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Abstract:

We have seen in a previous article how the theory of “rough paths”
allows us to construct solutions of differential equations driven by pro-
cesses generated by divergence form operators. In this article, we study
a convergence criterion which implies that one can interchange the in-
tegral with the limit of a family of stochastic processes generated by
divergence form operators. As a corollary, we identify stochastic inte-
grals constructed with the theory of rough paths with Stratonovich or
Itô integrals already constructed for stochastic processes generated by
divergence form operators by using time-reversal techniques.
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1 Introduction

In [Lej06a], we have seen how the theory of rough paths developed in [Lyo98]
(See also [Lej03a, LQ02, Lej06b]) could be used to prove the pathwise exis-
tence of stochastic integrals of type

Zt = z +
N∑

i=1

∫ t

0

gi(Xr) dX i
r (1)

and solutions of the Stochastic Differential Equations (SDE) of type

Yt = y +
N∑

i=1

∫ t

0

fi(Yr) dX i
r (2)

provided that f and g are smooth enough, where X = (X1, . . . , XN) is the
stochastic process generated by a divergence form operator of type

L =
N∑

i,j=1

1

2

∂

∂xi

(
ai,j

∂

∂xj

)
+

N∑
i=1

bi
∂

∂xi

(3)

for a measurable function a taking its values in the space of symmetric N×N -
matrix and a measurable function b from RN to R. Here, a and b are bounded
and a is uniformly elliptic, but a and b are not assumed to be continuous.

Let us denote by K the map giving Z from X in (1), and I the map giv-
ing Y from X in (2). Since in our case X has the same regularity properties
of the Brownian motion’s trajectories, the maps K and I are not functions
of X, but functions of a pair X = (X1,X2) called a rough path or a mul-
tiplicative functional. This path X is a function from [0, T ] with values in

T
(2)
1 (RN) = RN ⊕ RN ⊗ RN where X1

t = Xt and X2 takes its values in

RN ⊗ RN . On the space T
(2)
1 (RN) = RN ⊕ RN ⊗ RN in which X lives, we

introduce the gauge1

‖x‖ = max{|x1|,
√
|x2|}, x = (x1,x2), x1 ∈ RN , x2 ∈ RN ⊗ RN ,

where the norm on RN ⊗ RN is such that |x ⊗ y| ≤ |x| · |y| for all x, y ∈
RN . This space T

(2)
1 (RN) is a sub-group of the non-commutative Lie group

T(2)(RN) with the tensor product ⊗ as group operation. For a rough path

1It can be think as a norm, but does not satisfy |λx| = |λ| · |x| for λ ∈ R, x ∈ T(2)
1 (RN ).

Instead, it satisfies |δλ(x)| = |λ| · |x|, where δλ is the dilatation of parameter λ: δλ(x) =
(λx1, λ2x2). In addition, |x⊗ y| ≤ 2(|x|+ |y|) for all x, y in T(2)

1 (RN ).
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X, its increment between time s and t is Xs,t = X−1
s ⊗ Xt where x ⊗ y =

(x1 + y1,x2 + y2 + x1 ⊗ y1) and x−1 = (−x1,−x2 − x1 ⊗ x1) for x,y in

T
(2)
1 (RN).

The maps K and I are continuous on the set of rough paths when one
uses, for α ∈ [2, 3), the topology Vα generated by the norm

‖X‖Vα = sup
t∈[0,T ]

|Xt|+ Varα,[0,T ](X)

where

Varα,[0,T ](X) =

(
sup

partition 0≤t1<...<tk≤T

k−1∑
i=1

|Xti,ti+1
|α

)1/α

. (4)

The quantity Varα,[0,T ] X is the α-variation of X. The choice of the range
of α depends on the regularity of the trajectories of X (a function which is
β-Hölder continuous is of finite β−1-variation).

In [Lej06a], we have shown that if (X,Px) is the process generated by L
given by (3), one can use for X the process t 7→ (X i

t , K
i,j
0,t(X))i,j=1,...,N , where

Ki,j
s,t(X) is either

K i,j
s,t(X) =

∫ t

s

(X i
r −X i

s) ◦ dXj
r or K i,j

s,t(X) =

∫ t

s

(X i
r −X i

s) dXj
r .

These integrals are defined using the forward-backward martingales decom-
position (or Lyons-Zheng decomposition) of X, as constructed by A. Rozkosz
[Roz96a] and T. Lyons and L. Stoica [LS99]. In addition to have proved
that X is of finite α-variation under Px for any starting point x, we also
established a result of type Wong-Zakai. Let us note that in a recent arti-
cle [FV06a], P. Friz and N. Victoir have dealt with the same problem in a
completely different way, using Dirichlet forms (see also Section 3.5.2).

Let us consider a family (Xε, K(Xε))ε>0 where Xε is generated by a
divergence form operator

Lε =
N∑

i,j=1

1

2

∂

∂xi

(
aε

i,j

∂

∂xj

)
+

N∑
i=1

bε
i

∂

∂xi

,

for which the uniform ellipticity and boundedness constants of aε and bε are
uniform in ε. If (Xε)ε>0 converges uniformly in distribution to X, what can
be said on the convergence of (Xε, K(Xε))ε>0 in Vα? In particular, does
(K(Xε))ε>0 converge to K(X)? If true, the continuity of the maps K and I

implies the convergence of the stochastic integrals and solutions of SDEs
driven by Xε to the same stochastic integral and solution of SDE where Xε

is replaced by X.
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Using the results in [Lej02, LL06], one can construct examples — when
the coefficients are smooth and Xε is then solution to some SDE — giving
a negative answer to this question if we drop the assumption that the drift
bε is uniformly bounded in ε. For this, we use the homogenization theory,
which allows us to study the asymptotic behavior as ε decreases to 0 of Xε

when aε = a(·/ε) and bε = 1
ε
b(·/ε) for some a and b that are periodic (See

for example [BPL78, JKO94] among many references).
However, the results of [Lej02, LL06] were developed for processes gener-

ated by non-divergence operators. If we use these results on the processes Xε

generated by divergence form operators
∑N

i,j=1
1
2
∂xi

(ai,j(·/ε)∂xj
) with a pe-

riodic, smooth function a, we get that K(Xε) converges in distribution to
K(X) when Stratonovich integrals are used, where X is the process gener-
ated by a divergence form operator

∑N
i,j=1

1
2
∂xi

(aeff
i,j∂xj

). The coefficient aeff

is a constant matrix that catches the large scale behavior of the process Xε.
Indeed, Xε is equal in distribution to the rescaled process εX·/ε2 for X gen-

erated by
∑N

i,j=1
1
2
∂xi

(a∂xj
), so that the homogenization theory consists in

proving a functional Central Limit Theorem. Using the results in [FV06a]
and some analytical convergence results of [BBJR95], we prove the conver-
gence results of the rough path lying above Xε even if the coefficients are
not assumed to be continuous.

Still with the homogenization theory, we get that the brackets of the
martingales parts of Xε does not necessarily converge to the brackets of the
martingale part of X. Hence, when one uses for K(Xε) and K(X) the Itô
integrals, then K(Xε) does not converge to K(X), but to t 7→ K0,t(X) + ct
for some constant, N ×N -symmetric matrix c.

In the case of divergence-form operators without drift, the homogeniza-
tion theory does not give a counter-example of the convergence of the iterated
integrals to the iterated integrals of the limit in the Stratonovich case. We
have been unable to find a sequence (Xε)ε>0 such that (K(Xε))ε>0 does not
converge to K(X) in the Stratonovich case when Xε converges in distribu-
tion to X. Yet we give a natural sufficient (but not necessary!) condition to
ensure that (K(Xε))ε>0 converges to K(X) (whatever the type of the inte-
grals), which turns out to be Condition UTD introduced by F. Coquet, A.
Rozkosz and L. SÃlomiński in [RS98, CS99]. This condition implies that, given
a family of Dirichlet processes converging to a Dirichlet process, their mar-
tingale parts and their zero-quadratic variation parts also converge jointly
the the corresponding parts of the limiting process. In the context of semi-
martingales seen as rough paths, the equivalent criterion is Condition UT
(see for example [KP96]), as seen in [CL03]. From the heuristic point of
view, this may be understood with the notion of (p, q)-rough paths defined
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in [LV06], although the results in this last article cannot be applied directly
in our case. The basic idea is that the limit of K(Xε) may not correspond to
K(X) when the part of finite or zero-quadratic variation “contributes” to the
martingale part of the limit. In our homogenization example, the sequence
(Xε) does not satisfy Condition UTD.

In Section 4, we prove the continuity of K(X) =
∫

g(Xs) dXs with respect
to g. Although this continuity follows easily from the very construction of K,
it seems to have never been stated. The convergence of I with respect to the
function f is also given in [CFV05] under a slightly stronger assumption of
convergence of the vector fields. In Section 5, we identify the integrals given
by the theory of rough paths with the integrals of Itô or Stratonovich type
in function of the choice of K(X). This identification is done by smoothing
the coefficients of L and using a similar identification for semi-martingales
proved in [CL03].

2 Stochastic integral driven by process gen-

erated by divergence-form operators

For 0 < λ < Λ, let Ξcoeff(λ, Λ) denotes the set of all the functions (a, b) such
that

a and b are measurable,

a(x) = (ai,j(x))i,j=1,...,N is a symmetric matrix,

∀ξ ∈ RN , ∀x ∈ RN , λ|ξ|2 ≤
N∑

i,j=1

ai,j(x)ξiξj ≤ Λ|ξ|2,

b = (bi)i=1,...,N and ∀x ∈ RN , sup
i=1,...,N

|bi(x)| ≤ Λ.

For (a, b) ∈ Ξcoeff(λ, Λ), we may define L by (3) as a closed operator
on L2(RN). This operator is then the infinitesimal generator of a continuous,
strong Markov, stochastic process (X, (Ft)t>0, (Px)x∈RN ): See for example
[Str88, Lej00].

We denote by Ξ(λ, Λ) the class of processes generated by divergence form
operators with coefficients in Ξcoeff(λ, Λ).

Unless its diffusion coefficient a is smooth enough, X ∈ Ξ(λ, Λ) is not a
semi-martingale, but belongs to the more general class of Dirichlet processes
under Px for any starting point x [RS98, Theorem 2.2] (note that there
are several possible definitions of a Dirichlet process, with slight variations.
For example, the definition of a Dirichlet processes given by the theory of
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Dirichlet forms [FOT04], which may be used to study the process X, is
different).

