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1 Introduction

The aim of this paper is to introduce and study a Monte Carlo method for
the numerical computation of the principal eigenvalue of the Laplace oper-
ator 1

2
4 in a bounded domain D ⊂ <d with a sufficiently piecewise smooth

boundary ∂D and with Dirichlet boundary conditions. This leading eigen-
value determines the speed of convergence to the steady state for the solution
of the heat equation. To compute it by a deterministic method, one has to
discretize the Laplace operator using for example finite differences or finite
elements and then evaluate the largest eigenvalue of the discretization ma-
trix using for example the inverse power method. This computation becomes
really expensive when the spatial dimension d increases. Moreover the dis-
cretization should be refined enough so that the principal eigenvalue of the
discretization matrix is close enough to the principal eigenvalue of the Laplace
operator. Hence it is worth considering Monte Carlo methods [15] because
they are usually efficient for this kind of difficult problems since they do not
necessarily require to discretize the domain D and they depend only linearly
on the spatial dimension.

We have introduced in [17] a stochastic method to compute the principal
eigenvalue of neutron transport operators based on the numerical computa-
tion of the type of the neutron transport operator. The idea was to combine
the formal eigenfunction expansion of the solution of the relative Cauchy
problem and its Monte Carlo evaluation via the Feynman-Kac formula. We
intend to use the same methodology here in the case of the Laplace operator.
The stochastic representation of the principal eigenvalue of the operator 1

2
4

is usually achieved by combining the solution u(t, x) of the Cauchy problem




∂u

∂t
=

1

2
4u,

u(0, x) ≡ 1, x ∈ D ⊂ Rd

obtained by the Feynman-Kac formula and the formal eigenfunction expan-
sion

u(t, x) =
∞∑

j=1

cj exp(λjt)Ψj(x)

of this solution in L2(D) where λj are the eigenvalues of 1
2
4 arranged in

decreasing order and Ψj their relative eigenfunctions. Indeed as the solution
of this equation is given by

u(t, x) = P (τx
D > t) ,

where τx
D is the exit time from D of the Brownian motion starting at x, the

principal eigenvalue λ1 is directly linked to the speed of absorption of the

2
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Brownian motion by the boundary ∂D and we have for all x ∈ D

λ1 = lim
t→+∞

1

t
logP (τx

D > t) .

This result is also true for a general elliptic operator A with Dirichlet bound-
ary conditions in a bounded domain D, where τx

D is the exit time from D of
the stochastic process Xx

t generated by A [7, 8, 13, 19]. We had to compute
numerically the same quantity in [17] when studying homogeneous neutron
transport operator. In this case, an exact simulation of transport processes
involved in Feynman-Kac representations was possible. In the case of the
Brownian motion, one has to use approximations based on various discretiza-
tion schemes.

In Section 2, we describe quickly grid-free schemes, some of them common
and some of them new, that can be used here. Then, we present in Section 3
different estimators for λ1 based on an accurate study of the eigenfunctions
expansion of the solution u(t, x). Some of these estimators were developed
in [17] but we also introduced new ones based on correlation coefficients. In
order to compare the different simulations schemes and the different estima-
tors, we study in detail in Section 4 a bidimensional problem. We finally
study in Section 5 more difficult problems in dimension 3 and 5 combining
all the tools developed previously in order to show that our method is also
relevant in these cases.

2 exit time simulation procedures

The aim of this section is to describe and compare some simulation schemes
for the exit time of the Brownian motion in a bounded domain D with Dirich-
let boundary conditions.

2.1 Euler schemes

The Euler scheme (see for example [14]) with discretization parameter ∆t
writes

X0 = x, Xn+1 = Xn +
√

∆tYn

where the Yn are independent standard Gaussian random variables. To com-
pute P (τx

D > t) one needs to compute simulations of τx
D. With the crude

version, the simulation stops once Xn+1 ∈ Dc and τx
D is approximated either

by n∆t, (n+ 1
2
)∆t or a slightly refined approximation based on the distances

dn = d(Xn, ∂D) and dn+1 = d(Xn+1, ∂D). In any case, these approximations
are of weak order

√
∆t and they overestimate this exit time. Indeed, the

3



A. Lejay and S. Maire / Computing the principal eigenvalue by Monte Carlo

main simulation error does not come from the error at the last step but from
the possibility for the Brownian motion to leave the domain between step
n and n + 1 and be back into it at time (n + 1)∆t. It is possible to take
into account this possibility to obtain a scheme of weak order ∆t using the
half-space approximation [9, 10]. An additional random test based on dn and
dn+1 is required. Taking a uniform random variable Un, the motion stops if

exp

(
−2dndn+1

∆t

)
> Un.

