An Upper Bound on the Average Size of Silhouettes

Marc Glisse 1
1 VEGAS - Effective Geometric Algorithms for Surfaces and Visibility
INRIA Lorraine, LORIA - Laboratoire Lorrain de Recherche en Informatique et ses Applications
Abstract : It is a widely observed phenomenon in computer graphics that the size of the silhouette of a polyhedron is much smaller than the size of the whole polyhedron. This paper provides for the first time theoretical evidence supporting this for a large class of objects, namely for polyhedra that approximate surfaces in some reasonable way; the surfaces may not be convex or differentiable and they may have boundaries. We prove that such polyhedra have silhouettes of expected size \(O(\sqrt{n})\) where the average is taken over all points of view and \(n\) is the complexity of the polyhedron.
Type de document :
Communication dans un congrès
22nd ACM Symposium on Computational Geometry 2006, Jun 2006, Sedona, Arizona, USA, 2006
Liste complète des métadonnées

https://hal.inria.fr/inria-00095282
Contributeur : Marc Glisse <>
Soumis le : vendredi 15 septembre 2006 - 14:23:55
Dernière modification le : jeudi 11 janvier 2018 - 06:20:14

Identifiants

  • HAL Id : inria-00095282, version 1

Collections

Citation

Marc Glisse. An Upper Bound on the Average Size of Silhouettes. 22nd ACM Symposium on Computational Geometry 2006, Jun 2006, Sedona, Arizona, USA, 2006. 〈inria-00095282〉

Partager

Métriques

Consultations de la notice

184