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Abstract: This article introduces preliminary results on the control of gene networks, in the context of
piecewise-affine models. We propose an extension of this well-documented class of models, where some in-
put variables can affect the main terms of the equations, with a special focus on the case of affine dependence
on inputs. This class is illustrated with the example of two genes inhibiting each other. This example has been
observed on real biological systems, and is known to present a bistable switch for some parameter values. Here,
the parameters can be controlled. Some generic control problems are proposed, which are qualitative, respecting
the coarse-grained nature of piecewise-affine models. Piecewise constant feedback laws that solve these control
problems are characterized in terms of affine inequalities, and can even be computed explicitly for a subclass of
inputs. The latter is characterized by the condition that each state variable of the system is affected by at most
one input variable. These general feedback laws are then applied to the two dimensional example, showing how
to control this system toward various behaviours, including the usual bi-stability, as well as situations involving
a unique global equilibrium.
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Controéler un interrupteur biologique.
Un cadre mathématique pour le controle des modéles affines par
morceaux de réseaux de régulation génétique

Résumé : Cet article présente certains résultats préliminaires sur le controle des réseaux génétiques, dans
le contexte des modéles affines par morceaux. Une extension de cette classe de modéles est proposée, dans
laquelle certaines variables d’entrée peuvent affecter, en particulier de maniére affine, les principaux termes
des équations. Cette nouvelle classe est illustrée au moyen d’un exemple impliquant deux génes s’inhibant
mutuellement. Un tel exemple a été observé biologiquement, et présente deux points d’équilibres stables pour
certaines valeurs des paramétres, jouant un role d’interrupteur biologique. Quelques problémes génériques de
contrdle sont proposés, formulés de fagon qualitative. Ceci en accord avec le caractére qualitatif sous-jacent
aux modéles affines par morceaux. Des solutions a ces problémes génériques sous forme de lois de controle
retro-actives et constantes par morceaux sont caractérisées, au moyen de systémes d’inéquations affines. Pour
certaines sous-classes d’entrées, les solutions de ces inéquations sont décrites explicitement. Ces sous-classes
d’entrées sont telles que chaque variable d’entrée agit sur une variable d’état au plus. Ces lois de controle sont
illustrées sur ’exemple des deux génes en mutuelle inhibition, montrant comment conduire ce systéme vers des
comportements désirés, comme la bi-stabilité, ou I’équivalence de comportement avec un quotient discret.

Mots-clés : réseaux génétiques, linéaire par morceaux, controle
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1 Introduction

This work deals with control theoretic aspect of a class of piecewise-affine systems of differential equations.
This particular class has been introduced in the 1970’s by Leon Glass [16] to model genetic and biochemical
interaction networks. It has led to a long series of works by different authors, dealing with various aspects of
these equations, e.g. [6} 11,[13,[16, 17]. Besides theoretical aspects, they have been used also as models of
concrete biological systems |8, 22]. This proves their possible use as models guiding experimental researches on
gene regulatory networks. Such experiments have been carried out extensively during the recent years, often
on large scale systems, thanks to the extraordinary developments of large throughput methods used in the
investigation of biochemical systems.

Furthermore, recent advances in this domain have shown that such networks may not only be studied and
analyzed on existing biological species, but also synthesized [2,/12,15,/21], leading to artificial networks with a
desired behaviour. This latter aspect especially motivates the elaboration of a theory for the control of these
systems. This work is an attempt in this direction: piecewise affine models are treated in the case where pro-
duction and degradation terms are possibly modified by an experimentalist, a fact we model by introducing
continuous input variables u € U C RP.

The biological interpretation of inputs for systems of the form (1) is that an additional biochemical compound is
added to the system, or some physical parameter is changed. Such a modification may then supposedly activate,
or inhibit the production of species involved in the system without input. They might also have an effect on the
degradation rates of some species. The latter may be of the same nature as the effect on production rates, or
consist in a simultaneous scaling of all degradation rates, in case of a dilution of the growth medium. Among
concrete realizations, one may mention the use of specific known inhibitors or activators, that could be intro-
duced in a chosen quantity. Other techniques, such as directed mutagenesis, the use of interfering RNA (siRNA
and miRNA) [20], could be used to modify production or degradation rates. More radically, gene knock-in or
knock-out techniques could be handled within this framework, their on/off nature being described by restricting
the input values to a discrete set. In section[3 we will present the formalization of models with inputs, which
are suited to describe all above situations.

Other works have dealt with control problems involving models of biochemical networks. Especially, a series of
papers consider control problems on multi-affine dynamical systems defined on rectangles [3} 4] 18]. The starting
point of the different methods and algorithms presented in these works is the control of all trajectories of a
multi-affine dynamical system toward a specified facet of a full dimensional rectangle in state space. The input
values have to satisfy a system of 2"~ ! inequalities (one for each vertex of the exit facet). Since the systems
considered in the present paper are piecewise-affine, and more precisely affine in rectangular regions of state
space, they are a special case of multi-affine system on each such rectangle. Hence, the mentioned procedures
could be applied directly, and allow for the control of all trajectories toward a chosen facet. However, taking
into account the specificity of our systems with respect to more general classes permits several improvements.
First, we are not only able to control trajectories so that they escape a rectangle via a desired facet, but also to
characterize inputs forcing all trajectories to stay in a rectangle for all times, and converge toward an asymp-
totically stable equilibrium point. Moreover, from an algorithmic point of view, it is worth mentioning that we
propose a set of 2n inequalities to be checked for an input be valid, improving drastically the complexity of a
blind application of general techniques designed for multi-affine systems.

In a more general perspective, the underlying motivation of this work is thus to provide some control-theoretic
tools that are dedicated to the class of piecewise affine models. As already mentioned, the need for such theoret-
ical tools is urged by recent advances in the design and analysis of elaborate biological systems, involving both
synthetic and natural regulatory networks |19, /21]. Among these synthetic networks, some small sub-modules
are often considered as important building blocks, to be plugged to larger systems. One of these blocks involves
two genes inhibiting each other, and behaves as a toggle switch [15], for appropriate parameter values. A model
of this simple system will serve us as an example.

The paper is organized in three main sections, all of which are illustrated using the toggle switch example.
Hence, a first reading of the paper may rely on this sole example, and skip the more abstract material presented
in the text, except maybe section [2. In the latter, the autonomous piecewise affine models of gene networks
are introduced. Their main properties and some notations we use afterwards are presented. Then, in section
[3, piecewise affine models with inputs are defined. The inputs are presented as piecewise constant feedback
laws. The most obvious properties of systems with inputs are stated, and two subclasses are introduced. These
are defined by special forms of dependence of the variables on the inputs: one class corresponds to production
and decay terms being affine functions of the input u, the other class relies on the additional assumption that
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4 Farcot €& Gouzé

each state variable may be controlled by at most one input variable. Then, in section [4] we formulate generic
control problems. These problems are essentially qualitative, and concern the control of trajectories through a
prescribed sequence of rectangular regions in phase space. As an elementary problem, we focus on the control of
a single transition at a fixed rectangular domain, where the autonomous dynamics is affine. In a given domain
D, it is possible to provide necessary and sufficient conditions, so that a constant input u forces all trajectories
to stay inside D for all subsequent times. Similar conditions are given, under which all trajectories escape D,
notably through a single prescribed facet. A final section discusses the results, and the possible outcomes of
this work.

