Unsupervised Algorithms for Vector Quantization: Evaluation on an environmental data set

Laurent Bougrain 1 Frédéric Alexandre
1 CORTEX - Neuromimetic intelligence
INRIA Lorraine, LORIA - Laboratoire Lorrain de Recherche en Informatique et ses Applications
Abstract : Wave propagation laws are highly linked with environmental nature (city, country, mountains, etc...). Within the framework of a cell net planning in radiocommunication, we are interested in determining classes, homogeneous enough, upon which specific prediction models of radio electrical field can be applied. Various algorithms for unsupervised vector quantization exist and do not yield exactly the same result on the same problem because quantization can be done from different points of view. To better understand this phenomenon, this article presents evaluation of unsupervised neural networks, among the most useful for quantization, applied to a real-world problem. A particular interest is given to techniques that improve data analysis. The use of Mahalanobis' distance allows an assignment independently of the data correlation. The study of class dispersion and homogeneity using data structure and statistical analysis put in a prominent the global properties of each algorithm. Finally, we discuss the interest of these methods on a real problem of clustering linked to radiocommunication.
Type de document :
Communication dans un congrès
NEURAP, Fourth International Conference on Neural Networks and their Applications, 1998, Marseille, France, pp.347-350, 1998
Liste complète des métadonnées

Littérature citée [8 références]  Voir  Masquer  Télécharger

https://hal.inria.fr/inria-00098695
Contributeur : Publications Loria <>
Soumis le : mardi 26 septembre 2006 - 08:17:30
Dernière modification le : jeudi 11 janvier 2018 - 06:19:48
Document(s) archivé(s) le : mercredi 29 mars 2017 - 12:26:17

Fichiers

Identifiants

  • HAL Id : inria-00098695, version 1

Collections

Citation

Laurent Bougrain, Frédéric Alexandre. Unsupervised Algorithms for Vector Quantization: Evaluation on an environmental data set. NEURAP, Fourth International Conference on Neural Networks and their Applications, 1998, Marseille, France, pp.347-350, 1998. 〈inria-00098695〉

Partager

Métriques

Consultations de la notice

172

Téléchargements de fichiers

39