Definition 1 ([Föl81b]). Let (Πn)n∈N be a family of partitions of [0, T ] whose
meshes decrease to 0 as n →∞. For a continuous function A, we introduce

Q(A, Πn) =
`n−1∑
i=0

|Atni+1
− Atni

|2 if Πn = {tn0 ≤ tn1 ≤ · · · ≤ tn`n}

and we say that a process A is of zero quadratic variation (along (Πn)n∈N) if
Q(A, Πn) converges to 0 in probability as n →∞.

A Dirichlet process (along (Πn)n∈N) is a F·-adapted process the sum of
a local martingale and a term of zero quadratic variation which are both
F·-adapted.

Let Υ∞(RN) be the class of functions g ∈ W1,∞
loc (RN) for which ∇g ∈

L∞(RN).
Let g ∈ Υ∞(RN) and T > 0, as well as X ∈ Ξ(λ, Λ). Let us denote by

(F t)t∈[0,T ] the backward filtration of X, that is F t = σ(Xs; s ∈ [t, T ]). From
[LS99, Roz96a, RS98], the process g(X) may be decomposed under Px for
x ∈ RN as

g(Xt) = g(X0) +
1

2
M g

t +
1

2
(M

g

T−t −M
g

T ) + V g
t , t ∈ [0, T ], (5)

where M g is a F·-martingale, M
g

is a F ·-martingale and

V g
t =

∫ t

0

b(Xr)∇g(Xr) dr +

∫ t

0

1

p(r, x, Xr)
a(Xr)∇p(r, x,Xr)∇g(Xr) dr.

Such a decomposition is called a Lyons-Zheng decomposition. In addition,
V g is a term of integrable variation under Px and M g and M

g
are square-

integrable martingales with brackets

〈M g〉t =

∫ t

0

a∇g · ∇g(Xs) ds and 〈M g〉t =

∫ t

0

a∇g · ∇g(XT−s) ds.

Finally, the process g(X) is a Dirichlet process under Px for any starting
point x (provided we choose a version of g which is continuous around x,
whose existence follows from the Morrey theorem [A75, Theorem 5.4, p. 97])
whose term of zero quadratic variation Ag is

Ag
t = −1

2
M g

t +
1

2
(M

g

T−t −M
g

T ) + V g
t ,
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and M g is its martingale part [Roz96a, RS98]. The backward martingale M
g

is the martingale part of the reversed process g(X ·) = g(XT−·), which is also
a Dirichlet process.

We set for g, ϕ ∈ Υ∞,

L(t; X, g, ϕ) =

∫ t

0

g(Xs) ◦ dϕ(Xs) (6)

or L(t; X, g, ϕ) =

∫ t

0

g(Xs) dϕ(Xs) (7)

in the way these integrals are defined in [Roz96a] (see also [LS99]). There are
two ways to characterize them: In the Stratonovich case, where L is defined
by (6),

L(t; X, g, ϕ) = lim
n∈NLn(t; X, g, ϕ)

with Ln(t; X, g, ϕ) =
1

2

`n(t)−1∑
j=0

(g(Xtnj+1
) + g(Xtnj

))(ϕ(Xtnj+1
)− ϕ(Xtnj

)))

In the Itô case, where L is defined by (7),

L(t; X, g, ϕ) = lim
n∈NLn(t; X, g, ϕ)

with Ln(t; X, g, ϕ) =

`n(t)−1∑
j=0

g(Xtnj
)(ϕ(Xtnj+1

)− ϕ(Xtnj
)).

In both cases, the limits hold in probability under Px for any x ∈ RN . Of
course, the difference between the Itô and the Stratonovich case lies in the
quadratic variation, since

1

2

`n(t)−1∑
j=0

(g(Xtnj+1
) + g(Xtnj

))(ϕ(Xtnj+1
)− ϕ(Xtnj

)))

=
1

2

`n(t)−1∑
j=0

(g(Xtnj+1
)− g(Xtnj

))(ϕ(Xtnj+1
)− ϕ(Xtnj

))

+

`n(t)−1∑
j=0

g(Xtnj
)(ϕ(Xtnj+1

)− ϕ(Xtnj
)). (8)

7



With (5), we also get that in the Stratonovich case, Px-almost surely,

L(t; X, g, ϕ) =
1

2

∫ t

0

(g(Xr)− g(x)) dMϕ
r +

1

2

∫ t

0

(g(Xr)− g(X0)) dM
ϕ

r

+
1

2
(g(Xt)− g(x))M

ϕ

t +

∫ t

0

(g(Xr)− g(x)) dV ϕ
r

− 1

2
〈g(X),M

ϕ〉t +
1

2
〈g(X),Mϕ〉t

with X t = XT−t for t ∈ [0, T ]. In the Itô case, Px-almost surely,

L(t; X, g, ϕ) =
1

2

∫ t

0

(g(Xr)− g(x)) dMϕ
r +

1

2

∫ t

0

(g(Xr)− g(X0)) dM
ϕ

r

+
1

2
(g(Xt)− g(x))M

ϕ

t +

∫ t

0

(g(Xr)− g(x)) dV ϕ
r − 1

2
〈g(X),M

ϕ〉t.

We end this section with a convergence result of the integral L(X, g, ϕ)
with respect to g and ϕ.

Proposition 1. Let (gn)n∈N and (ϕn)n∈N be sequences of functions in Υ∞(RN)
and g0, ϕ0 ∈ Υ∞(RN). We assume that gn, ϕn are bounded uniformly for
n ≥ 0 by a constant K. We assume moreover, that gn (resp. ϕn) and ∇gn

(resp. ∇ϕn) converge uniformly to g0 (resp. ϕ0) and ∇g0 (resp. ∇ϕ0).
Then for any x ∈ RN , t 7→ L(t; X, gn, ϕn) converges in probability under Px

to t 7→ L(t; X, g, ϕ) with respect to the uniform norm. This is true both for
the Stratonovich and the Itô case.

Proof. Let us note first that ϕ 7→ Mϕ and ϕ 7→ V ϕ are linear maps, as well
as (g, ϕ) 7→ L(X, g, ϕ). Hence,

L(X, gn, ϕn)− L(X, g0, ϕ0) = L(X, gn − g0, ϕn) + L(X, gn, ϕn − ϕ0).

We could then assume that g0 = ϕ0 = 0.
Hence, for any C > 0, the Burkholder-Davis-Gundy inequality (see for

example Theorem 3.28 in [KS91, p. 166]),

Px

[
sup

t∈[0,T ]

∣∣∣∣
∫ t

0

gn(Xr) dMϕn
r

∣∣∣∣ ≥ C

]

≤ 1

C2
Ex

[
Λ

∫ T

0

|∇ϕn(Xr)|2gn(Xr)
2 dr

]
−−−→
n→∞

0. (9)
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Similarly,

Px

[
sup

t∈[0,T ]

∣∣∣∣
∫ t

0

gn(Xr) dM
ϕn

r

∣∣∣∣ ≥ C

]

≤ 1

C2
Ex

[
Λ

∫ T

0

|∇ϕn(Xr)|2gn(Xr)
2 dr

]
−−−→
n→∞

0. (10)

In addition, since Ex

[∫ T

0
|dV ϕn

r |
]

is bounded by ‖∇ϕn‖∞ times a constant

that depends only on λ, Λ and T (see [Lej06a]),

Ex

[
sup

t∈[0,T ]

∣∣∣∣
∫ t

0

(gn(Xr)− gn(x)) dV ϕn
r

∣∣∣∣
]
≤ 2‖gn‖∞Ex

[∫ T

0

|dV ϕn
r |

]
−−−→
n→∞

0.

(11)
This proves that, in the Stratonovich case,

sup
t∈[0,T ]

|L(t; X, gn, ϕn)− L(t; X, 0, ϕn)| −−−→
n→∞

0,

since L(t; X, 0, ϕn) = 0.
From Remark 2.5 in [Roz96a, p. 107],

〈gn(X),Mϕn〉t =

∫ t

0

a∇gn · ∇ϕn(Xr) dr

and 〈gn(X),M
ϕn〉t =

∫ T

T−t

a∇gn · ∇ϕn(Xr) dr.

It follows easily that 〈gn(X),Mϕn〉 and 〈gn(X),M
ϕn〉 converges uniformly

in t ∈ [0, T ] to 0 as n → ∞. This proves that, in the Itô case, that
supt∈[0,T ] |L(t; X, gn, ϕn)− L(t; X, 0, ϕn)| converges to 0.

To prove the convergence of L(·, X, gn, ϕn) to 0 when n → ∞ (since
L(·, X, gn, 0) = 0), it is sufficient to use the previous inequalities (9), (10)
and (11) as well as the convergence of 〈gn(X),Mϕn〉 and 〈gn(X), M

ϕn〉 to 0.

3 Convergence of processes generated by a

divergence form operator

Given a process X ∈ Ξ(λ, Λ), we have seen in [Lej06a] how to construct a
rough path X lying above X. For this, we have constructed X with X1

s,t =

9



Xt − Xs and Xi,j,2
s,t = K i,j

s,t(X), where Ki,j
s,t(X) is either

∫ t

s
(X i

r − X i
s) ◦ dXj

r

(Stratonovich case) or
∫ t

s
(X i

r −X i
s)dXj

r (Itô case).
According to Lemma Lemma 5.4.1 in [LQ02], all the rough paths lying

above X may be constructed by adding to X a function (s, t) ∈ ∆+ 7→
ψt − ψs where ψ takes its values in RN ⊗ RN and is of finite α/2-variation.
In this article, we consider only the Stratonovich and the Itô cases, for they
correspond to natural choices.

We have seen in [Lej06a] that for any α > 2, any X in Ξ(λ, Λ), any
starting point x and any η > 0, there exists C large enough such that

{
Px

[
Varα,[0,T ](X) > C

]
< η,

C depends only on (α, λ, Λ, T ),
(12)

and that for any C > 0 and any η > 0, there exists δ small enough such that
{
Px

[
sup|t−s|<δ |X| > C

] ≤ η,

δ depends only on (α, λ, Λ, T ).
(13)

3.1 Tightness results

Our first results on sequences of processes in Ξ(λ, Λ) concern their tightness.
For X ∈ Ξ(λ, Λ), K(X) denotes either the second-order iterated integrals
of X in the Stratonovich or the Itô case.

We now consider a sequence (Xε)ε>0 of processes in Ξ(λ, Λ). We denote
by Px the distribution of Xε to denote that Px [ Xε = x ] = 1.

