α ⊢ (λy.e) v : β for some Γ1, Γ2 such that Γ = Γ1 ·Γ2. Hence
Γ′

2
, x:α, y:β′ ⊢ e : β and Γ′′

2
, x:α ⊢ v : β′ for some β′ and Γ2 = Γ′

2
·Γ′′

2
. By

Lemma 8, Γ2, x:α ⊢ e[v/y] : β and therefore Γ, x:α ⊢ F [e[v/y]] : α. Thus,

Γ ⊢ x⇐F [e[v/y]] : ∆1; ∆2

by the typing rule for threads.
- Case (thread.new): So C1 ≡ x⇐F [thread v] reduces to the configuration

C2 ≡ (νy)(x⇐F [y] | y⇐v y), where y /∈ fv(F [v]) and y 6= x. By assumption,
Γ ⊢ C1 : ∆1; ∆2. So by the typing rule for thread components and Lemma 11,
Γ1, x:α, y:β ⊢ F [y] : α and Γ2, x:α ⊢ thread v : β for some Γ1 and Γ2 such
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that Γ = Γ1 ·Γ2, and ∆1 = ∆2 = x:α. Hence, Γ2, x:α ⊢ v : β
κ
−→ β with

|β| = ω, by the rules for application and constants. We obtain Γ2, x:α, y:β ⊢
y⇐v y : (y:β; y:β) by Lemma 7 and the application and thread rules, and

Γ ⊢ (x⇐F [y] | y⇐v y) : (x:α, y:β; x:α, y:β)

by thread and composition rules. By the type rule for scope restriction
Γ ⊢ (νy)(x⇐F [y] | y⇐v y) : ∆1; ∆2 follows.

- Case (future.deref): By the definition, C1 ≡ (x⇐Ff [y] | y⇐v) reduces
to the configuration C2 ≡ (x⇐Ff [v] | y⇐v). Moreover, Γ ⊢ C1 : ∆1; ∆2 by
assumption. So by the typing rules for parallel composition and threads and
by Lemma 11(1), there are Γ1 and Γ2 such that

Γ1, y:β, x:α ⊢ Ff [y] : α and Γ2, x:α, y:β ⊢ v : β

where |α| = |β| = ω, Γ = Γ1 ·Γ2 and ∆1 = ∆2 = x:α, y:β. By Lemma 7(1),
once(Γ2) = ∅, so Γ2 ⊆ Γ1 and by the substitution lemma (Lemma 8) also
Γ1, x:α, y:β ⊢ Ff [v] : α. So

Γ ⊢ (x⇐Ff [v] | y⇐v) : ∆1; ∆2

- Case (handle.new): Similar to the case for (thread.new).
- Case (handle.bind): So C1 ≡ (x⇐F [z v] | z h y) reduces to configuration

C2 ≡ (x⇐F [unit] | y⇐v | z h •). By assumption, Γ ⊢ C1 : ∆1; ∆2. By the

typing rules this means ∆2 = x:α, y:β and ∆1 = ∆2, z:β
1
−→ unit, and there

exist contexts Γ1, Γ2 such that

Γ1, y:β, z:β
1
−→ unit, x:α ⊢ F [z v] : α and Γ2 ⊢ z h y : ∆′; ∆′

and Γ = Γ1 · Γ2 with y, z /∈ dom(Γ2) and ∆′ = y:β, z:β
1
−→ unit. By

Lemma 11(1) and Lemma 8 there are Γ′
1

and Γ′′
1

such that

Γ′
1
, y:β, x:α ⊢ F [unit] : α and Γ′′

1
, y:β, x:α ⊢ v : β

and Γ1 = Γ′
1
·Γ′′

1
. Hence Γ1 ⊢ (x⇐F [unit] | y⇐v) : ∆2; ∆2, which entails

Γ ⊢ (x⇐F [unit] | y⇐v | z h •) : ∆1; ∆2

- Case (cell.new): Similar to (thread.new) and (handle.new).
- Case (cell.exch): Similar to the case (handle.bind).

PROOF of Corollary 6. Suppose C has an error, i.e., there exists a sub-
configuration C ′ ≡ Ef [y v] | y h • of C. Further, suppose Γ ⊢ C : ∆1; ∆2, so by
Lemma 11(2,3) there exist Γ′, ∆′

1
and ∆′

2
such that Γ′ ⊢ (z⇐Ff [y v] | y h •) :

∆′
1
; ∆′

2
. In fact, ∆′

2
= z:α and ∆′

1
= ∆′

2
, y:β

1
−→ unit for some type β.
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Also by the type rules for parallel composition and threads, there are Γ1 and
Γ2 such that Γ′ = Γ1 ·Γ2 and Γ1, z:α ⊢ Ff [y v] : α. Since evaluation contexts
do not capture variables, y ∈ fv(Ff [y v]). Thus, by Lemma 7(4), y must occur
in Γ1 ⊆ Γ′. By Lemma 9(1), dom(Γ′) ∩ dom(∆′

1
) = ∅, a contradiction to

y:β
1
−→ unit ∈ ∆′

1
.

Hence, C cannot be typable whenever it has an error. By Subject Reduction
(Theorem 5), this proves that Γ ⊢ C : ∆1; ∆2 implies handle error-freeness.

7 Conclusions and Future Work

We have presented the lambda calculus with futures λ(fut) which serves as
a semantics for concurrent extensions of ML. In its full power, λ(fut) models
the operational semantics of Alice ML where all synchronization is based on
futures. A particular advantage of λ(fut) is that it can naturally model mixed
eager and lazy computation, all this in a statically typed framework.

λ(fut) can be used to implement various concurrency abstractions. We have
proved the safety of these implementations on basis of a linear type system.
Hence, handle errors cannot arise when using handles only through safe li-
braries. As a consequence, handled futures can be safely incorporated into a
strongly typed ML-style programming language without imposing changes to
the type system.

At least two questions remain open. The first one is how to perform static anal-
ysis for λ(fut), in order to reduce the cost of futures in programs where they are
not used. An implementation of futures has to deal with placeholder objects
and dereferencing to obtain the value associated with a future. Further, in
the case of lazy futures it must perform the triggering of computations. These
operations can be modeled in a refinement of λ(fut) with touch operations, as
proposed in the lambda calculus with futures by Felleisen and Flanagan [21].
Touch operations are introduced systematically by the compiler. To improve
efficiency, a compiler should be able to remove as many redundant touches as
possible. We leave the extension of the techniques of [21] to λ(fut) for future
work.

Another open question is whether handled futures are redundant or not (as
we conjectured). In order to well-define this question, an appropriate notion
of program equivalence has to be developed.
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