It is still possible to introduce another refinement at the last step [3] which
improves the accuracy but does not change the order of the scheme. In [11],
another method is proposed that leads to the same order of convergence as in
the half-space method. We only consider in the examples the naive version
and the one using the half-space approximation, which we denote from now
by the Improved Euler scheme.

2.2 Walk on spheres (WOS)

The simulation method based on the Euler schemes covers a wide range of
elliptic and parabolic partial differential equations and can take into account
the dependence of the drift and of the diffusion coefficients on the spatial
variables. One only has to simulate a stochastic differential equation by
means of this scheme instead of the Brownian motion. However, in the case
of the heat equation some faster schemes are available. The walk on sphere
schemes (WOS) [20] relies on the isotropy of the Brownian motion. This walk
goes from x to the boundary ∂D from a sphere to another until the motion
reaches an ε-absorption layer. The spheres are built so that the jumps are
as large as possible. The radius of the next sphere from a starting point
xn is d(xn, ∂D) and the next point is chosen uniformly on this sphere. The
average number of steps to exit from the domain is proportional to | log(ε)|
[20]. As we want here to simulate τx

D, we need in addition to simulate the law
Y (r) of the exit time from a sphere of radius r starting at its center. Some
scaling arguments on the partial differential equation or on the Brownian
motion show that r2Y (1) and Y (r) have the same law. Some analytical
expressions for the distribution function H(t) = P(Y (1) < t) are available.
In dimension 2, we have for example [1]

H(t) =
∞∑

k=1

2J0(0)

jkJ1(jk)
exp

(−j2
kt

2

)

where J0 and J1 are Bessel functions and the jk are the positive zeros of J0.
The simulation of Y (1) by the standard method requires the inversion of a
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series which can be difficult and costly. As we only need here to simulate Y (1)
during all the walk, we tabulate the distribution function once and for all and
use it for simulations. Note that we can either use its analytical expression to
do it or Monte Carlo simulations based on the corrected Euler scheme with
a small parameter and a huge number of simulations. The second method is
especially efficient in higher dimensions.

Some refined versions (for example, the walk on spheres with shifted cen-
tres [12]) allow faster absorption by the boundary, but also leads to simulate
complex random variables.

2.3 Walk on rectangles (WOR)

In many practical situations (temperature evolution in a room, ...), the
boundary is or can be approximated by a polygon. In this case, exact and
fast simulations are possible.

The idea of the random walk on rectangles (WOR) is a generalization of
the random walk on squares [4], that can be deduce from the algorithm given
in [18] to simulate Stochastic Differential Equations (SDE). The idea is to
simulate the exit time and position from a rectangle (or a parallelepiped in
dimension greater than 2) by a Brownian motion. Unlike with a sphere, the
random variables giving the exit time and position from a rectangle are not
independent. Yet, as shown in [5], this could be achieved rather efficiently by
proper conditioning and reducing the problem to simulate random variables
related to the one-dimensional Brownian motion. The advantage of this
method is that, unlike with the random walks of spheres and squares, the
rectangles may be chosen prior to any simulation, since the Brownian motion
can start from any point in it. In addition, it can be used even if a constant
drift term is present, or to deal with Neumann boundary condition. Although
it takes more time to simulate the exit time and position from a rectangle, the
number of simulations is reduced. Of course, one has to use, when possible,
rectangles for which at least one side corresponds to a boundary of D.

Let (B1, . . . , Bd) be a d-dimensional Brownian motion with the starting
point (B1

0 , . . . , B
d
0) = (x1, . . . , xd). We denote by Px the distribution of the

one-dimensional Brownian motion starting at x. We are interested in simu-
lating its first exit time and position from the parallelepiped [−L1, L1]×· · ·×
[−Ld, Ld]. For that, we set τ i = inf{t > 0 ; Bi

t 6∈ [−Li, Li]} for i = 1, . . . , d
and we perform roughly the following operations:

(1) We draw a realization (θ1, y1) for (τ 1, B1
τ1) under Px1 . We set τ = θ1,

S1 = 1 and J = 1.

