N

N

A CPS-semantics for a typed lambda-calculus of
exception handling with fixed-point

Catherine Piliere

» To cite this version:

Catherine Piliere. A CPS-semantics for a typed lambda-calculus of exception handling with fixed-
point. ESSLLI'98, 1998, none, 12 p. inria-00098699

HAL Id: inria-00098699
https://inria.hal.science/inria-00098699
Submitted on 26 Sep 2006

HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est
archive for the deposit and dissemination of sci- destinée au dépot et a la diffusion de documents
entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non,
lished or not. The documents may come from émanant des établissements d’enseignement et de
teaching and research institutions in France or recherche francais ou étrangers, des laboratoires
abroad, or from public or private research centers. publics ou privés.

https://inria.hal.science/inria-00098699
https://hal.archives-ouvertes.fr

Chapter 1

A CPS-semantics for a typed A-calculus of
exception handling with fix-point

CATHERINE PILIERE

ABSTRACT. We propose to add a fixed-point combinator to a A-calculus of excep-
tions handling whose type system corresponds to classical logic through the Curry-
Howard isomorphism. To this end, we here give a CPS-semantics to the calculus
and show that for non-exceptional terms, this semantics possesses the property of
computational adequacy.

1 Introduction

In [de Groote,1995] Philippe de Groote proposed a computational interpre-
tation of classical logic through a simply typed A-calculus which features an
exceptions handling mechanism inspired by the ML language.

This calculus has several interesting properties among others: strong
normalisation, confluence and subject reduction, the greater part of them
being given by its typing system which ensures that every raised exception
is eventually handled whenever the whole term is correctly typed.

Our goal consists in seeing if this interpretation can provide a realistic
system of exceptions handling, with emphasis on the study of its behaviour
in the presence of a general fixed-point combinator.

As such an operator implies the loss of strong-normalisation which guar-
anteed most of the properties of the calculus, it is first necessary to give a
mathematical model (i.e., a denotational semantics) to the calculus in order
to retain the indispensable framework of reasoning.

Nevertheless, as we are interested in exceptions handling, it appears
clearly that the direct denotational semantics is inadequate because it does
not provide a way of expressing what is happening when an exception is
raised and handled. So it is necessary to use a “continuation passing style
semantics” (“CPS semantics ” for short), because it is the only way of taking
account of context changes which could appear during the evaluation of the
terms.[Reynolds,1974]

On the other hand, known direct denotational semantics (where we focus
on the expressions of the A-calculus which do not contain exceptional sub-
terms), possess the property of “computational adequacy” [Winskel,1993]
[Gunter,1992], which allows us to reason about the operational behaviour of
the terms of the language.

By bringing to the fore a relation between the two semantics, from which
we know that a term denotes the undefined element by the direct semantics
if and only if it denotes the undefined element by the continuation seman-
tics, we establish that the continuation semantics possesses this property too.

We first present the A..,-calculus with fixed-point and its operational
semantics. Part two describes its CPS-interpretation, part three being con-
cerned with the direct semantics of the terms of the calculus which do not
contain exceptional values (),) and the property of computational adequacy.
The last part is devoted to the equivalence between these two models for A,.

2 The A..,-calculus with fixpoint
Definition 1 The types of the calculus are given by the following grammar:
T o= vlexn| T =T

where + and exn stand for the base lypes, exn being the type of exceptional
values.

Aezn features an exception handling mechanism by means of exception
variables y which act as datatype constructors: these exceptional variables
are of functional type, say 7 — ezn and then, when applied to a term of
type 7, return exceptions. An exception acts like all the terms of base type
but may also be raised under the form of packets, which are then propagated
and possibly handled.

The packet (Raise M) will be represented by the term (RM), the excep-
tion declaration let exception y : o — exn in M handle (yz) = Nend
being represented by the term (y - M|z - N).

Multiple declarations such as (y1 - (y2 ... (yn - M|z - Ny) ...)|z Ny) will
be abbreviated by (7" - M|z - ﬁ)

The term pf - Az - M represents the recursive function solution of
the equation f = Az - M(f, z).