Proposition 2. For any ε > 0, let Xε be in Ξ(λ, Λ). Under Px for any
x ∈ RN , the sequence (Xε, K(Xε))ε>0 is tight in Vα for any α > 2.

Proof. With (12) and (13), the proof is an immediate consequence from the
tightness criterion presented in [Lej03a, Lej06a].

However, we give a short proof, restricted to the first level for the sake of
simplicity, to endow the role of (12) and (13).

For some constant C, let K(C) be the set of continuous functions x from
[0, T ] to RN such that Varα,[0,T ](x) ≤ C, where Varα,[0,T ](x) is defined by (4)
with Xs,t replaced by xt − xs and | · | is the Euclidean norm on RN . Let
also K ′ be a set of continuous functions from [0, T ] to RN which is relatively
compact for the uniform convergence. If (xε)ε>0 is a sequence of functions in
K ′ ∩K(C) that converges to a continuous function x0 of finite α-variation,
then (xε)ε>0 also converges to x0 in β-variation for any β > α. This follows
from

Varβ,[0,T ](x
ε − x0)β ≤ 2α−1‖xε − x0‖β−α

∞ (Varα,[0,T ](x
ε)α + Varα,[0,T ](x

0)).

10



This also implies that K ′ ∩ K(C) is relatively compact with respect to the
space of continuous functions of finite α-variation with the norm ‖ · ‖Vβ for
all β > α.

Now, since the choice of C and η in (12) depend only on λ and Λ and
(Xε)ε>0 is tight for the uniform norm, we deduce that for any η > 0, there
exists a constant C such that supε>0 Px [ Xε ∈ K(C) ∩K ′ ] ≤ η, where K ′ =
(Xε)ε>0, which is relatively compact for the uniform norm according to (13).
Thus K(C) ∩K ′ is relatively compact for the space of continuous functions
of finite α-variation with the ‖ · ‖Vβ -norm for any β > α > 2.

The similar reasoning is easily carried to deal with the second level.

Hypothesis 1. The elements of the sequence (Xε)ε>0 belong to Ξ(λ, Λ) and
converge in distribution to X0 in Ξ(λ, Λ) in (C([0, T ];RN), ‖ · ‖∞) under Px

for any starting point x.

Remark 1. Under Hypothesis 1 and Proposition 2, it follows immediately
from the Prohorov theorem [Bil68] that (Xε)ε>0 converges to X0 in Vα for
any α > 2: As the convergence in Vα implies the uniform convergence, any
possible limit of (Xε)ε>0 in Vα is necessarily X0. Note that however, Vα is
not separable and thus the convergence of (Xε)ε>0 in Vα does not necessarily
imply its tightness.

Remark 2. Given a sequence (Xε)ε>0 of processes in Ξ(λ, Λ) corresponding
to a sequence of coefficients (aε, bε), it is generally true that any cluster point
X0 belongs to Ξ(λ′, Λ′) for some 0 < λ′ < Λ′. At least, this is always true if
bε = 0 for any ε > 0. For that, one has to combine the results of [Mar79] and
[Roz96b] for example. This means that Hypothesis 1 is not stringent at all.

Under Hypothesis 1 and in view of Proposition 2, a natural question is:

Is the limit of (K(Xε))ε>0 equal to K(X0)? (Q)

As will we show it later in Section 3.5, the answer may depend whether
we consider K(Xε) as Itô or Stratonovich integrals. In addition, we give in
Section 3.3 a sufficient condition that allows one to give a positive answer to
this question, but we show in Section 3.5 that it is not a necessary condition.

3.2 Rough paths and geometric rough paths

The iterated integrals K(Xε) denote either Itô or Stratonovich type integrals.
We will see that our answer to (Q) may depend on the type of integral we
consider: for this, we need to explain the difference between the rough paths
that are geometric and those which are not.

11



For this, we follow the way of seeing rough paths as paths with values
in a non-commutative group, as introduced first in [FV06a] (see also the
introductory article [Lej06b]). Basically, a rough path is a path with values

in the subspace T
(2)
1 (RN) of the truncated tensor space

T(2)(RN) = R⊕ (RN)⊕ (RN ⊗ RN)

whose projection on R is equal to 1. The space T(2)(RN) is a Lie group with
respect to the tensor product ⊗ (note that all the terms of type x ⊗ y ⊗ z
with x, y, z ∈ RN vanish and 0 ⊗ x = x by convention) and an associative
algebra with the addition + and the tensor product ⊗.

Given a norm on RN ⊗ RN such that |x⊗ y| ≤ |x| · |y| for x, y ∈ RN , we

introduce ‖x‖ = max{|x1|,
√
|x2|} for x ∈ T

(2)
1 (RN).

Let us consider a non-commutative group (HN ,¢) group of dimension
N(N + 1)/2 with basis {e1, . . . , ed, ei,j}1=i<j=N and the operation

( ∑
1≤i<j≤N

xiei + xi,jei,j

)
¢

( ∑
1≤i<j≤N

yiei + yi,jei,j

)

=
∑

1≤i<j≤N

(xi + yi)ei +

(
xi,j + yi,j +

1

2
(xiyj − xjxi)

)
ei,j.

This group is a Carnot group of step 2, as it may be decomposed as HN =
RN ⊕ [RN ,RN ] with [ei, ej] = ei,j and [ek, ei,j] = [ek,`, ei,j] = 0 for the Lie
bracket [x, y] = x ¢ y − y ¢ x (see for example [Bau04]). If N = 2, then
this group is the Heisenberg group. The distance we use on HN is the sub-
Riemannian metric (see [Mon02, Bau04, CD+07] for example), which is

d(x, y) = inf
γ:[0,1]→RN

Φ(γ)(0)=0, Φ(γ)(1)=(−x)�y
γ Lipschitz

∫ 1

0

|γ̇(s)| ds

with Φ(γ)(t) =
N∑

i=1

(γi(t)− γi(0))ei

+
∑

1≤i<j≤N

(∫ t

0

(γi(s)− γi(0)) dγj(s)−
∫ t

0

(γj(s)− γj(0)) dγi(s)

)
ei,j.

Using the sub-Riemannian metric in the context of rough paths was intro-
duced first by P. Friz and N. Victoir in [FV06a] (see also [Lej06b] for a
presentation of this point of view).
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A geometric rough path is a path with values in the sub-group G(RN) of

(T
(2)
1 (RN),⊗), which is the image ofHN ⊂ T(2)(RN) by the (non-commutative)

exponential mapping exp(x) = 1 + x + 1
2
x⊗ x.

Any geometric rough path X = (X1,X2) with X1
t ∈ RN and X2

t ∈ RN ⊗
RN can be identified as a path Y with values in HN by setting Y = log(X)
with

log(x) =
N∑

i=1

x1,iei+
1

2

∑
1≤i<j≤N

(x2,i,j−x2,j,i)ei,j for x = (1,x1,x2) ∈ T
(2)
1 (RN).

Of course, log is the inverse of the exponential application exp.
A smooth rough path X = (X1,X2) is made of a piecewise smooth path

X1 = X living in RN and X2,i,j
t =

∫ t

0
(X i

s − X i
0) dXj

s . Any geometric rough
path of finite α-variation can be approximated by a sequence of smooth rough
paths with respect to the topology generated by the β-variation, β > α (see
[FV06a, Lej06b]).

The difference between two geometric rough paths of finite α-variation
lying above the same path necessarily comes from an anti-symmetric path of
finite α/2-variation.

We then introduce the following sub-spaces of RN ⊗ RN :

Anti(RN) =
{

x ∈ RN ⊗ RN xi,j = −xj,i, i, j = 1, . . . , N
}

and
Sym(RN) =

{
x ∈ RN ⊗ RN xi,j = xj,i, i, j = 1, . . . , N

}
.

Lemma 1 (Lemma 5.4.1 in [LQ02]). If Y is a geometric rough path of finite
α-variation and ψ : [0, T ] → RN ⊗ RN is a path of finite α/2-variation with
values in Anti(RN), then X = Y + ψ is a geometric rough path of finite
α-variation. Conversely, if X and Y are geometric rough paths lying above
a path X, then there exists a such a function ψ for which X = Y + ψ.

As noted first in [LV06], the difference between a geometric rough path
and a non-geometric one lies in the presence of a symmetric term.

Lemma 2 ([LV06]). Any rough path X of finite α-variation, α ∈ [2, 3), can
be decomposed as Xt = Yt + ψt, where Y is a geometric rough path of finite
α-variation and and ψ is a path of finite α/2-variation with values in the
space Sym(RN ⊗ RN).

Let us note that in the previous Lemmas 2 and 1, X−1
s ⊗ Xt = Y−1

s ⊗
Yt + ψt − ψs for any 0 ≤ s ≤ t ≤ T .

13



Combining Lemma 2 and 1 for a given rough path X of finite α-variation
lying above a path X : [0, T ] → RN , we get a complete description of any
rough path Y lying above X: there exist two paths ψ and ϕ of finite α/2-
variations that are respectively in Anti(RN) and Sym(RN) and such that
Y = X + ψ + ϕ.

In the case of a rough path X = (X, K(X)) generated by a divergence
form operator, we have seen that X is a geometric rough path if we choose
for K(X) the Stratonovich integrals. But this is not a geometric one if we
choose K(X) to be of Itô type. The difference between these two cases lies
in the symmetric term −1

2
〈M〉, since

∫ t

0

(X i
s −X i

0) dXj
s =

∫ t

0

(X i
s −X i

0) ◦ dXj
s −

1

2
〈M i,M j〉t, t ≥ 0, (14)

where M is the martingale part for X.
Note that however,

log(Xt) = X i
tei +

1

2

∑
1≤i<j≤N

(Ki,j
0,t(X)−Kj,i

0,t(X))ei,j

so that it does not make any difference to construct the geometric rough path
log(X) as a path living in the group HN from the choice of Itô or Stratonovich
integrals for the K i,j(X)’s.

Let us come back to our question (Q). First, let us note that in view
of our previous decomposition results, any limit Y of (Xε, K(Xε))ε>0 can
be written Y = X0 + ψ + ϕ, where X0 = (X0, K(X0)), ψ (resp. ϕ) is an
anti-symmetric (resp. symmetric) path from [0, T ] to RN ⊗RN of finite α/2-
variation. The effect of ϕ and ψ on differential equations and integrals driven
by X0 is to add a drift term (see [LQ02, Lej06b]).