These methods permit, in the toggle switch example, to control a system toward bi-stability, when autonomous
parameters only allow a single stable equilibrium. Also, it is possible to ensure that the behaviour of this system
is entirely known from its most natural discrete abstraction. These two goals are achieved via a feedback control
on degradation rates of the system.

2 Piecewise affine models: the autonomous case

2.1 Formal description of the model

The general form of the autonomous piecewise affine models we consider may be written as:

dx

= k() (@) (1)
k: R — R7 is a piecewise constant production term and I' : R? — R}*" is a diagonal matrix whose diagonal
entries I';; = ~;, are piecewise constant functions of =, and represent degradation rates of variables in the system.
The fact that x and the ~;’s are piecewise constant is due to the switch-like nature of the feedback regulation
in gene networks. The variable x; is a concentration (of mRNA or of protein), representing the expression level
of the ith gene among n. As such, it ranges in some interval of nonnegative values noted [0, max;]. When this
concentration x; reaches a threshold value, some other gene in the network, say gene number j, is suddenly
produced (resp. degraded) with a different production rate : the value of x; (resp. ;) changes. For each
i € {1---n} there is thus a finite set of threshold values :

0, = {0 <--- <07} C 0, max, (2)

The extreme values 0 and max; are not thresholds, since they bound the values of x;, and thus may not be
crossed. However, a conventional notation will be : 2 = 0, and 7 = max;.

Now, at a time ¢ such that z;(t) € ©;, there is some j € {1---n} such that ;(z(t")) # k;(x(t7)), or
@ () # 75(a(t)).

It follows that each axis of the state space will be usefully partitioned into open segments between thresholds.
Since the extreme values will not be crossed by the flow (see later), the first and last segments include one of
their endpoints :

D, e {67, 03[ ot orfu {18l o7 [ e (1 a - 2} f U, ®)

Each product D = []"_; D; defines a rectangular domain, whose dimension is the number of D, that are not
singletons. When dimD = n, one usually says that it is a regulatory domain, or regular domain, and those
domain with lower dimension are called switching domains, or singular domains, see |9]. We use the notation
2 to represent the set of all domains of the form above. Then, 2, will denote the set of all regulatory domains,
and Z; the set of all switching domains. The underlying sets are respectively denoted |2|, |Z,| and | %], i.e.
for example |7| = (Jpc, D is the whole state space, while |7,.| = Jpcgy, D is the same set with all threshold
hyperplanes removed.

The dynamics on regular domains, called here regular dynamics can be defined quite simply, due to the
simple expression of the flow in each D € Z,. On sets of 5 on the other hand, the flow is in general not
uniquely defined. It is anyway possible to define solutions in a rigorous way, yielding what will be mentioned
as the singular dynamics. Let us describe these two parts of the dynamics successively.

INRIA
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2.1.1 Regular dynamics

Regulatory domains are of particular importance. They form the main part of state space, and the dynamics
on them can be expressed quite simply. Actually, on such a domain D, the production and degradation rates s
and v are constant, and thus equation (1) is affine. Its solution is explicitly known, for each coordinate i :

i) = i) = = - e () - ). (4)

Vi Vi
and is valid for all ¢ € Ry such that z(t) € D. It follows immediately that

60) = (6w 0m) = (22 22)
71 Tn
is an attractive equilibrium point for the flow (4). If it does not belong to D, it is not a real equilibrium for
the system (1), since the flow will reach the boundary 9D in finite time. At that time, the value of x or T
will change, and that of ¢ accordingly. The point ¢(D) is often called focal point of the domain D. Then,
the continuous flow can be reduced to a discrete-time dynamical system, with a state space supported by the
boundaries of boxes in Z,. This system will be precised in section [2.2.

2.1.2 Singular dynamics

On singular domains, the piecewise constant functions x and -; are not defined, and there is thus no chance
to apply standard theorems about existence and unicity of solutions of (1). As a remedy, one has to consider
a set-valued version of the regular dynamics, applying the general notion of solution of a differential equation
with discontinuous right-hand side introduced by Filippov [14]. Solutions, in this sense, that stay in a singular
domain for a while are often called sliding modes. This technique was first applied to systems of the form (1)
by Gouzé and Sari, in [17], and has been used in several studies since this first work, for example [8,9, 22,/6].
We refer the interested reader to the mentioned literature for more thorough treatments of singular solutions.
What will be needed in this paper is the fact that solutions can be rigorously defined on %;.

2.2 Discrete representations

Since models of the form (1) are essentially qualitative, it is common to consider a discrete — both in time
and space — analogue, which only yields a coarse grained description of the dynamics. In the context of gene
regulation network models, this qualitative representative is usually seen using a transition graph TG = (V, &),
where V is in bijective correspondence with the finite set of regulatory domains, Z,., described in the previous
section. In other words, this graph only bears the regular the dynamics. Some information about the singular
dynamics may however be retrieved from this graph.

A convenient notation for V will be the following: the domain D € Z,, with closure of the form /(D) =
[T, [0, 657, is represented in V by the integer vector a = (ai,...,a,). For sake of brevity, such vectors
will often be denoted as strings : a« = ay...a,. Hence, V = [[,_ {1---¢;}. We note c : Z, — V the bijective
coding application, which maps a domain to its corresponding vertex in V. We sometimes write the code of a
regular domain as a subscript : D, = c~!(a).

Then, € CV x V is a set of transitions, defined informally by the existence of a continuous trajectory between
their initial and terminal vertices. A precise definition will be given later on. Observe that each vertex in TG
may usually have several outgoing edges, i.e. this is a non deterministic graph. Adopting a global point of view,
full trajectories of the original system (1) are represented by infinite paths in TG. This qualitative version of
the dynamics induces of course a loss of information : each regular continuous trajectory admits a well-defined
qualitative representative — under mild assumptions, given later — but in general many paths in TG do not
represent any continuous trajectory.

Since the finite sets 2, and V are in bijective correspondence via c, we indifferently consider ¢ as a map with
one or the other of these two sets as domain of definition, i.e. one identifies ¢ and ¢ o c~!. Let us introduce
another useful mapping, namely the discretizing mappingd = (d; ...d,) : |2,.| — V, which associates to a point
lying inside a regular domain the discrete representative of this domain. This is similar to c, except that it acts
on points in state space, whereas c acts on the set of regular domains.

The transitions of € can be described more precisely. Actually, it can be shown that a transition a — o’ may
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occur if and only if ¢(a) has the same position as a’ with respect to a. By this we mean that a; — a; and
¢i(a) — a; have the same sign, for all 7. Hence, & can be described in a purely combinatorial manner, i.e. in
terms of d; o ¢, which is a finite map V — V. Then, regular trajectories correspond to transitions a — a’
such that a — o’ = +e;, for some vector e; of the canonical basis of R". For more details we refer to [13], and
references therein. Since trajectories hitting some codimension 2 or more singular domain are rare, and involve
technicalities in their definition, see section [2.1.2, we ignore them in the following.

To summarize this discussion, we may now provide a more explicit definition of TG.

