A random walk on rectangles algorithm

Madalina Deaconu 1, 2 Antoine Lejay 1, 2
2 OMEGA - Probabilistic numerical methods
CRISAM - Inria Sophia Antipolis - Méditerranée , UHP - Université Henri Poincaré - Nancy 1, Université Nancy 2, CNRS - Centre National de la Recherche Scientifique : UMR7502
Abstract : In this article, we introduce an algorithm that simulates efficiently the first exit time and position from a rectangle (or a parallelepiped) for a Brownian motion that starts at any point inside. This method provides an exact way to simulate the first exit time and position from any polygonal domain and then to solve some Dirichlet problems, whatever the dimension. This method can be used as a replacement or complement of the method of the random walk on spheres and can be easily adapted to deal with Neumann boundary conditions or Brownian motion with a constant drift.
Type de document :
Article dans une revue
Methodology and Computing in Applied Probability, Springer Verlag, 2006, 8 (1), pp.135-151. <10.1007/s11009-006-7292-3>
Liste complète des métadonnées


https://hal.inria.fr/inria-00092424
Contributeur : Antoine Lejay <>
Soumis le : dimanche 10 septembre 2006 - 12:36:11
Dernière modification le : mercredi 15 mars 2017 - 12:12:50
Document(s) archivé(s) le : mardi 6 avril 2010 - 00:52:07

Identifiants

Collections

Citation

Madalina Deaconu, Antoine Lejay. A random walk on rectangles algorithm. Methodology and Computing in Applied Probability, Springer Verlag, 2006, 8 (1), pp.135-151. <10.1007/s11009-006-7292-3>. <inria-00092424>

Partager

Métriques

Consultations de
la notice

444

Téléchargements du document

622