If we use for K(Xε) (ε ≥ 0) the Stratonovich integrals, then necessarily,
in view of Lemma 1 and the results from [LV06], the symmetric path ϕ
vanishes since the limit of geometric rough paths is necessarily a geometric
rough path.

In order to deal with the Itô case, we may study the Stratonovich case
and also the convergence of the brackets 〈M ε〉 of the martingale part M ε

of Xε.
In the case of Stratonovich integrals, we believe that the answer to (Q)

is negative in general. However, we have been unable to exhibit a counter-
example. Yet in [Lej02, LL06], we have shown using the homogenization
theory that the Lévy area of the limit of SDEs can be different from the
Lévy area of the limit. As we will see it in Section 3.5, these results applied
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to divergence form operators leads to the right convergence of the Lévy areas,
unless we drop the assumption that the drifts are uniformly bounded.

In the Itô case, our homogenization results allows us to give a negative
answer, as the limit of the brackets of the martingale parts of the Xε’s will
be different from the brackets of the limit.

Thus, we give below in Theorem 1 a sufficient condition to ensure a
positive answer to our question in both Itô and Stratonovich cases. Yet, the
homogenization result proves that this is not a sufficient condition.

3.3 Condition UTD

Let (Πn)n∈N be a family of deterministic partitions of [0, T ] whose meshes
decrease to 0 as n →∞.

Definition 2 (Condition UTD [RS98]). A family of Dirichlet processes
(Xε,P) (along (Πn)n∈N) with decomposition Xε

t = Xε
0 +M ε

t +Aε
t for t ∈ [0, T ]

satisfies Condition UTD if (〈M ε〉T )ε>0 and (supt∈[0,T ] |Aε
t |)ε>0 are tight, and

for any C > 0,
sup
ε>0
P [ Q(Aε, Πn) > C ] −−−−→

n→+∞
0.

Condition UTD is a natural generalization of Condition UCV for semi-
martingales (See [KP96] for a review of this notion). The following Proposi-
tion is a “specialization” of Theorem 1.1, p. 84 in [RS98] to processes gener-
ated by divergence form operators.

Proposition 3 ([RS98]). Let (Xε)ε>0 and X0 be as in Hypothesis 1. We as-
sume that (Xε)ε>0 satisfies Condition UTD under Px. The decomposition of
Xε as a Dirichlet process is written x+M ε+Aε. Then (M ε, Aε)ε>0 converges
in distribution to (M0, A0), where X0 = x + M0 + A0 is the decomposition
of X0 as a Dirichlet process under Px.

Remark 3. It follows from Definition 1 that M0 and A0 are both (F0
t )t≥0-

adapted. Condition UTD (that does not necessarily concern processes gener-
ated by divergence form operators) was introduced in [CS99] where a similar
result is given but without ensuring that M0 and A0 are (F0

t )t≥0-adapted. It
is shown in [RS98] that the limit (M0, A0) of (M ε, Aε)ε>0 is really adapted
to the filtration generated by X0 and may then be identified with the de-
composition of X0 as a Dirichlet process given in Section 2.

Remark 4. Let us note that Condition UTD also implies that (M ε, 〈M ε〉)ε>0

converges in distribution to (M0, 〈M0〉) (see for example [KP96, Theorem 7.12,
p. 30]). If the limit of (〈M ε〉)ε>0 is different from 〈M0〉, then (Xε)ε>0 does
not satisfy Condition UTD. This can be an easy way to identify the sequences
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(Xε)ε>0 for which more work has to be done just by studying the convergence
of the brackets of their martingales parts.

Remark 5. From the proof of Theorem 2.2 in [RS98], we see that Xε satisfies
Condition UTD under Px for any x ∈ RN if for any compact K and ϕi is
a function with compact support of RN such that ϕi(x) = xi on K, αGε

αϕi

converges uniformly in ε to ϕi in H1(K) as α → ∞ for i = 1, . . . , N , where
Gε

α is the resolvent operator (α−Lε)−1 and Lε is the infinitesimal generator
of Lε. This is equivalent to the uniform convergence of LεGε

αϕi to 0 in H1(K)
uniformly in ε as α →∞.

Lemma 3. Let g and ϕ be some functions in Υ∞(RN) and (Xε)ε>0 a se-
quences of processes in Ξ(λ, Λ). Then for all x ∈ RN and all ε > 0,
Ln(t; Xε, g, ϕ) converges in probability under Px to L(t; Xε, g, ϕ) uniformly
in t ∈ [0, T ]. If in addition, (g(Xε))ε>0 satisfies Condition UTD, then for
any δ > 0 and any C > 0, there exists n0 large enough such that

sup
ε>0
Px

[
sup

t∈[0,T ]

|Ln(t; Xε, g, ϕ)− Ln(t; Xε, g, ϕ)| ≥ C

]
≤ δ

for any n ≥ n0 and any x ∈ RN .
These statements are true both for the Stratonovich and the Itô integrals.

Proof. Let X be in Ξ(λ, Λ). For R > 0, let us denote by Φ(x,R) the event
{supt∈[0,T ] |Xt − x| ≥ R}. One knows from Lemma II.1.12 in [Str88] that
there exist some constants K and K ′ that depend only on λ, Λ, T and the
dimension N such that

Px [ Φ(x,R) ] ≤ K exp
(−K ′R2

)
. (15)

Hence, for any C > 0, t ∈ [0, T ] and R > 0,

Px

[
sup

t∈[0,T ]

|Ln(t; X, g, ϕ)− L(t; X, g, ϕ)| ≥ C

]
≤ Px [ Φ(x,R) ]

+ Px

[
sup

t∈[0,T ]

|Ln(t; X, g̃, ϕ̃)− L(t; X, g̃, ϕ̃)| ≥ C; Φ(x,R)c

]
,

where g̃ (resp. ϕ̃) is any continuous function equal to g (resp. ϕ) on the ball
of radius R around x.

Thus, using this localization argument, one may assume that g and ϕ are
bounded on RN when x is fixed.
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To estimate the speed of convergence of Ln(·; X, g, ϕ) to L(·; X, g, ϕ), and
in view of (8), we have only to consider the speed of convergence to 0 of

In
1 (t) =

∫ t

0

g(Xr) dMϕ
r −

kn(t)−1∑
i=1

g(Xtni
)(Mϕ

tni+1
−Mϕ

tni
),

In
2 (t) =

∫ t

0

g(Xr) dM
ϕ

r −
kn(t)−1∑

i=1

g(X t−tni
)(M

ϕ

t−ti
−M

ϕ

t−tni+1
),

In
3 (t) =

∫ t

0

g(Xr) dV ϕ
r −

kn(t)−1∑
i=1

g(Xtni
)(V ϕ

tni+1
− V ϕ

tni
),

In
4 (t) = 〈g(X),M

ϕ〉t −
kn(t)−1∑

i=1

(g(X t−tni+1
)− g(X t−tni

))(M
ϕ

t−tni+1
−M

ϕ

t−tni
)

and, in order to deal with the Itô integral,

In
5 (t) = 〈g(X),Mϕ〉t −

kn(t)−1∑
i=1

(g(Xtni+1
)− g(Xtni

))(Mϕ
tni+1

−Mϕ
tni

),

where 0 ≤ tn1 ≤ · · · ≤ tnkn(t) ≤ t are the points of Πn ∩ [0, t].

We have seen in [Lej06a, Lemma 3] that for any β < 1/2, there exists some
random variable Cβ such that Ex [ Cβ ] is finite and depends only on (λ, Λ, β)
and such that X is β-Hölder continuous with constant Cβ (and so is X). In
addition, since this relies on the Kolmogorov Lemma [KS91, Theorem 2.1,
p. 25], it is easily obtained that Ex

[
C2

β

]
is also finite and depends only on

(λ, Λ, β). Since g has a Lipschitz continuous version (this result follows from
the Morrey theorem [A75, Theorem 5.4, p. 97]), we get that g(X) and g(X)
are β-Hölder continuous with constant Cβ‖∇g‖∞ when this version of g is
used. As

〈Mϕ,Mϕ〉t =

∫ t

0

a∇ϕ · ∇ϕ(Xr) dr ≤ Λt‖∇ϕ‖2
∞ for any t ≥ 0,

the Burkholder-Davis-Gundy inequality implies that for some constant K,

Ex

[
sup

t∈[0,T ]

In
1 (t)2

]
≤ KEx

[ ∫ T

0

(g(Xr)− g(Xtni
))21r∈[tni ,tni+1)

d〈Mϕ,Mϕ〉r
]

≤ KTΛ‖∇ϕ‖2
∞‖∇g‖2

∞Ex

[
C2

β

]
(mesh Πn)β.

Also 〈Mϕ
,M

ϕ〉t ≤ Λt‖∇ϕ‖2
∞ for any t ≥ 0 and similarly,

Ex

[
sup

t∈[0,T ]

In
2 (t)2

]
≤ KTΛ‖∇ϕ‖2

∞‖∇g‖2
∞Ex

[
C2

β

]
(mesh Πn)β.
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As seen in [Lej06a], the term V ϕ is of finite variation and Ex

[
Var1,[0,T ] V

ϕ
]

is finite and bounded by a constant depending only on λ, Λ and ‖∇ϕ‖∞.
Besides, In

3 (t) =
∫ t

0
Zn

r dV ϕ
r with Zn

r = g(Xr) − g(Xtni
) when r ∈ [tni , t

n
i+1).

Hence, Ex

[
supr∈[0,T ] |Zn

r |
] ≤ Ex [ Cβ ] ‖∇g‖∞(mesh Πn)β. Hence, for any

C > 0 and any K > 0,

Px

[
sup

t∈[0,T ]

|In
3 (t)| > C

]
≤ Px

[
sup

t∈[0,T ]

|Zn
r |Var1,[0,T ] V

ϕ > C

]

≤ Px

[
sup

t∈[0,T ]

|Zn
r | > K

]
+ Px

[
Var1,[0,T ] V

ϕ >
C

K

]

≤ ‖∇g‖∞Ex [ Cβ ]

K
(mesh Πn)β +

K

C
Ex

[
Var1,[0,T ] V

ϕ
]
.