(2) For i from 2 to d, do

5
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(2.1) We use a Bernoulli random variable to decide whether {τ i < τ}
or {τ i ≥ τ} under Pxi .

(2.2) If we have decided that {τ i < τ}, then we draw a realization
(θi, yi) of (τ i, Bi

τ i) under Pxi given {τ i < τ}. We set J = i, Si = 1
and τ = τ i.

(2.3) Otherwise, we set Si = 0, ϕi = τ .

(3) We set zJ = yJ .

(4) For i from 1 to d, do

(4.1) If Si = 1 and i 6= J then we simulate a realization zi of Bi
τ under

Pxi given {τ i = θi, Bi
τ i = yi}.

(4.2) Otherwise, if Si = 0, then we simulate a realization zi of Bi
τ under

Pxi given {τ i ≥ ϕi}.
(5) The algorithm stops and returns the time τ and the position (z1, . . . , zd)

on the boundary of the parallelepiped.

The involved distributions and the exact algorithm are detailed in [5].

2.4 Walk on rectangles with importance sampling (WOR-
IS)

This method, developed in [6], is a variation on the previous method. In-
stead of simulating the exact couple exit time τ and exit position Bτ of
a rectangle R for a Brownian motion B, we draw this exit time and posi-
tion (θ, Z) using an arbitrary distribution (of course, chosen to be simple),
and we compute a weight w such that E(f(τ, Bτ )) = E(wf(θ, Z)) for any
bounded, measurable function f defined on R+ × ∂R. Of course, for any
function g defined on R+ × ∂D, the functional E(g(τx

D, Bτx
D
)) is then evalu-

ated by E(w1 · · ·wn∗g(θn∗ , Zn∗)), where the (θi, Zi)’s are the successive exit
times and positions for a sequence of rectangles, the wi’s are their associated
weights, and n∗ is the first integer for which Zn∗ belongs to ∂D, or is close
enough to ∂D.

The advantage of this method over the WOR/WOS is that we are free
to choose the distribution of (θ, Z), and then we can easily “constraint” the
diffusion to go in some direction or condition it not to reach a part of the
boundary of the domain. Thus, this method can be used to simulate Brow-
nian motion or SDE in domains with complex geometries and to reduce the
variance of the estimators that are computed. Moreover, this method is much
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more faster than the WOR if we choose for (θ, Z) random variables that are
easy to simulate. In addition, the weights are rather easily computed since
they rely on the density of the first exit time and the position of a killed
Brownian motion in the one-dimensional case.

However, this method suffers from a severe drawback in our case. The
empirical distribution function FN(t) of F (t) = P(τx

D < t) is constructed as
follows. If (θ(i), w(i))i=1,...,N are the simulated exit time from D with their
associated weights w(i), then

FN(t) =
1

N

N∑

i=1

w(i)χ[0,t)(θ
(i)).

If F̂N(t) is the empirical distribution function constructed with N inde-
pendent random variables with the same law as τx

D, then Var(F̂N(t)) =
N−1F (t)(1− F (t)). In our case,

Var(FN(t)) =
1

N
Var(w(1)χ[0,t)(θ

(1))).

The problem is then to find a “strategy” for which Var(FN(t)) is smaller than
Var(F̂N(t)), at least when t is large enough. Unfortunately, we have not been
able to find a good way to do so. For the sake of simplicity, we have adopted
the following strategy. For each rectangle, each of its side is reached with a
probability 1/4, the exit position is drawn using a uniform random variable
on the side and the exit time is simulated using an exponential random
variable of parameter 0.35 times the square of the length of the side that is
not reached.