Definition 1 (transition graph). TG = (V, ), where:

o V=TIl {14}
e (a,b) € € if and only if b = a and ¢(a) = a, or

be{a+e;|iedi(oa)) >atU{a—e;liecdi(p(a)) <a;}

Since the transitions between adjacent regular domains are determined by the position of focal points, the
following hypothesis will be useful in the rest of the paper :

H1. VDe 2., ¢D)e|Z|.

Hypothesis HI means that the focal points all lie inside the domain ||, and that none of them is on the
boundary of a box. The first aspect implies that |Z| is positively invariant, and thus can be considered as the
only region where relevant dynamics take place. The second one excludes a (rare) case which would otherwise
cause technical complications without improving the model.

Before concluding this section with an example, it remains to say that TG, as a support of a discrete dy-
namical system, induces spurious trajectories in general. The proportion of those infinite paths in TG that
have a counterpart in a continuous system of the form (1), called admissible trajectories, can even be negligible,
asymptotically [13]. One possible consequence — though not a major purpose — of the control theoretic aspects
we deal with in the next section, could be to reduce the discrepancy between the regular part of a piecewise
affine system and its symbolic representation.

Example. Let us introduce a well-known example with two variables, that will serve as a guide for intuition
throughout this paper. It consists in two genes which inhibit each other, and behaves as a switch between two
stable equilibria. This simple loop has been investigated both mathematically [7], using a model with smooth
sigmoids as activation functions, and experimentally [15]. In the latter, this network has been synthesized,
showing that its real-life behaviour is in accordance with mathematical analysis. The latter predicts a phase
portrait (for a large set of parameter values) presenting two stable steady states, and a saddle point whose
unstable manifold forms the boundary between the attracting basins of the two other equilibria. The biological
function of such a system is that of a switch between two steady states: each of these is a long-term, permanent
response to some transient induction, which may lead to one or the other of the steady states. This is the toggle
switch mentioned in the introduction, and serving as a building block for larger biological circuits [19, 21].

In the context of piecewise-affine models of the form (1), the interaction graph and system of differential equations
describing such a system are thus the following:

d
(D/\ % = K+ RS (22,05) —mm
& dxs ’ (5)

P K9+ K3s™ (x1,07) — Y222

where s~ (z,60) is the decreasing Heaviside (or step) function, which is one when x < 6, and zero when x > 0.
A wusual notation for the interaction graph uses —i to denote inhibition, and — to denote activation.
The two constants k. represent the lowest level of production rates of the two species in interaction. It will be
zero in general, but may also be a very low positive constant, in some cases where a gene needs to be expressed
permanently. Remark that in this example, gene interactions only affects production terms, and thus degradation
rates y; are positive constants.

INRIA
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Figure 1: The dashed lines represent threshold hyperplanes, and the dotted lines indicate the coordinate of the focal
points in the four regular domains. Arrows represent schematic flow lines, pointed toward focal points. This phase
space is consistent with the transition graph : domains 11 and 22 both escape towards 12 and 21, and each of these
contains an asymptotically stable equilibrium point, namely its own focal point. Note that pieces of trajectories are
depicted as straight lines above, which is the case when all degradation rates y; coincide. However, this only aims
at simplifying the picture, and the ~; are not supposed uniform in the present study.

Then, the transition graph of (5) is easily found to be

(tp—= ©)
o
11— &0
21),

provided the parameters are consistent with the interaction graph of the system. The constraints that must be
fulfilled to ensure this consistency are the following:

0 0 0 1 0 1

K K K+ K Ko + K

{f1 <0, <l S——t>0, 2> 9%} (7)
7 2 7 Y2

Actually, the Heaviside function s~ is decreasing, always denoting an inhibition effect. But if the above con-
ditions are not satisfied, the inhibition is not effective, in the sense that it does not lead to a change of state
in TG. Geometrically, the conditions ensure that focal points belong to the half-spaces they ought to, and that
the system presents bi-stability. They might be called structural constraints on parameters. The phase space of
system (5) may be depicted, see figure[l.

3 Control of piecewise affine systems

In this section the models with inputs are defined, and their main properties are introduced. Starting with a
general form of systems with inputs, we provide a more and more particular formulation, in order to obtain
properties that are not expressible for the most general systems, but hold in the specific cases we exhibit.

3.1 Some plausible types of controls

The biological interpretation of inputs for systems of the form (1) is that an additional biochemical compound is
added to the system, or some physical parameter is changed. Such a modification may then supposedly activate,
or inhibit the production of species involved in the system without input. They might also have an effect of
dilution, thus increasing the degradation rates of some species. In order to take all these plausible effects into

RR n° 5979



8 Farcot €& Gouzé

account in a single model, we propose the following general form of systems with inputs:

dr _ k(z,u) — D(z,u)x (®)
dt

where u € U is an input variable that can be chosen in its domain U C R”, meaning that p additional biochemical
species can be introduced in the system by an experimentalist, or a robot. It may also represent stimuli that
are not of chemical nature, such as for example modifications of the light intensity or temperature. In any case,
we shall only deal with bounded input variables. We denote the upper bounds of each input coordinate by p
positive real numbers U}, providing us with an input domain of the form

U= f[[o, U;).

It seems reasonable that p < n, a fact we assume in the sequel. This continuous set of inputs will always be
used hereafter. If discrete variables are better suited to describe some input quantities (for example if a gene
is completely turned on, or off), it will suffice to consider finite subsets of the intervals [0, U;], and restrict all
the treatments that we propose to these subsets. For example, if the input u; takes values in some finite set
U; = {uj,...ul}, with ordered u’’s, one shall set U; = u¥, so that U; C [0, U;]. Then, one may solve the
corresponding continuous problem, and check afterwards whether at least one of the discrete values in U; is also
a solution or not.

In the present work, we focus on piecewise constant feedback control laws. In other words u = u(z), and moreover
the restriction u|p is constant for each D € 2,.. This relies on the assumption that threshold crossings, i.e.
switchings, can be detected accurately, and with no significant time delay. A consequence of this choice is that
the input may be unambiguously seen as a function V — U, see sections[2.1, 2.2/ for general notations and [4.1
for more detail on the definition of w.

The precise form of x(z,-) and I'(x, ), seen as functions of the input u, may not be arbitrary, and should be
realizable in real systems. More precise forms of these functions will be assumed later on, but we first provide
the basic facts that do not depend directly of this specific form.

The choice of a feedback loop depending on the regulatory domain of the current state, rather than on its
precise quantitative value, has nice consequences on the dynamics. Actually, the behaviour of the system is
exactly similar to what is described in section [2, except that focal points depend on the input w. The latter
being constant in each regulatory domain D,, the flow of (8) clearly takes the same form as in the autonomous
case, the focal point of such a domain being now of the form :

olovw) = (o Bufeer) ®

where the vector u has a fixed value, that can be chosen according to some specified purpose.

The controllable focal set is the whole set in which focal points can be chosen, i.e. the set of all focal points
obtained by varying the input in its whole domain : ¢(a,U). Although the term focal set is often employed
when using Filippov solutions [17], with a quite different meaning, we shall sometimes use it as an abbreviation,
omitting controllable. This will never be ambiguous in the present study.