As our interest lies in the termination property, we will consider the set
of constants as reduced to the single element *. Nevertheless, the proofs
would be applicable with a more realistic set.

Definition 2 The syntax of the expressions of the calculus is the following:

The set F'V (1) of free variables of a term T is defined as usual. In
particular, the free occurences of y in M and z in N are bound in (y-M|z-N)
and similarly, the free occurences of f in Az - M are bound in pf - Az - M.

Definition 3 Define a lyping environment to be a function thal assigns a
type to every variable. Let 1 stand for such an environment. The expressions
of the language are typed in the following manner:

' Fox:e
I' - z:I'(2)
Nz:ak M:j
'k X - M:a0—p
r-M:a—=p0 I' W N:a
' - MN:g
' F M:exn
I' - (RM) : o
Ny:a—exn F M:p Tz:a kb N:j
' - (y-M|z-N):p
Nez:a, fra—=pF F M:p
- puf-de-M:a—p3

If exn is seen as the absurdity type false, then the type system above,
provided that we forget the rule for fixed-point, corresponds to classical
logic through the Curry-Howard isomorphism. Now, a natural question
arises: what is the meaning of the last rule 7 Another way this rule can be
expressed is the following;:

I, fra—=p0F de-M:a—p
I -puf-da-M:a—3

which appears clearly as a very unexpected logical paradox: (A = A) +
A ..

However, we can also see it as a rough approximation for the Noetherian
induction:
VE (Vi< k A(@)] = A(k))
VEk A(k) '

where “<” denotes a well-founded order.

Our interest lies in a call-by-value calculus, this means a calculus where
G-reduction is performed only if the argument belongs to a particular set
which will be called “set of values” and noted by Val.

Definition 4 The set Val of values is defined as follows:
Val == x|z |y | dz- M| (yVal).

In the following, V' (with possible subscript) will stand for a member of
Val.

Val V=,V VW eVal

By (A - M)V =, M[V/z]

Raisejes; VI(RV)—=,(RV)

Raisepignt : (RV)M—,(RV)

Raisejgem : (R(RV))—=,(RV)

Handlegmp : (y- M|z - N)—» M if yg FV(M)
Handleyaise : (7 - (Ryi V|2 N)=o(T - Ni[V/a]lz - N)

Handles: : V{y-Ml|z-N)—,(y-VM|z-VN)
Handleyigne : (y- M|z - N)O—,(y - MO|z - NO)
Raisepandle @ (R{(y- M|z - N))—=,(y- (RM)|z - (RN))
Fix spf Az M=y e - Mpf - Az - M/ f]

Table 1.1: Fvaluation rules of Aery

We will use the notations =, for the reflexive and transitive closure of
—, and M1, to express the fact that the evaluation process loops for the
term M.

3 CPS-semantics

From a functional point of view, programs can be represented by closed
A-terms of ground type. Because M., deals with exceptions handling and
recursion, the evaluation of a program may give a value, in an ideal situa-
tion, or end with a raised but uncaught exception, which is in fact not too
bad as it is an observational result too, or else the evaluation can never stop,
this last case being of course very unexpected.

At the start of the process, the information needed for evaluation is en-
tirely contained in the term, as it does not depend of any free variable. Later

on, things become more complicated: the handled objects, which are sub-
terms of initial ones, are not always closed terms, but maybe some closures
(i.e., terms bound to environments) and their evaluations possibly interact.
As long as this interaction stays purely applicative, it is possible to mir-
ror the operational behaviour of the terms by way of a direct denotational
semantics, even for call-by-value [Reynolds,1974]. But here, exception han-
dling makes this no more adequate because the propagation of packets (i.e.,
raised exceptions) is done to the detriment of applicative contexts.

In order to model this situation, let us denote the set of final outputs of
programs by O as a reference to the observational character of its members.
We may distinguish two ways terms would be given an interpretation. A
term can be considered without taking account of the applicative context it
belongs to, but only for its value in a given environment. Such a value is
said to be explicit; typically, a closure is an explicit value.

