Succinct representation of triangulations with a boundary

Abstract : We consider the problem of designing succinct geometric data structures while maintaining efficient navigation operations. A data structure is said succinct if the asymptotic amount of space it uses matches the entropy of the class of structures represented. For the case of planar triangulations with a boundary we propose a succinct representation of the combinatorial information that improves to 2.175 bits per triangle the asymptotic amount of space required and that supports the navigation between adjacent triangles in constant time (as well as other standard operations). For triangulations with $m$ faces of a surface with genus g, our representation requires asymptotically an extra amount of 36(g-1)lg m bits (which is negligible as long as g << m/lg m).
Type de document :
Communication dans un congrès
9th Workshop on Algorithms and Data Structures, Aug 2005, Waterloo, Canada, Springer, 3608, pp.134--135, 2005, Lecture Notes in Computer Science
Liste complète des métadonnées

Littérature citée [14 références]  Voir  Masquer  Télécharger

https://hal.inria.fr/inria-00090707
Contributeur : Olivier Devillers <>
Soumis le : vendredi 1 septembre 2006 - 15:06:16
Dernière modification le : jeudi 10 mai 2018 - 02:06:22
Document(s) archivé(s) le : mardi 6 avril 2010 - 00:44:30

Fichier

Identifiants

  • HAL Id : inria-00090707, version 1

Collections

Citation

Luca Castelli Aleardi, Olivier Devillers, Gilles Schaeffer. Succinct representation of triangulations with a boundary. 9th Workshop on Algorithms and Data Structures, Aug 2005, Waterloo, Canada, Springer, 3608, pp.134--135, 2005, Lecture Notes in Computer Science. 〈inria-00090707〉

Partager

Métriques

Consultations de la notice

328

Téléchargements de fichiers

139