Since U will most often be a compact subspace of Rﬁ’r, and ¢(a, ) a continuous map, the focal set will generally
be a p-dimensional compact subspace of R”}. The possible successors of the domain D, will then be given by
the regular domains with subscript in the following set:

8(a) ={a+sign(b—a)|beV, DyNoa,U) # S} . (10)

where sign : R — {—1,0, 1} gives the sign of its argument.

The use of sign(b — a) is intended to define successors only among regular domains that are adjacent to D,,
even in the case when Dy is not.

This focal set is constrained by the specific choice of inputs. Let first assume that both production and
degradation terms are affine functions of u, in each regular domain. Then, ¢(a,-) will be a fractional linear
map and computing 8(a), can be understood as computing the intersection of an algebraic manifold and a
n-rectangle, as will be detailed in sections 3.2 and [4.2.

INRIA



Control of piecewise affine gene network models 9

The following notation will be used in case of affine dependence on inputs:

Ki(z,u) = Zn{(m)uj—kﬁg(x)
B (1)
) = Y@ )

with piecewise constant functions ] and vf . This can be interpreted as follows, considering production rates,

the case of degradation rates being identical. For each i € {1---n}, and for a fixed z, x;(z,-) is a function
of u, and has the biological meaning of a production rate. Then, the ] functions can be understood as the
coefficients of k;, once it is assumed that the latter is affine in w. Thus, these /»13 functions may not always have
a definite biological meaning. They may be interpreted as the relative strengths of the different inputs, in their
influence on x;. In some sense, this choice is mostly relevant in the case when there is no interaction amongst
the inputs.

Now, for biochemical inputs, the autonomous case must correspond to an absence of input, i.e. to u; = 0. For
physical inputs the autonomous case may in general correspond to a nonzero input value, which could then
be decreased or increased by the user. Thus, in order to allow a decrease of production or degradation rates
when the input is varied, the coefficients in (11) can possibly be negative. However, it is required that, for all
i, vi(z,u) > 0 because biochemical compounds always degrade. It is also important that ;(x,u) > 0, since
otherwise the concentration z; could reach negative values. These requirements can be satisfied by imposing
simple restrictions on the parameters in (11).

H2. For allic€ {1---n}, and all a € V, 4?(a) > 0, k¥(a) > 0. Moreover

Y AU > A

je{t- p}
N‘Z(a)<0

Actually, the left-hand sides above are easily seen to be the infimum, among all inputs, of the linear parts
of affine functions k; and ~;. Remark that since we consider feedback control in this work, the inputs above
should be written u;(x), but this has no influence on the expression of «; and v, as functions of the inputs, and
would harden the reading of (11). ‘ ‘ ‘

For any z in a fixed regulatory domain D,, all x}(z) and +/(x) are constant, and we shall write x](a) and
ki(a,u), as well as v/ (a) and ;(a, u).
The coefficients in equation (11) may be put in matrix form: let x(z) = (! (z));; € R™*P, k%(x) = (k%(z)); €

RN T(z) = () (2))i; € R™P and 1°(z) = (79(z)); € R?*!. Then, equation (11) can also be written as:
+ % 5] i +
['(z,u) = diag (['(z)u ++°(z)) and w(x,u) = K(x)u + £0(x). (12)

Geometrically, H2 imposes that matrices x(a) and I'(a) belong to polyhedral sets in R®*?, which are defined in
terms of the maximal input values U;. Identifying R"*? and R™”, these polyhedral sets contain the nonnegative
orthant and for each other orthant, a simplex defined by the inequalities above (and those defining the orthant’s
boundary).

3.2 Classes of systems with inputs

In our chase for specific inputs, we may further assume that at most one input variable is acting on each state
variable. Then, either the influence of u appears on the production term, or on the decay rate of each x;. This

can be formulated using two functions o,¢ : {1---n} — {1---p}, such that for each i in {1---n}, all coefficients
<(4)

i .

{ ri(e,u) = K7D (@)uga) + ()
yile,u) = %D (@)ugm + (@)

in the matrices x(x) and I'(x) are zero, except maybe ﬁf(i) and -y
(13)
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and moreover ‘ ‘
Vie{l---n},Va €V, either m?(z) (a)=0 or ’yf(l)(a) =0. (14)

Note that both may still be zero.
In order to clarify further discussions, we now give a name to the two classes of inputs we have presented. These
are the only classes of systems that we shall consider in the following.

C1 (affine dependance on inputs).
Refers to systems of the form (8), where production and degradation terms are all affine functions of u, of the

form (11).

C2 (single input per variable).
Refers to systems of the class C1, where at most one input affects each variable x;, i.e. (13) and (14) are
satisfied.

Let us investigate more precisely the shape of the focal set ¢(a,U), when the system belongs to the class
By definition, this set consists of those points ¢ € R™ such that ¢ = ¢(a,u) — also noted ¢(u) in this discussion
— for some u € U. Since a is fixed, one also abbreviates ] (a) and +/(a) into s} and 7], respectively. We shall
do so in the rest of the paper, as soon as no confusion is possible. For C1]systems, this writes

D Jo . 0
Zj:l Kijuj + K,

Vie {1---n}), :
t } b v+

= @i,
where the denominator is nonzero, thanks to H2. Thus, the above may also be written as

p
Vie{l---n}, Y (H? —viw) uj =i — Ky
j=1

This is apparently an affine system of equations in u,,...,u,. This system defines a manifold in R", which
is parameterized by the inputs u;. Let us describe further properties of this manifold, without boundedness
assumption on the wu;’s. Hence, the controllable focal set ¢(U) will be a bounded subset of the manifold we
describe hereafter.

The solution of such a system, if it exists, may be expressed formally using Cramer formulas. Let us reason
further in a formal way, ignoring problems related to degenerate systems or domains of definition, especially
when dealing with rational functions. Since the coordinates @1, ..., ¢, appear (linearly) in the coefficients of
this system, Cramer formulas will lead to express each u; as a (multivariate) rational function of ¢’s coordinates,
say u; = R;j(¢1,...,%n)- Then, for each i € {1---n}, one is led to ¢; = ¢; (R1(),...,Ry(¢))- Since each ¢; is
a linear rational function of u,, ..., up, the right hand side in the last equality is a multivariate rational function
of p1,...,¢,. On a suitable domain, this may also be expressed as a vanishing condition on a multivariate
polynomial in ¢1,...,p,. Such a condition defines an algebraic manifold .#, of which ¢(U) is thus a subset.
Although we do not detail further this discussion, the computations mentioned above may lead to practical
implementations, be they symbolic or numeric. This might be a topic for later research. Let us only mention
the fact that additional conditions, such as for instance symmetries on parameter values, may lead to .# being
more tractable, from an algorithmic point of view, e.g. .# may be polyhedral.

Remark 1. It may happen that some inputs be ineffective in practice, due to hidden relations between x,; and
~; for some 4, which make the ratio defining ¢; vanish into a constant. Avoiding this may be guaranteed for the
class C1, in explicit terms:

H3. Forallic {1---p},3je{1---p} %QHg ;é%jﬂ(i)'

Actually, some ¢;(a, -) does not depend on u if whatever the latter is, x;(a, u) = Cv;(a,u), for some constant
C. In other words, and for the class C1,
p . .