For any ε > 0 and any C > 0, one may first choose K small enough such
that KC−1Ex

[
Var1,[0,T ] V

ϕ
]

< ε/2. Then, we choose n0 large enough such
that for any n ≥ n0, ‖∇g‖∞K−1Ex [ Cβ ] (mesh Πn)β ≤ ε/2 for any n ≥ n0.
It yields that Px

[
supt∈[0,T ] |In

3 (t)| > C
] ≤ ε for any n ≥ n0 and and n0 may

be chosen in function of mesh(Πn), β, ‖∇g‖∞, ‖∇ϕ‖∞, λ, Λ, and of course, ε
and C.

We now estimate of the speed of convergence of In
4 to 0 in probability.

It is easily seen that for s ∈ [0, T ], g(Xs) = g(X0) + 1
2
M

g

s + 1
2
(M g

T−s −
M g

t )+V g
T−s−V g

T . Since V g is of integrable variation and g(Xt) is a Dirichlet
process,

B
g

t = g(X0) + V g
T−t − V g

T −
1

2
M

g

t +
1

2
M g

T−t −
1

2
M g

T

is of zero quadratic variation along (Π
n
)n∈N where Π

n
= {T − t t ∈ Πn }.

Indeed, it is the term t ∈ [0, T ] 7→ M g
t − M

g

T−t which is of zero-quadratic
variation along (Πn)n∈N.

To simplify the notations, we set for two processes X and Y ,

Qn
t (X, Y ) =

kn(t)−1∑
i=1

(XT−tni+1
−XT−tni

)(YT−tni+1
− YT−tni

).

Using the previous decomposition of g(X),

Qn
t (g(X), M

ϕ
) = Qn

t (M
g
,M

ϕ
) + Qn

t (B
g
, M

ϕ
),

and 〈g(X),M
ϕ〉 = 〈M g

, M
ϕ〉 almost surely.

As seen in Lemma 6 in Appendix A, the family (t 7→ 〈Mϕ〉t−
∑kn(t)−1

i=1 (M
ϕ

tni+1
−

M
ϕ

tni
)2)n∈N converges in probability to 0 uniformly in t ∈ [0, T ] at a speed that
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depends only mesh Πn, ‖∇ϕ‖∞ and Λ, since 〈Mϕ〉t−〈Mϕ〉s ≤ Λ(t−s)‖∇ϕ‖2
∞

for any 0 ≤ s ≤ t.
Hence, it remains to study the speed of convergence of Qn

t (B
g
, M

ϕ
) to 0.

From the Cauchy-Schwarz inequality and since t 7→ Qn
t (B

g
) and t 7→

Qn
t (M

ϕ
) are increasing,

sup
t∈[0,T ]

|Qn
t (B

g
, M

ϕ
)| ≤ Qn

T (B
g
)1/2Qn

T (M
ϕ
)1/2

with Qn
t (B

g
) = Qn

t (B
g
, B

g
) and Qn

t (M
ϕ
) = Qn

t (M
ϕ
, M

ϕ
).

As for any a, b, η > 0,
√

ab ≤ ηa + η−1b, for any C > 0,

Px

[
sup

t∈[0,T ]

Qn
t (B

g
,M

ϕ
) > C

]
≤ Px

[
Qn

T (B
g
) ≥ C/η

]
+Px

[
Qn

T (M
ϕ
) ≥ ηC

]

≤ Px

[
Qn

T (B
g
) ≥ C/η

]
+ Px

[ |Qn
T (M

ϕ
)− 〈Mϕ〉T | ≥ ηC/2

]

+ Px

[ 〈Mϕ〉T ≥ ηC/2
]
.

In addition Px

[ 〈Mϕ〉T ≥ ηC/2
] ≤ Px [ TΛ‖∇ϕ‖2

∞ ≥ ηC/2 ]. We choose first

η and then n0 large enough so that Px

[ |Qn
T (M

ϕ
)− 〈Mϕ〉T | ≥ ηC/2

] ≤ ε/2
and

Px

[
Qn

T (B
g
) ≥ C/η

] ≤ ε/2 (16)

for any n ≥ n0. The last convergence holds since B
g

is of zero quadratic
variation along (Π

n
)n∈N.

The convergence of In
5 (t) to 0 is proved using similar computations by

replacing B
g

with Bg
t = g(x)− 1

2
M g

t + 1
2
(M

g

T−t−M
g

T )+V g
t of zero quadratic

variation along (Πn)n∈N.
We deduce that Ln(t; X, g, ϕ) converges to L(t; X, g, ϕ) in probability

uniformly in t ∈ [0, T ]. Moreover, except a priori for the convergence of
Qn

t (B
g
) and Qn

t (Bg) to 0, the rate of convergence depends only on λ, Λ, T ,
‖∇g‖∞, ‖∇ϕ‖∞ and mesh(Πn).

We now apply this result on Xε. As (g(Xε))ε>0 satisfies Condition UTD,
it is easily obtained that (g(X

ε
))ε>0 also satisfies Condition UTD, but along

the family of partitions (Π
n
)n∈N, where Π

n
is constructed from Πn by chang-

ing any point t in Πn into T − t. Using Condition UTD in (16) with B
g

re-
placed by the zero-quadratic variation term B

ε,g
of g(X

ε
) and Bε,g of g(Xε),

one sees that the speed of convergence of Ln(·; Xε, g, ϕ) to L(·; Xε, g, ϕ). is
uniform in ε.

3.4 A criterion ensuring the convergence

The goal of this section is to prove the following convergence theorem. Of
course, its interest lies in the continuity result of the integrals and the solu-
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tions of the differential equations driven by rough paths: See Theorem 5.5.2,
p. 143 and Corollary 6.3.2, p. 179 in [LQ02].

Theorem 1. If (Xε)ε>0 satisfies Hypothesis 1 and Condition UTD, then
(Xε, K(Xε))ε>0 converges in distribution under Px to (X0, K(X0)) in Vα for
any α > 2 for any starting point x.

Remark 6. We will see below in Section 3.5 that Condition UTD is sufficient
but not necessary.

Before proving this theorem, let us state a useful application.

Corollary 1. Let (a0, b0) ∈ Ξcoeff(λ, Λ) and (aε, bε) ∈ Ξcoeff(λ, Λ) such that
(aε, bε) converges almost everywhere to (a, b). For ε ≥ 0, let Xε be the
process corresponding to (aε, bε). Then (Xε, K(Xε)) converges in distribution
under Px to (X0, K(X0)) in Vα for any α ≥ 2 for any starting point x.

Proof. It is well known that the convergence of (aε, bε) to (a0, b0) ensures
the convergence in distribution of Xε to X0 under Px for any x ∈ RN (see
[Str88, Roz96b] for example).

If ϕ is a smooth function with compact support,then the core of the proof
of Theorem 2.2 in [RS98] is to establish that (ϕ(Xε))ε>0 satisfies Condition
UTD (see in particular (2.33) in [RS98, p. 103]).

With a localization argument, this proves that (Xε)ε>0 also satisfies Con-
dition UTD.

For this, let us note first that, if M ε = (M1,ε, . . . , MN,ε) is the martingale
part of Xε, then 〈M i,ε〉T ≤ ΛT for i = 1, . . . , N and then (〈M ε〉T )ε>0 is tight.

Now, as in the proof of Lemma 3, let us set Φε(R) = {supt∈[0,T ] |Xε
t −

x| ≥ R} for R > 0, and choose ϕ(x) such that ϕ(x) = xi on the ball
{y ∈ RN |y − x| ≤ R}. Let us denote AR,ε (resp. Aε) the term of zero-
quadratic variation of ϕ(Xε) (resp. Xε). Then

Px

[
sup

t∈[0,T ]

Aε > C

]
≤ Px

[
sup

t∈[0,T ]

Aε > C; Φε(R)c

]
+ Px [ Φε(R) ]

On Φε(R), Aε = AR,ε, so that

Px

[
sup

t∈[0,T ]

Aε > C

]
≤ Px

[
sup

t∈[0,T ]

AR,ε > C

]
+ Px [ Φε(R) ]

With (15) (which is uniform in ε), it is easily deduced that (supt∈[0,T ] A
ε)ε>0

is tight. The same computation with supt∈[0,T ](A
ε) replaced by Q(Aε, Πn)

proves that (Xε)ε>0 satisfies Condition UTD.
Theorem 1 allows us to conclude.
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To prove Theorem 1, let us remark first that in the Stratonovich or the
Itô case, for i, j = 1, . . . , N ,

K i,j
0,t(X

ε) = L(t; Xε, χi, χj) with χi(x) = xi.

In addition, for all ε ≥ 0,

K i,j
s,t(X

ε) = K i,j
0,t(X

ε)−Ki,j
0,s(X

ε)− (X i
s−X i

0)(X
j
t −Xj

s ), ∀(s, t) ∈ ∆+, (17)

where ∆+ = { (s, t) ∈ [0, T ]2 0 ≤ s ≤ t ≤ T }.
Theorem 1 is proved using Lemma 3 and the following Lemma.

Lemma 4. If for x ∈ RN , any t ∈ [0, T ], i, j = 1, . . . , N and any constant
C > 0,

lim sup
n→∞

sup
ε>0
Px [ |Ln(t; Xε, χi, χj)− L(t; Xε, χi, χj)| ≥ C ] = 0 (18)

then (Xε, K(Xε)) converges in distribution under Px to (X0, K(X0)) as ε →
0 in Vα for any α > 2.

Proof. As for each integer n and each t ∈ [0, T ], (Xε,Ln(t; Xε, χi, χj)) con-
verges in distribution to (X0, Ln(t; X0, χi, χj)), Condition (18) together with
Theorem 4.2 in [Bil68, p. 25] allow us to assert that (Xε, K i,j

0,t(X
ε)) with

Ki,j
0,t(X

ε) = L(t; Xε, χi, χj) converges in distribution to (X0, Ki,j
0,t(X

0)). With

(17), (Xε, K i,j
s,t(X

ε)) converges in distribution to (X0, K i,j
s,t(X

0)) for all (s, t) ∈
∆+. The tightness of (Xε, K(Xε))ε>0 in Vα (see Proposition 2) and the con-
tinuity of (s, t) 7→ Ks,t(X

0) allows us to uniquely identify any possible limit
of (Xε, K(Xε))ε>0 with (X0, K(X0)).