3 Estimators of the principal eigenvalue

3.1 Direct approximation

Using the formal eigenfunction expansion of u(x, t), we can write that almost
everywhere

1

t
log(P (τx

D > t)) =
1

t
log(C1e

λ1t + C2e
λ2t + · · ·+ Cke

λkt + o(eλkt)),

where C1 = c1Ψ1(x). The Krein-Rutman theorem [19] ensures that λ1 is
simple and C1 > 0. Then

1

t
logP (τx

D > t) ' λ1 +
log(C1)

t
+

C2

C1

e(λ2−λ1)t

t

7
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keeping only the two dominant terms. The previous approximation shows
that

lim
t→∞

1

t
logP (τx

D > t) = λ1

almost everywhere and it has been proved in [13] that it holds everywhere.
Hence the Monte Carlo computation of t−1 logP(τx

D > t) for large times of-
fers a first possibility to give a numerical approximation of λ1. Moreover we
can choose the starting point wherever we want. The most natural choice is
to take this starting point in the center of the domain in order to make the
trajectories last as long as possible. Even if we do so, we will see in some
numerical examples that this direct method gives in fact a poor approxima-
tion because the variance increases quickly with time. Indeed this involves
the computation of the probability of rare events which become rarer and
rarer as time increases. We now give some better estimators to overcome
this difficulty.

3.2 Interpolation method

The previous expansion is constituted of a main term λ1 + t−1 log(C1) and

of a term C2

C1

e(λ2−λ1)t

t
which decays at an exponential rate the more quickly

the first two eigenvalues are distant from each other. The difference λ2 − λ1

is intrinsic to the domain. Nevertheless the choice of a starting point near
the center of the domain makes the ratio C2/C1 smaller. This can be seen
for instance on the eigenfunctions expansion on square domains. Moreover,
it is well known that the errors due to the discretization scheme are smaller
for points away from the boundary. If we assume that t is large enough
so that this term is negligible with respect to the others, we can compute
easily λ1 using the Monte Carlo approximations p1 and p2 of respectively
p1 = P(τx,S

D > t1) and p2 = P(τx,S
D > t2) with a discretization scheme S. We

obtain the estimators

λIn(t1, t2) =
log(p2)− log(p1)

t2 − t1

of λ1 which are also used in neutron transport criticality computations [2].
Note that p1 and p2 are obviously correlated and may also be biased esti-
mators of P (τx

D > t1) and P (τx
D > t2) because of the discretization errors.

Letting s1 =
√

p1(1− p1), we obtain the 95 percent confidence interval

p1 − 1.96
s1√
N
≤ p1 ≤ p1 + 1.96

s1√
N

8
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that is assuming that s1

p1

√
N

is small enough,

log(p1)− 1.96
s1

p1

√
N
≤ log(p1) ≤ log(p1) + 1.96

s1

p1

√
N

.

We finally have the 90 percent confidence interval for λIn(t1, t2) writing

log(p2

p1
)

t2 − t1
− 1.96N− 1

2

t2 − t1

(
s1

p1

+
s2

p2

)

≤ λIn(t1, t2) ≤
log(p2

p1
)

t2 − t1
+

1.96N− 1
2

t2 − t1

(
s1

p1

+
s2

p2

)
. (1)

3.3 Least squares approximations

In order to make a global use of the information given by the computation of
the solution at the different times, we can give a least squares approximation
of λ1 and log(K0) by fitting these parameters to the approximation model

still assuming that the term C2

C1

e(λ2−λ1)t

t
is negligible. We denote by FN(t) be

the empirical distribution of τx
D, which is known at the set of times ti. We

have to find λ1 and β = log(C1) minimizing

q∑

i=p

(
λ1 +

β

ti
− 1

ti
log(1− FN(ti))

)2

,

which is a linear least squares problem with respect to the parameters λ1 and
β. This method was tested successfully in [16, 17] but we adopt a slightly
different approach which appears to be more accurate and rigorous.

We now let F (t) = P(τx
D < t) be the distribution function of the exit time

for a fixed point x. Instead of computing λ1 as the intersection value in the
linear regression, we compute it as the slope of the regression line, since

log(1− F (t)) = λ1t + log(c1Ψ1(x)) + ε(t)

with

ε = log(1 + R(t, x)/c1Ψ1(x)) and R(t, x) =
∑

k≥2

e−(λk−λ1)tΨk(x)ck.

Of course, in addition to ε, a second error comes from the replacement of
F (t) by an empirical density FN(t), where N is the number of particles in the
simulation. Thus, we are indeed using a linear regression for the equation

log(1− FN(t)) = −λ1t + log(α1Ψ1(x)) + ε(t) + ηN(t)

9
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with

ηN(t) = log

(
1− F (t)− FN(t)

1− F (t)

)
≈ FN(t)− F (t)

1− F (t)
.