(ﬁf - C’vﬁ) uj + Ky — Cv) =0,
=1

J
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Control of piecewise affine gene network models

for all u, and omitting a. It appears that the left-hand side above, seen as a function of u, is an affine mapping,
whose linear part either has rank 1, or it is identically zero. In the first case, the above equation cannot stand
for all u. Hence all coefficients x] — C+/, for j € {0--- p}, must be zero for a degeneracy to occur, in which case
all ratios k] /7] are equal (to C). Whence the formulation of H3. This hypothesis will always be done when
dealing with C1, and thus C2, systems.

Note that H3Jonly excludes very strong degeneracies. In particular, it is still possible when this hypothesis
is satisfied, that ¢ is constant on a full subspace of U. Anyway this subspace will be of dimension at most p — 1
and thus of measure zero in U.
Even if x and T" depend nonlinearly on u, it is relevant to describe the discrete representative of a system with
input like (8). This is the theme of the next section. Before this, let us return to our example.

Example (continued 1). Let us carry on with the already introduced example, involving two genes inhibiting
each other. We suppose now that the structural constraints (7) are not satisfied, so that the autonomous system
does not present bi-stability. We assume moreover that there is a way to control the degradation rates of the
two genes, and only them. Hence we deal with a system in the class C2. Since, in the autonomous case, the
degradation rates were constant, i.e. independent of the state vector x, one is here in a particular of equations (8)
belonging to O2. The system of differential equations describing such a system are of the following form:

dx

CT; ALs™ (22,03) + A} — (viun + 7)1

15)
dry ) ; (
o A3s™ (21, 07) + A9 — (Yauz + 75) 22

in the case of two inputs. If there is a scalar input u, one obtains a system of the form above, but where
uy = ug = u. Since the inputs do not influence production rates in this particular example, the matriz-valued
function k(x) is zero, see equation (12). In other words, and according to previous notations, one has here :

K(l)(x) = A%S_(]}Q, 9%) + /\(1)7 and Klg(.]?) = )\%S_(le, 9%) + )‘g

Now, the transition graph of the autonomous case is given for the special input value u°, according to H2l The
constraints that we suppose are fulfilled now take the following form :

{ )‘? 1 )‘8 1 )‘(1)+>\} 1 )‘34‘)‘% 1}
WaHrdud ~7 8+l T W fud T A+ adld T S

The only difference with (7) appears in the third term above. It is not hard to show that this leads to the following

transition graph: O
—
T
—

The left-hand sides of the four inequalities (16) are the coordinate values of focal points, at the autonomous level
u of inputs. If, instead, u varies, these ratios change accordingly, yielding the focal set. Let us drow a picture
of the phase space of system (15]), in the cases when u is two dimensional, and scalar.

First, we treat the two-inputs case (15). With previous notations, one has ¢ = id, since each u; influences x;,
and whatever o is it has no effect since x(x) = 0. Here, the polynomial equations defining the manifold #
supporting the controllable focal set are always satisfied. In other words, ./ is the whole plane, and focal sets
are full-dimensional (i.e. two-dimensional) rectangles in phase space.

Observe that if \? = 0, meaning that genes 1 and 2 are not expressed at all when turned off, .# can be of
dimension less than 2. Actually, k9 (x) = As™(x2,03) equals zero whenever x5 > 01, and similarly for ry(z)
with respect to x1. Since k(x) is the numerator of ¢;(x), the latter is zero, whatever the input is. Hence, in
the domains where at least one x; is greater than its threshold, the corresponding focal set in constrained on a
coordinate axis. This discussion is summarized in figure 2.

(16)

TG(u’) =

Now, suppose the input is a scalar, which we retrieve from (15) by setting u1 = uz = u, as mentioned above.
This gives:

d
;tl = s (22,03) + ) — (viu+ )
d

% = Ms7(21,0]) + A — (vau +9) o
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-1 4
Y+73Us

¢(2‘17 uOV): |

I K«/l
$(22,u%) i 6(21,U)

Figure 2: A system of the form (15), with the additional hypothesis that \] = \J = 0. As in figure[1} threshold
lines are dashed. Focal sets are coloured in red. The autonomous case (i.e. u = uO) leads to focal points that are
situated in accordance with conditions (16). The arrows sketch pieces of trajectories of this autonomous case.

SO‘EJ

.

) (;5(2]_,’110) '/
o
$(22,0°) o $(21,0)

2t

Figure 3: A system of the form (15), with one single input u = u; = us. We still suppose \{ = \J = 0. Focal sets
are coloured in red. Observe that in the case with two inputs, figure(2, focal sets are the rectangular envelope (i.e.
smallest rectangle containing them) of those here depicted. Here again, the arrows represent pieces of trajectories
of this autonomous case.

One has now the following:

s = ) R ot

)

Y+l vi¢i(a)

for i € {1,2}, and any value of the qualitative state a. From this, the following constraint is derived, omitting
a:
(178 —137Y) d102 + KYvade — K31 P =0, (17)

which is the polynomial equation in ¢1, P2 defining the manifold we call 4. Such an equation, using the
additional fact that u belongs to the bounded set [0,U], defines for instance $(U) to be a piece of hyperbola, as
depicted schematically in figure|3.

What can be foreseen is that even if the autonomous case presents a single global, stable equilibrium, some input
values may lead to a bistable phase portrait. This guess will be confirmed later.

Next section deals with elementary cases of such local problems, which can be thought of as the required
steps toward solving global problems of the form

INRIA



Control of piecewise affine gene network models

4 Specific control problems

Due to the intrinsically qualitative nature of piecewise affine models, it is possible here to formulate control
problems in qualitative terms. This will be done with the aid of a discrete version of the control systems we
investigate. We first present such discrete systems, and then more specific control problems will be considered.

4.1 Discrete mapping of systems with input

Once a feedback law is chosen, a system of the form (8) is equivalent to an autonomous system of the form (1).
Then, a discrete system can be constructed, as described in section [2.2] Recall that the input laws we are
looking for are assumed to be piecewise constant. In the form given at the beginning of the previous section,
u is then a map u : |Z,| — U. Since this map is supposed constant on each regular domain D € &, there is
a well-defined map from the set of regulatory domains to the set of input values, namely 7, — U, D — u|p.
The latter will be identified with « in the following. Since ¢ : 2, — V is a bijection, we can also identify u and
woc™!, when dealing with the vertices of a transition graph instead of the domains in a continuous state space.
Now, varying u may lead to changes of the discrete representative of the system under consideration. Refining
the definition of discrete successors provided in (10), the following arises naturally: for v € U,

8(a,u) = a +sign (d(¢(a,u)) —a). (18)

Actually, for a fixed u, and in a fixed domain D,, the corresponding focal point is ¢ (a,u). Under H1, there is a
single domain D, containing this focal point, whose subscript is given by d((b(a, u)) Then, varying a feedback
law u amounts to varying u(a) in the whole set U, for all a. From this one gets an alternative definition for a’s
successors (10):

S(a) = U S(a,u)

ueU
Similarly, it is natural to define TG(u) = (V, €(u)), where V is the same as in the autonomous case and, following
definition 1] :
e() = | J{a} x {a teie;|i€ {1---n}, & = sign ($i(a, u) — a;) } (19)

acV
Then, a generic control problem can be formulated in global terms, involving a desirable transition graph :

Problem 1 (global control problem). Let TG* be a transition graph. Find o feedback law u : V — U such that
TG(u) = TG".