3.5 Examples from the homogenization theory

Let us consider (a, b) in Ξcoeff(λ, Λ) such that b = 0 and the diffusion coef-
ficient a is smooth and 1-periodic. Set aε(x) = a(x/ε) and bε = 0. For any
ε > 0, (aε, bε) belongs to Ξcoeff(λ, Λ) and gives rise to a stochastic process Xε

which is solution to the SDE

Xε
t = x +

∫ t

0

σ(Xε
s/ε) dBε

s +
1

2ε

∫ t

0

∇a(Xε
s/ε) ds, (19)

Px-almost surely, where Bε is a Brownian motion. Using a scaling argument,
one gets that Xε is equal to distribution to εXt/ε under Px/ε, where X is
process corresponding to (a, 0).
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3.5.1 Convergence of the process to a non-standard Brownian mo-
tion

The homogenization theory aims to study the asymptotic limit of Xε. In the
case of smooth coefficients, it is standard that Xε converges to some non-
standard Brownian motion, whose diffusion coefficient “catches” the large-
scale properties of the behavior of X: see for example the books [BPL78,
JKO94]. The case of processes generated by a divergence form operators,
which we present here with smooth coefficients, can be carried without any
regularity assumptions, as shown in [Lej00, Lej01].

Let us characterize the constant matrix σ that is such that (Xε)ε>0 con-
verges to σB for a N -dimensional Brownian motion B.

For i = 1, . . . , N , let vi be the variational solution to

∑

k,j=1,...,N

∂

∂xk

(
ak,j(x)

∂vi(x)

∂xj

)
= −

N∑
j=1

ai,j(x)

∂xj

, vi periodic.

Thanks to the Fredholm alternative, this problem has a unique solution which
is, since a is smooth, a classical solution. The functions vi are called correc-
tors. With the Itô formula applied to x 7→ x + vi(x) and an ergodic theorem
applied to the projection of X on the torus (whose invariant measure is the
Lebesgue measure on [0, 1]N), one gets that for any t ≥ 0,

Xε
t + (vε

1(X
ε
t ), . . . , v

ε
N(Xε

t )) = x + (vε
1(x), . . . , vε

N(x)) + Rε
t ,

where, for i = 1, . . . , N , vε
i (x) = εvi(x/ε) (which decreases uniformly to 0)

and Rε is a martingale such that for i, j = 1, . . . , N ,

〈Ri,ε, Rj,ε〉t
dist.
=

N∑

k,`=1

ε2

∫ t/ε2

0

ak,`(Xs)

(
δi,k +

∂vi(Xs)

∂xk

) (
δj,` +

∂vj(Xs)

∂x`

)
ds.

With the ergodic theorem, for any t ≥ 0, 〈Ri,ε, Rj,ε〉t converges almost surely
under Px to taeff with

aeff
i,j

def.
=

N∑

k,`=1

∫

[0,1]N
ak,`(x)

(
δi,k +

∂vi(x)

∂xk

)(
δj,` +

∂vj(x)

∂x`

)
dx (20)

for i, j = 1, . . . , N . It follows from a Central Limit Theorem on the mar-
tingales [EK86] that there exists a N -dimensional Brownian motion B such
that Rε converges in distribution to σB with σσT = aeff . The coefficient aeff

is called an effective coefficient. It follows that Xε converges in distribution
in the space of continuous functions to X = σB.
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3.5.2 Convergence of the iterated integrals in the Stratonovich
case

In [Lej02] and [LL06], we have studied the convergence of (Xε, K(Xε))ε>0

for Xε equal to εX·/ε2 , where X is the solution of some SDE with periodic
coefficients. There, we have proved that the Lévy area of the limit may be
different from the limits of the Lévy area. The difference lies in a function
of type t 7→ ct, where c is an anti-symmetric matrix seen as an element of
RN ⊗ RN .

In our context, when we use for Xε the solution to (19), it follows from a
short computation performed on the formula given in Proposition 5 in [Lej02]
that in the Stratonovich case, (Xε, K(Xε)) converges in distribution in Vα to
(X, K(X)), where X is given above (let us recall that the Lévy area of Xε is
just the anti-symmetric part of matrix values functions (Ki,j(X))i,j=1,...,N).

Remark 7. There is an error in the statement of Proposition 5 in [Lej02],
although the proof is correct. The article [LL06] presents a correct statement.

Now, we drop the assumption that a is smooth, so that Xε is the process

generated by
∑N

i,j=1
1
2

∂
∂xi

(
ai,j(·/ε) ∂

∂xj

)
where a is measurable, uniformly el-

liptic, bounded and 1-periodic. We denote by X its limit which equal to σB
as above.

Although the homogenization results for Xε holds without any smooth-
ness assumption on a, we have assumed that a is smooth in order to apply the
results in [Lej02]. The proof given in this article relies on the Itô stochastic
calculus and the ergodic theorem, as in Section 3.5.1. Using the recent article
[FV06b] from P. Friz and N. Victoir as well as analytical tools, we can extend
the previous convergence results to the case of discontinuous coefficients.

Theorem 2. Let K(Xε) (resp. K(X)) denotes the iterated integrals of Xε

(resp. X) constructed with the Stratonovich integrals. Then (Xε, K(Xε))
converges in α-variation to (X, K(X)) for any α > 2 under Px for any
x ∈ RN .

Proof. In this proof, we use the notations introduced in Section 3.2.
Let Di be the differential operator

Di =
∂

∂xi

+
1

2

∑
1≤j<i≤N

xj ∂

∂xj,i

− 1

2

∑
1≤i<j≤N

xj ∂

∂xi,j

,

where ∂
∂xi,j

is the derivative in the direction ei,j. We denote by H1(HN) the

completion of the space of smooth functions with compact support on HN
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with respect to the norm

(∫

HN

|f(x)|2m(dx) +
N∑

i=1

∫

HN

|Dif(x)|2m(dx)

)1/2

,

where m(dx) is the Haar measure on HN .
In [FV06b], P. Friz and N. Victoir consider the bilinear form

E(f, g) =
N∑

i,j=1

∫

HN

ai,j(x)Dif(x)Djg(x)m(dx), f, g ∈ H1(HN),

when the coefficient a is a measurable function from HN to the space of
symmetric matrices that are uniformly elliptic and bounded. To this bilin-
ear form corresponds a semi-group (Pt)t>0 that maps L1(HN) into L∞(HN).
The semi-group (Pt)t>0 has a density p(t, x, y) that satisfies a Gaussian type
estimate:

p(t, x, y) ≤ C1 exp

(
−d(x, y)2

C2t

)
, (21)

where C1 and C2 depend only on λ and Λ and d(x, y) is the sub-Riemannian
distance between x and y defined in Section 3.2. From this, it is easily
obtained that the semi-group (Pt)t>0 is a Feller semi-group, and then that it
generates a diffusion process X with values in HN .

As they proved a theorem of type Wong-Zakai for X along the dyadic
partition using the piecewise linear interpolation, the rough path generated
by the Dirichlet form E is the same as (X, K(X)) — up to the application of

the exponential map from HN to T
(2)
1 (RN) — where we use the Stratonovich

integral for K(X).
Now, let (P ε

t )t>0 be the semi-groups associated to the Dirichlet forms
Eε(f, g) =

∑N
i,j=1

∫
HN ai,j(x/ε)Dif(x)Djg(x)m(dx), where a is 1-periodic. It

has been proved in [BBJR95, Corollary 3.2] that for any f in L2(HN) and
any t ≥ 0, P ε

t f converges in L2(HN) to P tf , where (P t)t>0 is the semi-group
generated by E(f, g) =

∑N
i,j=1

∫
HN aeff

i,jDif(x)Djg(x)m(dx), for aeff defined

in (20) when the coefficient a is only a function of RN and not of HN , which
is our case.

Using the Gaussian bound on (21), we obtain easily that for a function f
on HN that vanishes at infinity, then P ε

t f converges uniformly to P tf , when
using integral representations of the semi-groups (P ε

t )t>0 and (P t)t>0 with
their transition density functions. It follows then from standard results (see
for example Theorem 2.5 in [EK86] or [Roz96b] for the case of divergence-
form operators) that the process generated by (P ε

t )t>0 converges uniformly in
distribution to the process generated by (P t)t>0 under Px for any x ∈ RN .
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Remark 8. In [FV06b], P. Friz and N. Victoir actually deal with the (1/α)-
Hölder norm, instead of the α-variation norm, which gives more precise re-
sults. In a forthcoming article, we will study the relationship between the
constructions and results presented here and in [Lej06a] and those in [FV06b].

Let us remark that if we drop the assumption that the drift b is uniformly
bounded, it is easy to consider a sequence of processes with a different Lévy
area. As noted at the end of Introduction of [Lej06a], our theory may be
applied to the case of time-homogeneous coefficients. For example, one has
only to consider the family of the two-dimensional SDEs

Xε
t = Bt + ε

[
cos(t/ε2)
sin(t/ε2)

]
.

The infinitesimal generator of Xε is then, with the complex notations, 1
2
4+

iε−1eit/ε2∇· and c =
[

0 1/2
−1/2 0

]
(See [LL06]).

3.5.3 Convergence of the brackets and convergence of the iterated
integrals in the Itô case

Although the homogenization result does not allow us to give a negative an-
swer to our question (Q) in the case of Stratonovich integrals, this example
is interesting because it shows that Condition UTD is not a necessary con-
dition. In addition, it may give a negative answer to (Q) in the case where
Itô integrals are used for K(Xε).

Lemma 5. The martingale part M ε of Xε converges to ρB
′
, where B

′
is a

N-dimensional Brownian motion and ρ is a symmetric N ×N-matrix with

ρρT = a =

∫

[0,1]N
a(x) dx,

which is in general different from aeff given by (20). In this case, then Xε

does not satisfy condition UTD, and 〈M ε〉 does not converge to 〈X〉.
Proof. Let us remark that the brackets 〈M ε〉 of M ε are equal in distribution

to t 7→ ε2
∫ t/ε2

0
a(Xs) ds. As the projection of X1 on [0, 1]N is ergodic with

respect to the Lebesgue measure and a is 1-periodic, 〈M ε〉 converge almost
surely uniformly on [0, T ] to t 7→ ta. The details of the convergence may be
found for example in [Lej01]. The latter quantity differs in general from aeff ,
and then (〈M ε〉)ε>0 does not necessarily converge to the bracket of σB which
is equal to t 7→ taeff .

If aeff 6= a, then Remark 4 allows us to conclude.
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Theorem 3. Let K(Xε) (resp. K(X)) denotes the iterated integrals of Xε

(resp. X) constructed with the Stratonovich integrals. Then for any x ∈ RN ,
(Xε, K(Xε)) converges in distribution under Px in α-variation for any α > 2

to (X, K̂(X)) under Px for any x ∈ Rd, where

K̂0,t(X) = K0,t(X) +
t

2
(aeff − a), t ≥ 0.

