Young integrals and SPDEs

Massimiliano Gubinelli 1 Antoine Lejay 2, 3 Samy Tindel 2
3 OMEGA - Probabilistic numerical methods
CRISAM - Inria Sophia Antipolis - Méditerranée , UHP - Université Henri Poincaré - Nancy 1, Université Nancy 2, CNRS - Centre National de la Recherche Scientifique : UMR7502
Abstract : In this note, we study the non-linear evolution problem dY_t = -A Y_t dt + B(Y_t) dX_t, where X is a \gamma-Hölder continuous function of the time parameter, with values in a distribution space, and -A the generator of an analytical semigroup. Then, we will give some sharp conditions on X in order to solve the above equation in a function space, first in the linear case (for any value of $\gamma$ in (0,1)), and then when B satisfies some Lipschitz type conditions (for \gamma>1/2). The solution of the evolution problem will be understood in the mild sense, and the integrals involved in that definition will be of Young type.
Complete list of metadatas

Cited literature [18 references]  Display  Hide  Download
Contributor : Antoine Lejay <>
Submitted on : Sunday, September 10, 2006 - 12:56:36 PM
Last modification on : Tuesday, February 26, 2019 - 10:55:14 AM
Long-term archiving on : Tuesday, April 6, 2010 - 12:52:08 AM


  • HAL Id : inria-00092425, version 1



Massimiliano Gubinelli, Antoine Lejay, Samy Tindel. Young integrals and SPDEs. Potential Analysis, Springer Verlag, 2006, 25 (4), pp.307-326. ⟨inria-00092425⟩



Record views


Files downloads