This abstract formulation hides a number of arduous sub-problems, including of course the choice of a target
transition graph TG*. It is worth mentioning a fairly efficient way to define this graph: it consists in imposing
some global property, expressed as a temporal logic formula [5]. Difficulties are due in large part to the global
aspect of this formulation, which concerns a whole state space, or transition graph. Anyway, the target tran-
sition graph TG* may differ from the autonomous graph TG(u") only on a subset of edges. Hence, problem [T
includes local versions, where the feedback law is only sought on a subset of the vertices V, see below.

Problem 2 (local control problem). Let TG* be a transition graph, and V* C 'V the subset of vertices, where
outgoing edges of TG* differ from that of TG(u®). Find a feedback law u : V* — U such that TG(u) = TG",

where ulys = U and uly\y. = u’.

Now, we first elucidate the most elementary local problem, namely the problem 2 in the case where V* is a
single vertex. Then, semi-global cases, involving sets V* with more than one element, are dealt with.

4.2 Control of a single box

The control of a one element vertex set V* = {a} corresponds, in a continuous state space, to the control
of a single regular domain D,. We have seen in sections [2] and [3] that the dynamics in such domains is es-
sentially determined by a focal point ¢(a,u(a)), which is an attracting equilibrium when it belongs to D,.
When ¢(a,u(a)) € D,, on the other hand, all trajectories escape from D, in finite time. According to this,
we first treat the case when the only outgoing edge is a self-loop. In a second step, cases where at least
one edge escapes from a are treated. The main observation will be that these two control problems are in fact
of the same nature, and can be solved by a common method, which is described at the end of the present section.
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4.2.1 Control making a regular region invariant

The first problem addressed here is that of controlling the flow in a single domain D, so that no trajectory can
escape from it. This corresponds to a situation where D, represents a beneficial situation for the system, or a
situation where D, may lead to some dangerous states in the autonomous case. Preventing from such danger
is then achieved by staying in D,.

In any case, if follows from previous discussions that the only possibility to preclude a qualitative change in
behaviour at a state a, with a constant input u(a) on D,, is to force ¢(a,u(a)) to be a stable equilibrium. In
other words one has to find a constant v = u(a) such that

6(a,u) € Da. (20)

Moreover, H1| implies that ¢(a,w) must in fact lie in the interior D, of D,. Equation (20) is equivalent to a
list of inequalities, which must be strict, due to the last remark. Namely, one has to satisfy :

Vie{l---n}, 0771 < i(a,u) <0 (21)
Figure[4 illustrates this problem.

o(U)

Nl
VAN

Figure 4: Among all points in the focal set ¢(U), one has to find one on the form above, acting on u.

4.2.2 Escaping from a region through a single facet

Now, if our wish is to escape from a box D,, it is necessary and sufficient to find a constant u such that
¢d(a,u) € D,, as follows from sections [2/ and [3. In general however, it will not only be satisfactory to escape
from D,, but more precisely to escape through a prescribed facet.

There are several strong arguments in favor of this more particular control problem. A simple one is that this
control problem is often a local consequence of a more global situation, where a full sequence of boxes needs to
be crossed successively. In such a case, when one has to leave a box D,, the next box to be encountered — and
thus, the escaping walls — is prescribed as well. With a fixed successor or not, anyway, it is an important matter
to obtain a controlled system which is properly related to its discrete representative, as discussed at the end
of section 2.2l Actually, we have seen that if all continuous trajectories have a discrete representative in TG,
many paths in this graph are not admissible with respect to any continuous system. A special case when the
correspondence between a continuous and a discrete system is achieved, is the case when each regular vertex
a € V of the transition graph admits a unique successor, i.e. a unique outgoing edge. In this case the transition
graph bears a deterministic finite-state automaton. Hence, given an initial rectangle, all trajectories will follow
a uniquely defined sequence of rectangles. In this case it is said, for instance in [3], that the systems of the form
(1) (resp. (8)), and their discrete analogue TG (resp. TG(u)), are bisimilar, meaning here that they share the
same reachability properties.

An illustration of this problem appears in figure[5.

Figure 5: Here, one has to find an input u such that ¢(u) is situated ’behind’ a single facet of the box under
consideration.
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The problem can be now stated as follows: let a € V be a vertex to be control-ed, i € {1---n} a prescribed
escaping direction, and € € {4, —} an orientation. Then, the sought input u must satisfy:

Vie{l--np\{i}, 67" < oj(au) < 67
If e=+, 0% < ¢ila,u) < 0%, (22)
and if e=—, 69 < gila,u) < 0@
Now, the point is that both equations and have the same form. This will be written as follows
Juel, Vie{l---n}, 0 <o¢i(a,u) <0, (23)

where the thresholds 9} are generic notations, and inequalities shall be weakened when concerning the bound-
aries of the whole domain. The remaining work is thus to define an input « such that the above system of
inequalities is satisfied.

Remark 2. Although it is not our aim here, it is remarkable that (23) is also a generic formulation for target
transition graphs TG* such that vertex a has multiple successors. It states actually the existence of an input u
such that ¢;(a,u) € R, where R is any rectangular union of boxes, written R = [[,]6;, 6;'[.

4.2.3 Generic control law for a single box

We are now seeking a control u solving condition (23). Most often the domain a will be clear in a given context,
and thus, omitted in any terms depending on it.

First, a special case has to be treated separately. This is the case ¢; = 0, or equivalently x; = 0, for some i,
which appears for example on figures 2 and [3.

Proposition 1. Suppose that ¢; =0 for some i € {1---n}.

Then, either §; > 0, and the problem (23) admits no solution, or 8; = 0, and whatever u € U, this problem
is solved for the coordinate i. Hence in this case, problem (23) reduces to n — 1 pairs of inequalities, involving
coordinates different from i.

The proof of this proposition is quite immediate, and does not require further discussion. In the following
propositions, it is implicitly assumed that coordinates for which ¢; = 0 have been removed from problem (23),
and that none of them concern an ¢ such that ;" > 0.

Now we show how problem can be solved.

Proposition 2. Consider a system of the class
Let us introduce the following notation: T+ = diag(y ---0F) € R™*",
Then, any u € U satisfying the system below is a solution of problem (23).

(/{—T‘F)u > T 40— g0

(k=T*T)u < TTA%—k0
Note that the condition u € U can also be written as pairs of inequalities on the coordinates u;, of the form
0 § Uj < Uj.

Proof. Start with equation (23). Then, let just replace ¢ by the fractional linear form it takes in the case of C1
systems:

Z?:l "Jguj + Ky
>E v+
Since, by hypothesis H2| the denominator above is positive, one obtains easily

< 0F

K3

Juel, Vie{l---n}, 6] <

K2

p

D =0 )y > 4007 — KD
Vie{l---n}, izt
> (6 =105y < A26F — KD
j=1

Which, put in matrix form, is the claimed system. O
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Remark 3. Observe that when 6, = 0, the corresponding inequality in (24) reduces to

p

S W 0
H/Z-U] > —hk;,

j=1

which, by H2] is satisfied by any u such that r;(a,u) is strictly greater than its infimum, and in particular by
any v in the interior u.