The speed of convergence of FN(t) to F (t) given by the Kolmogorov-Smirnov
test [21] is of order 1/

√
N . We will see that our estimate of λ1 is more likely

to be limited by ηN , and thus by the number N of samples than by ε.
We can be even more precise. The empirical distribution function FN(t)

converges uniformly to F (t). Moreover,
√

N(FN(t)− F (t)) converges in dis-
tribution to a Gaussian process (xt)t≥0 with Var(xt) = F (t)(1 − F (t)) and
Cov(xt, xs) = F (s)(1− F (s)) when t ≥ s. This implies that

Var(ηN(t)) ≈ 1

N

F (t)

1− F (t)
,

which was already used in the interpolation method. Thus, a good estimate
of λ1 relies on using a window in which both ε(t) (which is unknown) and
Var(ηN(t)) are small enough.

Remark 1. We could also use weighted least squares methods with weights
given by (1−FN(t))/FN(t) in order to compensate the variance of the ηN(t).
In practice, we have noticed no real improvement.

4 A 2D test case

4.1 Description

We deal with the 2 dimensional domain seen in Figure 1

4

3

1

1

2

1

1

3

Figure 1: The domain D for the 2D test case
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First, we estimate the first eigenvalue λ2D of 1
2
4 using the pdetool pack-

age from Matlab. In Table 1, we give the estimates of λ2D as a function of
the number of times we refine the mesh. Thus, its seems that the real value
of λ2D is close to −0.740. The order of the second eigenvalue is −1.75.

# of nodes 180 670 2590 10200 40400 160940
−λ2D 0.7578 0.74532 0.74415 0.74021 0.73975 0.73958

Table 1: Estimate by Matlab/pdetool in function of the refinement of the
mesh

4.2 The empirical distribution function of the first exit
time by Monte Carlo methods

We have considered the simulation of the function F (t) using the different
schemes described in Section 2 with 1.000.000 particles, excepted for the
WOR-IS where 100.000.000 particles were used (see Section 2.4 for an ex-
planation). For the Euler scheme, we use a time step ∆t of 10−3. For the
walk on spheres, the absorption boundary layer is ε = 10−3. For the WOR
and WOR-IS, we use only the two rectangles [0, 4] × [0, 3] and [1, 3] × [0, 4]
(the lower left corner is at (0, 0)). The computation times are presented in
Section 4.5.

-0.8

-0.7

-0.6

-0.5

-0.4

-0.3

-0.2

-0.1

 0

 0  1  2  3  4  5  6  7  8  9  10

WOR
WOR-IS

Imp. Euler
WOS
Euler

Figure 2: t−1 log(1− FN(t)) for the different schemes

In Figure 2, we have drawn GN(t) = t−1 log(1−FN(t)) where the starting
point is (2, 2). All the schemes give a function GN decreasing to a value

11
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which is around −0.7 at t = 10, except for the naive Euler scheme for which
it is around −0.67. For the WOR-IS, we have tested different strategies to
force the process to stay longer times in the domain, but none were very
successful. In addition, we see that the curves are perturbed by numerical
artifacts.

Yet for large times, that is t > 7.0, the behavior becomes quite erratic,
since it corresponds to the simulation of rare events. We cannot expect to
obtain an accurate estimate of λ2D this way.

4.3 Estimation by the interpolation method

We then use the interpolation method of Section 3.2, with t2 − t1 = 4 and
we show in Figure 3 the values of λS

1 (t1, t2) for t1 ∈ [2, 5].

-0.755

-0.75

-0.745

-0.74

-0.735

-0.73

-0.725

-0.72

-0.715

-0.71

 2  2.5  3  3.5  4  4.5  5

WOR
WOR-IS

Imp. Euler
WOS
Euler

Figure 3: The estimator λIn(t1, t1 + 4) for the different schemes

We obtain more accurate estimators than with the previous method. We
still observe a deterioration when t1 is too large for all the schemes. However,
the naive Euler scheme gives an overestimated value of λ2D, which can be
easily explained by its nature. We no longer consider this scheme in the
following.

If we look for the value of λIn(t1, t1+4) with t1 in some particular intervals,
e.g. t1 ∈ [2, 3], we can see that all the estimators are very close to −0.74
and this for all the remaining schemes. We now turn to more quantitative
results.