Proof. As that K(Xε) converges to K(X) in the Stratonovich case and 〈M ε〉t
converges in probability to at for any t ≥ 0, this proves with (14) that in the

Itô case, K0,t(X
ε) converges to K̂0,t(X) for any t ≥ 0. The convergence of

〈M ε〉 to t 7→ ta also holds in α-variation in RN × RN for any α > 1, since
the finite variation of (〈M ε〉)ε>0 is uniformly bounded.

4 Continuity of integrals along rough paths

We give now a general result of convergence that allows us to ensure that
the rough path integral

∫
fδ(Xs) dXs converges to

∫
f(Xs) dXs when fδ con-

verges to f in an appropriate sense. This result will be used in the next
section to identify the integrals constructed in [Lej06a] using the rough paths
theory with the one constructed using time-reversal techniques presented in
Section 2.

We denote by X = (X1,X2) a rough path of finite α-variation with
α ∈ [2, 3). We assume that X lies above X with X0 = x for a fixed x, which
means that X1

s,t = Xt −Xs.
For γ ∈ (0, 1) such that 2 + γ > α, we denote by Lip(γ) the set of

continuous, bounded functions g : RN → Rm with a bounded first derivative
which is γ-Hölder continuous. On this space, we define the norm

‖g‖Lip = ‖g‖∞ +
N∑

i=1

‖∂xi
g‖∞ +

N∑
i=1

sup
x,y∈RN , x6=y

|∂xi
g(x)− ∂xi

g(y)|
|x− y|γ .

The theory of rough path allows us to construct a new rough path Z(f) =
(Z1(f),Z2(f)) from (f1, . . . , fN) ∈ Lip(γ)N and X that corresponds to the
integral of f — identified as a differential form — along X. We set

Z0,t(f) =

∫ t

0

f(Xs) dXs.

For such a function f = (f1, . . . , fN), we set ‖f‖Lip = maxi=1,...,N ‖fi‖Lip.
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Proposition 4. Let f ∈ Lip(γ)N and (fδ)δ>0 a sequence of functions in
Lip(γ)N such that ‖fδ‖Lip remains bounded in δ, fδ converges uniformly to f
and ∇fδ converges uniformly to ∇f as δ → 0.

Then Z(fδ) converges to Z(f) in α-variation.

Proof. For (s, t) ∈ ∆+, set

Y1
s,t =

N∑
i=1

f(Xs)X
i,1
s,t +

N∑
i,j=1

∂fi

∂xj

(Xs)X
i,j,2
s,t

and

Y2
s,t(f) =

N∑
i,j=1

fi(Xs)fj(Xs)X
i,j,2
s,t .

We also assume that X is controlled by some function ω : ∆+ → R, which
means that

|Xs,t| ≤ ω(s, t)1/α with ω(s, r) + ω(r, t) ≤ ω(s, t)

for all 0 ≤ s ≤ r ≤ t ≤ T and ω is continuous near its diagonal. Then, Y(f)
is an almost rough path, in the sense that

|Ys,t(f)−Ys,r(f)⊗Yr,t(f)| ≤ Cω(s, t)θ, ∀0 ≤ s ≤ r ≤ t ≤ T,

for θ = (γ + 1)/α > 1 and a constant C that depends only on ω(0, T ), α, γ
and ‖f‖Lip.

Given a family of partitions (Πn)n∈N whose meshes decreases to 0, we set

YΠn

s,t (f) = Ys,tn
`(s)

(f)⊗Ytn
`(s)

,t`(s)n+1
(f)⊗ · · · ⊗Ytn

`(t)
−1,t`(t)n (f)⊗Ytn

`(t)
,t(f)

where Πn = {0 = tn0 ≤ · · · ≤ tn`n = T} and `(s)n and `(t)n are such that
tn`(s)−1 < s ≤ tn`(s) and tn`(t) ≤ t < tn`(t). The rough path Z(f) is constructed

from Y(f) as the limit of YΠn
(f). Indeed, by construction (see Theorem 3.2.1

in [LQ02, p. 41]), one gets that there exists a sequence (Kn)n∈N decreasing
to 0 such that

|Zs,t(f)−YΠn

s,t (f)| ≤ Knω(s, t)θ, ∀(s, t) ∈ ∆+. (22)

These constants Kn depend on C and n, and thus on ‖f‖Lip, ω(0, T ), α
and γ.

For each integer n, YΠn

s,t (fδ) converges to YΠn

s,t (f) as δ → 0. In addition,
for each δ > 0, YΠn

s,t (fδ) converges to Z(fδ) at a speed that does not depend
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on δ, since (‖fδ‖Lip)δ>0 is bounded. This is sufficient to ensure that Zs,t(fδ)
converges to Zs,t(f) for each (s, t) ∈ ∆+.

Moreover, it is easily checked that

|YΠn

s,t (fδ)−YΠn

s,t (f)| ≤ C max{sup
δ>0

‖fδ − f‖∞, sup
δ>0

‖∇fδ − f‖∞}ω(s, t)1/α

for some constant C that depends only on supδ>0 ‖fδ‖Lip and ‖f‖Lip. With (22),
one obtains that for any ε > 0, there exists δ0 small enough such that for all
δ < δ0, |Zs,t(fδ)− Zs,t(f)| ≤ εω(s, t)1/α for all (s, t) ∈ ∆+.

The result is then proved.

5 Identification of the integrals

Let us note that a function in Lip(γ) also belongs to Υ∞. Given g =
(g1, . . . , gN) ∈ Lip(γ)N , we are given two ways in considering the integrals of
type

∑N
i=1

∫ t

0
gi(Xs) ◦ dX i

s and
∑N

i=1

∫ t

0
gi(Xs) dX i

s for X ∈ Ξ(λ, Λ): either
by using the Lyons-Zheng decomposition (5) or by using the rough paths
(X, K(X)), where K(X) is either the Stratonovich or the Itô integral, as
constructed in [Lej06a].

We have seen in [CL03] that the integrals given by the proper choice of
K(X) are the same as the Itô or Stratonovich integral when X is a semi-
martingale. The identification relies on the Wong-Zakai theorem for semi-
martingales.

In our case, we will approximate a process X by semi-martingales ob-
tained by smoothing the coefficients of its infinitesimal generator, and then
pass to the limit.

We denote by Ks(t; X, g) the integral Z1
0,t(g) with Z =

∫
g(Xs) dXs,

where X is the rough path X = (X,K(X)) with K(X) defined as a Stratonovich
integral. Similarly, if we use an Itô integral for K(X), then we denote Z1

0,t(g)
by Ki(t; X, g).

We also set Ls(t; X, g) =
∑N

i=1 L(t; X, gi, χi), when L is defined in the

Stratonovich, and Li(t; X, g) =
∑N

i=1 L(t; X, gi, χi) when L is defined in the
Itô sense.

Remark 9. Here, we consider only the “first level”, and not the iterated
integrals of

∫
g(X) dX against itself since it is useless for our result.

Theorem 4. For any X ∈ Ξ(λ, Λ) and g ∈ Lip(γ)N with γ ∈ (0, 1). Then
Ks(X, g) = Ls(X, g) and Ki(X, g) = Li(X, g) under Px for any starting
point x ∈ RN .

We already know that this result is true for semi-martingales.
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Proposition 5 ([CL03]). Let (X,P) be a continuous semi-martingale and
g ∈ Lip(γ)N with γ ∈ (0, 1). Then P-almost surely, Ks(X, g) = Ls(X, g) and
Ki(X, g) = Li(X, g).

Proof of Theorem 4. We drop any references to the subscripts s and i in L

and K, since the proof is the same in both cases.
Let (aε, bε) a sequence of elements in Ξcoeff(λ, Λ) such that aε and bε

are smooth and converge almost everywhere to a and b. The corresponding
process Xε is then a semi-martingale, since Lε = 1

2
∇(aε∇·) + bε∇ may be

transformed into a non-divergence form operator.
In addition, let us assume in a first time that g is smooth. From the

proof of Theorem 2.2 in [Roz96a] (see also the proof of Corollary 1 on the
localization argument), (g(Xε))ε>0 satisfies Conditions UTD. From Lemma 3,
one knows that for i = 1, . . . , N , Ln(t; Xε, g, χi) converges to L(t; Xε, g, χi)
in probability at a speed that is uniform in ε. As in the proof of Lemma 4, it
is then easily deduced from Theorem 4.2 in [Bil68] that L(t; Xε, g) converges
L(t; X, g) in distribution. Yet we have seen in Corollary 1 that (Xε, K(Xε))
converges in Vα to (X, K(X)). From the continuity of K in Vα, we deduce
that K(Xε, g) converges in distribution to K(X, g). Necessarily, L(X, g) =
K(X, g) under the assumption that g is smooth.

Now, if g only belongs to Lip(γ)N , let us introduce a sequence of mollifiers
(ϕδ)δ>0. Then the convolution g ? ϕδ of g with ϕδ is a smooth functions
satisfies ‖g ? ϕδ‖Lip ≤ ‖g‖Lip. In addition, g ? ϕδ and ∇g ? ϕδ converge
uniformly to g and ∇g.

The conclusion follows from Propositions 1 and 4.

A On the convergence of the sum of squares

of a martingale to its bracket

The following Lemma is used in the proof of Lemma 3. It corresponds to a
classical result, but we write it explicitly to show the dependence of the rate
of convergence with respect to the Lipschitz constant of the brackets.

Lemma 6. Let (Ω,F ,P) be a probability space with a filtration (Ft)t≥0. Let
M be a square integrable martingale with respect to (Ft)t≥0 such that for
some constant K, 〈M〉t − 〈M〉s ≤ K(t − s) for any 0 ≤ s ≤ t ≤ T for a
fixed T > 0. For each n ≥ 1, let {tni }i=1,...,n be a partition of [0, T ] such that
supi=1,...,n−1(t

n
i+1 − tni ) decreases to 0 as n →∞. Let

Qn
t =

`n(t)−1∑
i=1

(Mtni+1
−Mtni

)2,
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where `(t) is the integer such that tn`(t) ≤ t < tn`(t)+1.
Then, for any κ > 0 and any ε > 0, there exists an integer n0 such that

P

[
sup

t∈[0,T ]

|Qn
t − 〈M〉t| ≥ κ

]
≤ ε for all n ≥ n0

and the choice of n0 depends only on K, κ, T and the mesh supi=1,...,n−1(t
n
i+1−

tni ) of {tni }i=1,...,n.