As far as no ambiguity is possible, we omit the argument « in functions /i{ and Wf hereafter. For systems
in the class 2] the inequalities can be solved by hand, and thus an explicit input may be expressed. Remind
that, for these systems, there are two functions o,¢: {1---n} — {1---p}, defining the input acting respectively
on the production and degradation rates of a given variable, see @) and (14). The last of these two equations
imposes that for each i, at least one of the two coefficients x; ) and ’yg( ) is zero. Accordingly, we introduce

S:{l---n} — {0---p}, which is defined by S(i) = o (i) (resp. <(4)) if "%‘ 7é 0 (resp. yf( 2 #0), and S(i) =
if na(l) ’yf(i) =0.

Let us also define some useful quantities: for ¢ € {1---n}, the bounds of ¢;(U) are for the class C2]

i_ - mln{¢z ¢z US 7,))} and ¢z = Imax {¢z ¢z US z))}

Actually, for the class C2, either ¢; is a function of u,;, or it is a function of u.;). These two cases can be

written as:

o (i) 0

0
Ki U)K K,
b; = —QZ or b= —m . (25)
i Vi Us(i) T Vi

Although depending on the sign of Hf(i) and 'yf © respectively, the sign of their derivative is constant. Hence
all ¢;’s are monotonic, and the bounds of their image are the images of their domain’s bounds.
Clearly, the bounds of ¢;(U) N]6;", 6; [ are max {¢; ,6; } and min {¢;,6;" }. It follows that their preimages by

i

AR

b; (max{qﬁl 07 1) and o7t (min {¢;, 07 }), (26)

bound the possibly empty interval Jm;, m;[C [0,Us(;], of input coordinates that solve the control problem
in direction i in the state space. In other words m; and m; are respectively the min and max of the two
values (26). Conveniently, these numbers may be easily expressed since here, ¢; is a monotonic real function of
the form (25).

Then, for ¢ € {1---p}, define

in mi. (27)

T = max m; and m
v’ a i€S—1(q)

+ =
Ha = 550 !

If u; < pg, any u, between these values is such that ¢;(ug) lies in the desired interval, i.e. ]0;, ;7 [, for all i
such that S(i) = ¢q. Hence we get explicit input values in this case, as summarized in the following statement.

Proposition 3. Consider a system belonging to the class C2.
Then, inequalities (23) admit as solution if and only if, for all g € {1---p},

1y < Hg
where these quantities are defined as in (27) and above.
Moreover, any u in the rectangle ﬁ}u;, ,u;r[ solves these inequalities.
q=1
Let us illustrate these propositions on our previous example.

Example (continued 2). Let us recall the transition graph of the autonomous system, as we have assumed

earlier: (E

(18] —[22)
T6w)= 1 |

-
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One may now consider local problems involving a single vertex in TG. Let for example consider vertex 21, from
which there is a single transition, to its horizontal neighbour, in the autonomous case: — . Suppose

that our wish is to force a self-loop: .

)

This is exactly solving problem|2 at the single vertex a* = 21, for the class C2| Since the latter is a subclass of
(1], one may first apply proposition 2, as an illustration. The thresholds bounding the desired successor state

are
07 =01, 07 =067, and 0; =063 =0, 65 =0,

As mentioned previously, the matriz k(x) of equation (12), is zero here. Only the vector x°(z) is possibly
nonzero : in the considered state, the coordinates k?(a*) are k%(a*) = k§ + k} and £5(a*) = k3. Thus, the

system of inequalities to be solved, as stated in proposition |2 is here the following:

191 0p1 0 1
—Y10iur > 0] — K] — Ky
0 < K

192 0p2 0 1
1 biur < 07 — Ky — Ky

—Y3b3us < 7963 — K

The second inequality is satisfied if and only if k3 is nonzero, independently of the input u. This is a special
case of remark|3.

Now, since our system belongs to the class G2, one may proceed further, illustrating proposition (3.

We assume from now on that the parameters are in accordance with figurel6.

Let us suppose that vi > 0 and 74 < 0, which is consistent with the shape of focal sets in the one input case, on
figure[6. This implies that ¢ is decreasing with u1, and ¢o is increasing with us, and of course their reciprocal
function have identical monotony. Then, the quantities defined above proposition |3 can be evaluated, step by

step
max {¢7,0; } =607 =01 and wmin{¢7,07} = o] = 6:1(0)

Then,
0 1 0pl
_ _ K{ + k1 — 10
my =0 and mf =¢;'(0)) = %9111
7191
since the latter is positive. Similarly,

my = ¢ (max{¢2(0),0}) =0

since ¢o(0) = :—g >0, and
_ ) _ /QO _ 7001
mg = ¢y (min{go(U2), 63}) = 65 (63) = = 5=,
203

based on ¢2(Usz) = sup,, ¢2(u) > 03, which holds on figure|6, on which we rest here.
Now, one has here S = id, so that ,u?: = mf. Hence the set of inputs solving our control problem at verter 21

in TG is 0 1 0p1 0 0p1
K1+ K1 — 70 < |0 Ky — V203
g1 ’ o1 J
71Y1 Y2Y3
which is nonempty in the example of figure[6: its image by (21, ) is the intersection of the red shaded rectangle

over Doy and Doy itself.
The resulting transition graph is the following:

0,

(G- )
T L
~)

TG(u) =
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0 S N, d "\ . NN
RE: QAN A N A NN
\\\\\\ \\\

NN
NN

79

Figure 6: In the case when ! > 0, focal sets are not constrained on the boundaries of the positive orthant. In each
of the 4 regular domains, the focal set is supported by a manifold defined as in (17). The one input focal sets are
red lines, and the two input ones are red shaded rectangles. In green, the focal point of D2y, controlled to be an
equilibrium, whereas this domain is not invariant in the autonomous case. Two pieces of trajectories are represented
from a common initial point: the black one corresponds to the autonomous case, and the green one to the previous
input. These orbits converge toward two distinct equilibria.

If one assumes now that there is a single input, this adds the constraint uy = us = u, with v € U = [0, U].
Also, S is the constant function, since there is only one input coordinate. It follows that, noting u* in place of
T

p~ =max{mj,m, } = 0.
and
put =min {mf,mg} ;

where mli, m2jE are the same as in the two inputs case. Now, according to proposition|3, any input in |p~, u™*|
provides a solution to our problem. The latter is nonempty on our graphical example. Actually, in figure 6, it
parameterizes the intersection of Doy and the piece of red curve that represents ¢(12,U). The obtained transition
graph is, as in the two input case, that of (28). One may remark that this graph presents no transition between
states 11 and 21. This corresponds to a white wall between the corresponding domains in phase space. Solving
a second local problem at the state 11 may preclude this behaviour, by chosing T as the transitions to be

mE

controlled.

The proposed local problem suffices here to ensure a global property of the system: from an autonomous system
with a single equilibrium, one obtains a bistable system here, only acting on degradation rates when the system’s
state vector lies inside Do .

