Strictly Orthogonal Left Linear Rewrite Systems and Primitive Recursion

Adam Cichon 1 Elias Tahhan-Bittar
1 CALLIGRAMME - Linear logic, proof networks and categorial grammars
INRIA Lorraine, LORIA - Laboratoire Lorrain de Recherche en Informatique et ses Applications
Abstract : Let F be a signature and R a strictly orthogonal rewrite system on ground terms of F. We give an effective proof of a bounding condition for R, based on a detailed analysis of how terms are transformed during the rewrite process, which allows us to give recursive bounds on the derivation lengths of terms. We give a syntactic characterisation of the Grzegorczyk hierarchy and a rewriting schema for calculating its functions. As a consequence of this, using results of Elias Tahhan-Bittar, it can be shown that, for n > 2, the derivation length functions for functions in Grzegorczyk class En belong to Grzegorczyk class En+1. We also give recursive bounds for the derivation lengths of functions defined by parameter recursion.
Type de document :
[Intern report] 98-R-351 || cichon98b, 1998, 16 p
Liste complète des métadonnées
Contributeur : Publications Loria <>
Soumis le : lundi 25 septembre 2006 - 15:36:08
Dernière modification le : jeudi 11 janvier 2018 - 06:19:48


  • HAL Id : inria-00098335, version 1



Adam Cichon, Elias Tahhan-Bittar. Strictly Orthogonal Left Linear Rewrite Systems and Primitive Recursion. [Intern report] 98-R-351 || cichon98b, 1998, 16 p. 〈inria-00098335〉



Consultations de la notice