12
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4.4 Optimization of the estimators

To estimate λ2D, we are free to choose the range of time t for F (t). The idea

is then to consider an estimator λ
(i)
2D of λ2D using the data on an interval

[ai, bi] for a large choice of ai and bi. We perform a statistical analysis of the

set of the λ
(i)
2D for which a quality criterion is satisfied.

We first use the confidence interval techniques of Section 3.2 after having
remarked on Figure 3 that all the estimators λIn(t1, t1 + 4) are contained in
a narrow band for t1 ∈ [2, 5]. We now compute all the possible estimators
λIn(t1, t2) and their relative confidence intervals, where t1, t2 are chosen on a
grid ηZ with η = 1/10, t1 ≥ 2, t2 ≤ 8 and t2 − t1 ≥ 2. We only keep the
fraction of these estimators for which the length of the confidence interval
is small. Indeed, we have to find a balance in the length `90%(t1, t2) of the
confidence interval at 90% given by (1) between the term 1/(t2 − t1) which
shall be small and the term s1/p1+s2/p2 that increases when t1 or t2 increases.
We plot λIn(t1, t2) against `90%(t1, t2) and we remark that the quality of the
approximation decreases when `90%(t1, t2) increases.

-0.77

-0.765

-0.76

-0.755

-0.75

-0.745

-0.74

-0.735

-0.73

 0.005  0.01  0.015  0.02  0.025  0.03  0.035  0.04  0.045

Figure 4: λIn(t1, t2) in function of `90%(t1, t2) for the improved Euler scheme

We also note that the smallest values of `90%(t1, t2) are obtained when t1
is close to 2 and t2 close to 5.

We now present our results on Table 2 using classical statistical estimators
for the λIn(t1, t2)’s satisfying our criterion.

13
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Method Improved Euler WOS WOR WOS-IS
Min. −0.7423 −0.7385 −0.7398 −0.7537

1st Qu. −0.7403 −0.7378 −0.7376 −0.7456
Median −0.7392 −0.7373 −0.7373 −0.7393
Mean −0.7391 −0.7372 −0.7374 −0.7404

3rd Qu. −0.7377 −0.7368 −0.7369 −0.7364
Max −0.7365 −0.7351 −0.7361 −0.7268

Table 2: Study of the estimators λIn(t1, t2) by keeping the 10% having the
smallest value of `90%(t1, t2)

If we look at the median or the mean of the estimators λIn(t1, t2), we can
reach an accuracy of at least 3 · 10−3. All the schemes give an analogous
accuracy.

We now turn to the least squares method, by replacing our criterion on the
length of the confidence interval by a criterion based on the correlation coef-
ficient R. This coefficient measures the validity of the linear approximation.
We denote by λLS(t1, t2) the estimator of λLS(t1, t2) giving the slope of the
linear regression of GN(t) with t ∈ [t1, t2]. We select the estimators λLS(t1, t2)
for which R2 is greater than 0.99997. We also plot λLS(t1, t2) against the co-
efficient R2. We now present our results on λLS(t1, t2) in Table 3 as we did
previously for λIn(t1, t2).

-0.765

-0.76

-0.755

-0.75

-0.745

-0.74

-0.735

-0.73

 0.99965  0.9997  0.99975  0.9998  0.99985  0.9999  0.99995  1

Figure 5: λLS(t1, t2) in function of R2 for the improved Euler scheme
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Method Improved Euler WOS WOR
Min. −0.7470 −0.7415 −0.7443

1st Qu. −0.7444 −0.7375 −0.7411
Median −0.7413 −0.7368 −0.7396
Mean −0.7423 −0.7367 −0.7398

3rd Qu. −0.7401 −0.7360 −0.7380
Max −0.7395 −0.7321 −0.7370

Table 3: Study of the estimators λLS(t1, t2) for R2 > 0.99997

Once again, we obtained a good accuracy on the first eigenvalue λ2D (at
least 3 · 10−3). However, for the WOR-IS, this criterion is less robust and we
have obtained an accuracy 3 · 10−2 and thus we do not include the results in
Table 3.

4.5 Computation times

Although the schemes give close estimated values of λ2D, their relative com-
putation times differ largely and may be function of the choice of some pa-
rameters, as seen in Table 4. The simulations were done on a bi-processors
DEC 700MHz.