In any case, it is important to remark that proposition [2 and its specialization [3] both lead us to check 2n

inequalities. In other words, the controllability of a single box can be checked using an algorithm that is linear
with respect to n. This fact must be compared with the already known procedure for the control of multi-affine
systems on rectangles [4, /18], which require inequalities at all vertices of a facet to be checked. The latter being a
n — l-rectangle, this leads to 2"~ ! inequalities, and the procedure has an exponential cost. Hence, our choice to
investigate piecewise-linear dynamics leads to a specific procedure, yielding an important gain, when compared
to the blind application of techniques devoted to more general systems. Moreover, equilibria for multi-affine
systems are given by polynomial equations, while they are here given by affine equations. This explains why it
is possible here to control a box so that it has no successor, which is not easily done in the more general context
of multi-affine models.
Once the conditions in propositions[2 or(3]are checked, the choice of a satisfactory input can be made arbitrarily
in the set they yield. The exact choice of these inputs may only have consequences that cannot be detected
at the level of precision of the transition graph. Hence, this proposition allows a fully qualitative treatment of
problem (23). This could thus lead to include control aspects in the existing framework of qualitative analysis
of piecewise linear gene network models [8; 9} 22].
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4.3 Control on a whole region

We consider the global control problem on our guiding example, since its low dimension allows for an exhaustive
exploration of the transition graph.

Example (continued 3). Given any vertex in TG, it is possible to compute all the neighbours towards which a
transition might be controlled, thanks to the methods introduced in the previous section. Let us illustrate this
with our example, which is governed by the equations (15), that we recall:

dx

ditl = kisT(22,00) + kY — (Yruy +~9)ay
dﬂ;‘z _

= mbsT (@1 0]) + 88— (vuz +98)s

We suppose that parameter values are consistent with figurel6. Then, the controllable transitions at each vertex
are the following:

; (32): —(22) or

1

: or : or or

T T T q
(1) S Iy

for a scalar input, while the case of planar inputs allows furthermore to control the following transition:

—[22)

}

For each vertex in table (29), the first proposed transition corresponds to the autonomous case. If the input is
a scalar, focal sets in figure|6 are curves and not rectangles, and the last transition above at vertex 21, towards
22, is not controllable. Here, the controllable transitions in (29) are directly read from the figures. Without such
geometric hints — for example in higher dimension — they would of course be computed from proposition 3.
Hence, the set of all controllable transitions graphs contains 16 = 1-2 -2 -4 elements in the two inputs case,
and 12 =1-2-2 -3 with a single input. In this case, it is possible, and even easy, to list all the controllable
graphs. Then, according to a specific purpose, those graphs that are satisfying may be chosen, and problem (1 be
solved with such an objective graph. Let just list all the possible transition graphs. To obtain a concise view of
this graph, we represent self loops by filled squares, and omit the labels of vertices. Their disposition, yet, is in
accord with the rest of the paper: 12 - 22 . With a single input the set of controllable graphs is:

11 - 21
a) B<—0 b) m<—0O0 c) m<—0 d m<—0
U R S N S N
O-<—20 O-~=0 O-=0 O<+—n’
e) B<=—0O f) m=—0O 9) B<=—0O h) B<=—0
[ S R A NS S N
O=—20 0—n O<—0 O -~ 0O
i) B<—0O j) m=—0 k) m<—0O ) m<—0
N 2 RS S N I N
O0-~0 O<~n O0=—20 O—n
To which the following can be added if a second input variable is available:
m) B<—0O n) B<—010 o) B<—01 p) B<=—0
N S A S N A
0o—0 O=<+=0 0—0 O<+=0
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The doubly oriented arrows correspond to black or white walls in phase-space. Black walls are those toward
which the flow is directed from both sides, and appear as —>< . White walls, on the other hand, are the un-
reachable (or unstable) ones, and appear as <+ . Both situations may be handled using Filippov solutions,
see section [2.1.2.

Let us consider some special control problems, now.

As could be seen from (29), vertex 12 is always fixed, whatever the input value. Vertex 21, on the other hand,
may be fized or not, as we also have seen earlier. Here, it appears that bi-stability may be ensured in our system.
This happens with four distinct global transition graphs: d), f), j) and ). Among those, d) is the one we have
already seen in some detail in the example, and f) provides the only bistable configuration without white wall.
Note that all solutions of this control problem can be achieved with a single input.

Another objective may be to require that the graph be deterministic, i.e. knowing the initial vertex determines
the whole series of transitions, see [3] for similar requirements. Here, this may be achieved by inputs associated
to the graph g), j) or p). The first and last present a single global equilibrium, while j) is bistable. All these
graph present white walls. For that control problem, the use of a second input provides an additional solution,
namely p).

Hence, as announced in the introduction, we propose control methods that ensure bi-stability in a system
whose autonomous parameters lead to a single equilibrium.
As another solvable problem, the system can be made bisimilar to its associated transition graph, see section|4.2.2
and [3].

One may be surprised by the obvious asymmetry of the controllable graphs above: although equations (15)
are symmetric in the two state variables, vertex 12 above cannot be controlled, while 21 admits three to four
controllable successors. This asymmetry is in fact a consequence of the special set of parameter values we have
considered, which we have chosen to match with figure|6.

It is clear that the exhaustive list presented in the above example can only be achieved because of the low
number of states in TG. In a more general setting, even a single transition graph has a number of vertices
that grows exponentially with the dimension of the state space, and thus can not be explored completely in
a reasonable time length. Hence global control problems are not practical, and developing general algorithms
seems of poor practical utility. However, on particular examples it is certain that most interesting control
problems will involve several vertices, and that some typical structures might be found among those present
in concrete regulatory systems. For example, semi-global problems could be considered, involving “safe” and
“pathological” regions. Then, the input should be such that the latter are unreachable, and the former invariant,
or even attracting. The study of semi-global problems should be a major concern in researches to come on this
topic.

5 Conclusion

Among modern advances in cell biology, the synthesis of living systems, or so-called synthetic biology, is one
of the most striking and promising topic. We have already mentioned examples published in |2, 12, [15], see
also the review 1], among a voluminous literature. This emerging discipline is an engineering one, and as such
requires some theoretical tools [19], some of whose are proposed in this article.

Actually, our goal here is to provide a mathematical formulation that captures some abstract characteristics
of these techniques. By this, we mean that model (8) is not intended to describe a particular technique, but
rather some common traits, whose most general description might be: “some parameters of the system can
be modified by the experimentalist”. Considering the particular case of gene networks, we focus on a class of
models that have proved their efficiency in the last few years, formulated in (1). Then we put in equations the
phrase above, and allow some parameters of the autonomous equations to be functions of an input «. Namely,
both production and degradation coefficients in are supposed to depend on u, leading to equation (8). Given
this class of systems, it appears relevant to look for piecewise constant feedback control laws. Indeed, for any
chosen law of this form, equations (8) reduce to a particular system of the form (1). Moreover, such input laws
could be concretely implemented, provided threshold crossings can be detected, a fact that is not out of reach
today [10].

We then study the most natural control problems arising within this framework. Special attention is given
to local control problems, which are the necessary first steps towards solving more global problems. We also
restrict this study to the case where the system parameters are affine functions of the input, distinguishing also
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the special case when at most one input influences each state variable. This results in propositions[2 and (3]
which provide explicit affine inequalities on the input, that ensure the solution of generic control problems.
All along the paper, a system with two variables is used as an illustrative example, leading in the last section to
an exhaustive description of its controllability properties, for any set of parameters that fits with figure 6. This
example has been concretely implemented in vivo [15], thus providing a link with more concrete, experimentally
oriented works.
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