Proof. The convergence in probability of Qn
t to 〈M〉t for any t ≥ 0 is classical

(See for example [KS91, Theorem 1.5.8, p. 33]). However, we write it to show
that the rate of convergence depends only on K. Let N be the martingale
defined by N = M2 − 〈M〉 (note that with our condition on the growth of
〈M〉, N is really a martingale and not a local martingale).

Let us set ∆n
i M = Mtni+1

−Mtni
, ∆n

i N = Ntni+1
−Ntni

, ∆n
i 〈M〉 = 〈M〉tni+1

−
〈M〉tni .

Then



`n(t)−1∑
i=1

∆n
i M − 〈M〉t




2

≤ 2




`n(t)−1∑
i=1

∆n
i M − 〈M〉tn`




2

+2(〈M〉t−〈M〉tn
`n(t)

)2

= 2




`n(t)−1∑
i=1

(∆n
i M −∆n

i 〈M〉)



2

+ 2(〈M〉t − 〈M〉tn
`n(t)

)2

= 2

`n(t)−1∑
i=1

∆n
i N

2 + 2
∑

i,j=1,...,`n(t)−1
i6=j

∆n
j N∆n

i N + 2(〈M〉t − 〈M〉tn
`n(t)

)2.

If j < i, since N is a martingale,

E
[
∆n

j N∆n
i N

]
= E

[
∆n

j NE
[
∆n

i N | FtNi

] ]
= 0.

Thus,

E







`n(t)−1∑
i=1

∆n
i M − 〈M〉t




2 
 ≤ 2

`n(t)−1∑
i=1

E
[
∆n

i N
2
]
+2E

[
(〈M〉t − 〈M〉tn

`n(t)
)2

]
.

With the Burkholder-Davis-Gundy inequality, there exists a constant C ′ such
that for i = 1, . . . , `n(t)− 1,

E
[
∆n

i N
2
]

= E
[
∆n

i M4
]− 2E

[
∆n

i M2∆n
i 〈M〉2 ]

+ E
[
∆n

i 〈M〉2 ]

≤ C ′E
[
∆n

i 〈M〉2 ] ≤ KC ′(tni+1 − tni )2,
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so that

E







`n(t)−1∑
i=1

∆n
i M − 〈M〉t




2 
 ≤ 2K(C ′T + 1) sup

i=1,...,n−1
(tni+1 − tni ).

This proves the L2(P)-convergence of the one-dimensional marginals of Qn

to 〈M〉.
To now turn to prove the uniform convergence of Qn to 〈M〉. For this,

let us choose two integers 1 ≤ k < ` ≤ n and let us note that

(
`−1∑

i=k

∆n
i M2

)2

=
`−1∑

i=k

∆iM
4 + 2

∑

i,j=k,...,`−1
i6=j

∆n
i M

2∆n
j M

2.

With the Burkholder-Davis-Gundy inequality, there exists some constant C ′

such that

E

[
`−1∑

i=k

∆n
i M

4

]
≤ C ′E

[
`−1∑

i=k

∆n
i 〈M〉2

]
≤ C ′K(t` − tk) sup

i=k,...,`−1
(tni+1 − tni ).

(23)
On the other hand,

∑

i,j=k,...,`−1
i6=j

∆n
i M

2∆n
j M

2 =
∑

i,j=k,...,`−1
i6=j

∆n
i N∆n

j 〈M〉+
∑

i,j=k,...,`−1
i6=j

∆n
i 〈M〉∆n

j N

+
∑

i,j=k,...,`−1
i 6=j

∆n
i N∆n

j N +
∑

i,j=k,...,`−1
i6=j

∆n
i 〈M〉∆n

j 〈M〉.

As N is martingale, one gets that

E




∑

i,j=k,...,`−1
i6=j

ai∆
n
j N


 = E




∑

i,j=k,...,`−1
i6=j

aiE
[
∆n

j N | Frj

]

 = 0

for ai = ∆n
i N or ai = ∆n

i 〈M〉. In addition, since ∆n
i N

2 = (∆n
i M2 −
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∆n
i 〈M〉)2 ≤ ∆n

i M
4 + ∆n

i 〈M〉2,

∑

i,j=k,...,`−1
i6=j

∆n
i N∆n

j 〈M〉 =
`−1∑

i=k

∆n
i N(〈M〉tn` − 〈M〉tni+1

)

≤ (〈M〉tn` − 〈M〉tnk )2

`−1∑

i=k

∆n
i N

2

≤ (〈M〉tn` − 〈M〉tnk )2

(
`−1∑

i=k

∆n
i M

4 +
`−1∑

i=k

∆n
i 〈M〉2

)
.

With (23), E
[ ∑

i,j=k,...,`−1
i 6=j

∆n
i N∆n

j 〈M〉
]
≤ C(tn` − tnk)4 for some constant

C that depends only on T and K. On the other hand, still using the fact
that 〈M〉 is increasing,

∑
i,j=k,...,`−1

i 6=j
∆n

i 〈M〉∆n
j 〈M〉 ≤ (〈M〉tn` − 〈M〉tnk )2 ≤

K2(tn` − tnk)2.
Hence, we finally get that

E




(
`−1∑

i=k

∆n
i M

2

)2

 ≤ C(tn` − tnk)2 (24)

for some constant C that depends only on K and T .
Now, for a partition {sm

i }i=1,...,m of [0, T ],

sup
t∈[0,T ]

|Qn
t − 〈M〉t|

≤ sup
i=1,...,m−1

sup
t∈[tmi ,tmi+1]

(
|Qn

t −Qn
sm
i
|+ |Qn

sm
i
− 〈M〉sm

i
|+ |〈M〉t − 〈M〉sm

i
|
)

.

(25)

Let us note that, since t 7→ Qn
t is increasing, for t ∈ [sm

i , sm
i+1]

sup
t∈[sm

i ,sm
i+1]

|Qn
t −Qn

sm
i
| ≤

`+(i,n)−1∑

i=`−(i,n)

(Mtni+1
−Mtni

)2

− (Mtn
`−(i,n)−1

−Mtn
`−(i,n)

)2, (26)

where `−(i, n) is such that tn`−(i,n)−1 < sm
i ≤ tn`−(i,n) and tn`+(i,n) < sm

i+1 ≤
tn`+(i,n)+1.
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With (25) and (26),

P

[
sup

t∈[0,T ]

|Qn
t − 〈M〉t| > 4κ

]
≤ P

[
sup

i=1,...,m
sup

t∈[sm
i ,sm

i+1]

|〈M〉t − 〈M〉sm
i
| > κ

]

+ P


 sup

i=1,...,m

`+(i,n)−1∑

i=`−(i,n)

(Mtni+1
−Mtni

)2 > κ




+ P
[

sup
i=1,...,m−1

|Qn
sm
i
− 〈M〉sm

i
| > κ

]

+ P
[

sup
i=1,...,m−1

(Mtn
`−(i,n)−1

−Mtn
`−(i,n)

)2 > κ

]
. (27)

For any κ > 0, it follows from (24) that

P


 sup

i=1,...,m−1

`+(i,n)−1∑

j=`−(i,n)

∆iM
2 ≥ κ


 ≤ 1

κ2

m∑
i=1

E







`+(i,n)−1∑

j=`−(i,n)

∆iM
2




2 


≤ C

κ2

m−1∑
i=1

(sm
i+1 − sm

i )2 ≤ CT

κ2
δ (28)

with δ = supi=1,...,m−1(s
m
i+1 − sm

i ). Moreover,

P

[
sup

i
sup

t∈[sm
i ,sm

i+1]

|〈M〉t − 〈M〉sm
i
| > κ

]
≤ P [ osc(〈M〉, δ) > κ ] ≤ Kδ

κ
, (29)

where osc(f, δ) = sups,t∈[0,T ], |t−s|<δ |f(t)− f(s)| is the modulus of continuity
of a continuous function f . With the Burkholder-Davis-Gundy, there exists
a constant C ′ such that

P
[

sup
i=1,...,m−1

(Mtn
`−(i,n)−1

−Mtn
`−(i,n)

)2 > κ

]

≤
m−1∑
i=1

1

κ2
E

[
(Mtn

`−(i,n)−1
−Mtn

`−(i,n)
)2

]
≤ mC ′K

κ2
sup

j=1,...,n−1
(tnj+1 − tnj ). (30)

Finally,

P
[

sup
i=1,...,m−1

|Qn
sm
i
− 〈M〉sm

i
| > κ

]
≤

m−1∑
i=1

P
[
|Qn

sm
i
− 〈M〉sm

i
| > κ

]
. (31)
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Given κ, ε > 0, the idea is now to fix first the mesh δ of the partition
{sm

i }i=1,...,m, — which is arbitrary chosen — so that the quantities in (28)
and (29) are smaller than ε/4. This fix m. We choose then n0 large enough
such that for any n ≥ n0, the quantities in (30) and (31) are also smaller
than ε/4. We then obtain that with (27)

P

[
sup

t∈[0,T ]

|Qn
t − 〈M〉t| > 4κ

]
≤ ε for all n ≥ n0

and we remark that the choice of δ depends only on K, T and κ, as well as
the choice of n0, as we claimed.

Acknowledgments. This work was started while the author was a post-
doctoral student in Oxford and granted by the TMR Stochastic Analysis
Network. Thus, the author wishes to thank Prof. T.J. Lyons for his kind
hospitality and for having taught him the theory of rough paths.

The author wishes also to thank the anonymous referee whose remarks
have greatly improved the quality of this article.

References

[A75] R. Adams. Sobolev spaces. Academic Press, 1975.

[Bau04] F. Baudoin. An introduction to the geometry of stochastic flows.
Imperial College Press, London, 2004.

[BPL78] A. Bensoussan, J.-L. Lions and G. Papanicolaou. Asymp-
totic Analysis for Periodic Structures. North-Holland, 1978.

[Bil68] P. Billingsley. Convergence of Probability Measures. Wiley,
1968.

[BBJR95] C.J.K. Batty, O. Bratteli P.E.T. Jørgensen, and
D.W. Robinson. Asymptotics of periodic subelliptic operators.
J. Geom. Anal., 5:4, 427–443, 1995.

[CD+07] L. Capogna, D. Danielli, S.D. Pauls and J.T. Tyson, An
Introduction to the Heisenberg Group and the Sub-Riemannian
Isoperimetric Problem, Progress in Mathematics, Vol. 259
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