Scheme Parameter name Parameter Time (s) Avg. # steps

Euler time step ∆t
10−2

10−3

210
1400

200
2000

WOS boundary layer ε
10−3

10−4

80
85

13
16

WOR — — 700 1.5
WOR-IS — — 16 2.1

Table 4: Computations times with N = 1.000.000 for all the methods

We compare first the average number of steps of each of the methods.
The WOR and WOR-IS take around two steps to reach the boundary. The
WOS takes around ten times more steps using a boundary layer ε = 10−4.
This number of steps increases slowly like a O(| log(ε)|) as ε goes to zero. The
Euler scheme with ∆t = 10−2 takes ten times more steps than the WOS. This
number of steps increases linearly with ∆t (if ∆t is divided by 10 the number
of steps is ten times greater). If we now look at the CPU times, the WOR-IS
is really the fastest method as its average number of steps is 2 and that it
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requires the simulation of fairly simple random variables. Unfortunately, this
method increases somehow the variance of the simulations. A lot more sam-
ples are required to make it as accurate as the other methods. The simulation
times of the WOR and of the Euler scheme are comparable. The first one
requires only 1.5 steps but the simulation of complex random variables. The
second one requires many steps but the simulation of very simple Gaussian
random variables. A good arrangement between these methods appears to
be the WOS. The average number of steps is small and the random variables
to simulate are not too complex.

4.6 Preliminary conclusions

Our approach is efficient on this test case. However, among the schemes we
have tested, the naive Euler scheme shall be discarded. Our statistical study
gives an approximation of λ2D with an accuracy of order 3 · 10−3, which
corresponds to what can be expected from the replacement of F (t) by an
empirical distribution function, due to the Kolmogorov-Smirnov theorem.

In practice, we recommend the two following methods:

(a) We look graphically at either λIn(t1, t1 + τ) for a given τ and t1 in the
range of the obtained values and we then determine a range of times for
which the oscillations around a constant value are small enough. We
may use either the least squares method or the interpolation method.

(b) We use the least squares methods to estimate λLS(t1, t2) for a large
number of values of t1 < t2 with t2 − t1 ≥ τ for an arbitrary τ , and
keep the values of λLS(t1, t2) for which the coefficient R2 is large enough.

5 More complex problems

5.1 A three dimensional problem

We now consider the extension of our 2D problem where we add a third di-
mension z ∈ [0, 4]. We could treat as well more complex three dimensional
domains but we use this problem as its main eigenvalue can be simply com-
puted. By a separation of variables argument, we have λ2D − π2

32
' −1.048.

In Table 5, we use confidence intervals and least squares approximations
for intervals [t1, t2] contained in [2, 8] with t2− t1 ≥ 2 and a step of 0.1 for t1
and t2.
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Method WOR WOS
Parameter — ε = 10−4

Time (s) 1200 110
# steps 1.34 30

λLS λIn λLS λIn

R2
min or `max 0.99995 0.02 0.99995 0.02
# samples 141 125 695 135

Min. −1.056 −1.048 −1.049 −1.049
1st Qu. −1.049 −1.045 −1.047 −1.048
Median −1.046 −1.044 −1.047 −1.047
Mean −1.047 −1.044 −1.046 −1.047

3rd Qu. −1.045 −1.043 −1.046 −1.046
Max −1.041 −1.042 −1.041 −1.045

Table 5: Study of the estimators λIn(t1, t2) for `90%(t1, t2) ≤ `max and
λLS(t1, t2) for R2 ≥ R2

min with N = 1.000.000 particles.

We focus on this example on the WOR ans WOS methods. For the WOS,
we need to simulate the uniform law on the unit sphere. This density writes

f(θ, ϕ) =
1

2
sin(θ)1[0,π)(θ)

1

2π
1[0,2π)(ϕ).

The three Cartesian coordinates are

x = sin(θ) sin(ϕ), y = sin(θ) cos(ϕ), z = cos(θ)

where the density of θ is 1
2
sin(θ)1[0,π)(θ) and where ϕ is uniform on [0, 2π).

The simulation of θ is achieved using the standard method by 2 arcsin(
√

U)
where U is uniform on [0, 1). The distribution function of the exit time from
the unit ball is obtained via Monte Carlo simulations.

We note that once again we obtain an accuracy of about three digits
on the principal eigenvalue using either the WOR or the WOS method. The
two statistical methods lead to very similar approximations. If we look at the
CPU times, we observe that they increase only linearly with the dimension
of the problem.

5.2 A five dimensional problem

We now take some more examples in dimension 5 to emphasize that our
method is not very sensitive to the dimensional effect. Similarly to the 3D
case, we consider the Dirichlet problem on the domain

D5D = {(x1, . . . , x5) ∈ R5 ; (x1, x2) ∈ D, (x3, x4, x5) ∈ [0, 4]3}.
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Using again a separation of variables, the first eigenvalue λ5D is λ2D −
3π2/32 ' −1.665, if λ2D is approximated by −0.740.

In Table 6, we use confidence intervals and least squares approximations
for intervals [t1, t2] contained in [2, 6] with t2 − t1 ≥ 2 and a step of 0.1.

Method WOR Imp. Euler Imp. Euler
Parameter — ∆t = 10−2 ∆t = 6 · 10−3

Time (s) 2000 300 440
# steps 1.23 123 200

λLS λIn λLS λIn λLS λIn

R2
min or `max 0.99995 0.06 0.9999 0.06 0.9999 0.06
# samples 20 56 140 62 90 64

Min. −1.666 −1.682 −1.692 −1.677 −1.667 −1.673
1st Qu. −1.663 −1.677 −1.676 −1.671 −1.663 −1.666
Median −1.662 −1.672 −1.671 −1.668 −1.658 −1.657
Mean −1.661 −1.672 −1.671 −1.667 −1.658 −1.658

3rd Qu. −1.659 −1.666 −1.667 −1.665 −1.653 −1.650
Max −1.654 −1.662 −1.651 −1.657 −1.646 −1.645

Table 6: Study of the estimators λIn(t1, t2) for `90%(t1, t2) ≤ `max and
λLS(t1, t2) for R2 ≥ R2

min with N = 1.000.000 particles.

As the WOS is not so easy to implement in this case, we now use the WOR
and the improved Euler scheme in the simulations. We still obtain in less than
10 minutes of CPU a good accuracy of about 3 · 10−3 on the eigenvalue for a
problem which is very difficult to solve by means of deterministic methods.
The CPU times of the WOR still increases linearly. It seems sufficient to
use a discretization parameter of ∆t = 10−2 for the Euler Scheme to reach
this accuracy. We can certainly recommend this method for such difficult
problems as it is very easy to implement.

6 Conclusion

We have presented and tested a Monte Carlo method to compute the first
eigenvalue λ1 of the Laplace operator with Dirichlet boundary condition.
This method is based on the numerical computation of the speed of absorp-
tion of the Brownian motion by the boundary of the domain. It requires
a good approximation of the law of the exit time of the Brownian motion
by means of various schemes and also accurate estimators of λ1 seen as a
parameter of a model.
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We have to note that the estimators of λ1 are very sensitive to the quality
of the empirical distribution function of the exit time. In our least squares
method, we have however developed a test based on the coefficient R2, which
appears to be robust in all our experiments. The accuracy is anyhow limited
by the speed of convergence given by the Kolmogorov-Smirnov theorem.

The WOR-IS is not efficient in our case, while the naive Euler scheme
overestimates λ and is also to be rejected for this purpose. Yet some variants
of the Euler scheme provide much more better estimates, while remaining
easy to set up. The WOS is the fastest method there, but may be difficult to
set up in high dimension. For polytopes, the WOR provides a good approxi-
mation of λ1 but takes longer time in high dimension, and is more difficult to
implement. Note that however partial tabulations of some random variables
and a better use of the WOR-IS should provide very efficient methods.

On all our test cases, from dimension 2 to 5, we have obtained in no
more than 10 min an accuracy of about 3 digits on the eigenvalue λ1 using
1.000.000 particles. Of course, in our test cases, the geometry of the domain
was rather simple, but the different methods can be combined to deal with
more complex geometries. We can also add that our method is even more
valuable in dimension greater than 3, where deterministic methods are lim-
ited by the difficulty of generating a mesh and the size of the matrix to invert.
In all our methods, the computation time increases linearly with the dimen-
sion, and none requires the construction of a mesh. Besides, this method can
be extended to deal with a general second-order elliptic operator. The com-
putation of λ1 could also be a good test to evaluate the efficiency of diffusion
approximations.
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