However, when we consider the evaluation process, it appears clearly
that, at every moment, the final output of the program is not only deter-
mined by the explicit value of the term being evaluated, but by the current
applicative context too. In a sense, a term is then potentially dependent on
an evaluation context. This observation leads to a second level of term in-
terpretation which consists in giving them an implicit value. Intuitively, an
implicit value is a function whose argument is an applicative context (i.e.,
a continuation) to be applied to an ezplicit value.

Definition 5 Let O be a CPO of observational values; let I be the CPO
{L,*} ordered by L C x; let A — B stand for the continuous function space
between the CPQO’s A and B. The explicit types interpretation is given by:

[:]es =1
[[false]]c_ps O
[o = 715 = ([o]eps — [71Es)

the implicit interpretation of a type T being given by:

[71&s = (([715s — 0) — 0).

cps

Let ¢ stand for a continuation and p stand for an environment function
that assigns to non exceptional variables z : 7 an explicit value p(z) € [T]Z,s
and let n stand for an environment function that assigns to exceptional
variables y : 7 — exn an explicit value 5(y) € [7 — false];,,. We can now
give the CPS-semantics for A.., by the following structural induction:

[[*]]CPSpnC =cC (*)7

[2]eps prc = c(p (),

[lcos pmc=c(n(y)),

[Az - Meps p e = ¢ (\d.[M]eps pld/z] m),

[MN]eps pic = [Mleps p n (Am.[N]eps p n (An.m () (c))),
[(RM)]cps pne = [M]eps p 1 (Nz.3),

[y - M|z - N)]eps prc = [M]eps p n[(M-Ne.k ([N]eps pld/x] me)) /y] €,
INf Az - Meps pe= ¢ (| e, F), where:

tEw Tt
{FO — J—v
Fiy1 = xd-[[zw]]cps p[d/x, FZ/f] .

4 Direct semantics

The non-exceptional terms of the calculus can be interpreted in the frame
of lifted CPO’s and the strict continuous functions. (For more details, see
[Winskel,1993] or [Paulson,1987].)

Definition 6 Let A be a CPO, with the order C 4. The lifting of A consists
in adding a new element, say L, to a copy of A and in defining for this new
set denoted A’ a new partial order C 4/ in the following manner:

Va,y € AlsC oy < (z=1) or (z,y € A and zC4y).

Definition 7 Let f be a continuous function from a CPO A to a CPO B. Let
1 4 and Lp be respectively the smallest elements of A and B. The function
[is said to be strict if and only if

VeeA z2=14= f(z)=Lg.

We will denote by “A;” the CPO result of the lifting operation applied
to the CPO A and by “A o— B” the strict continuous function space from
the CPO A to the CPO B.

Under the previous conventions, we can now describe how type expres-
sions are interpreted.

Definition 8 Let I stand for the two elements CPO { L, x} ordered by L C

" []air =1
[o = tlaic = ([o]air o= [7]air) L

We use strict functions in order to model call-by-value evaluation: if the
argument loops (i.e., if it denotes L), then the result of the application of
the function to this argument loops too and thus its denotation must be
undefined too.

[¥lair p = *,

[2]air p = p(2),

D\ - Mai p = up (strict (\.[M]aie pld/2])),
[MN]aix p = down ([M]dir p) ([N]air),

[uf - Az - Mlaiep = up (strict (| |.. F})), where:

iEw T

{Fo =1,
Fip1 =N [Mair pld/x, up(strict(F;))/ f].

Such a mathematical interpretation of a call-by-value A-calculus has been
shown to agree with given evaluation rules. Two different proofs can be
found in [Winskel,1993] and [Gunter,1992]. For A,, the agreement of deno-
tational and operational semantics is expressed by:

Theorem 1 [Winskel, 1993][ch.11, p.190-200] M=% <= [M]air = *

It follows that, provided it does not deal with exceptions, a closed term
of ground type, that is, a program, loops if and only if it is denoted by L:

Corollary 1 Let M : . be such that FV (M) = 0.
Then: M 1, <= [M]air = L.

Proof. Let M be a closed term whose evaluation loops. Then, it is not
true that M=, *. It follows from theorem 1 that [M]gir # *, that is:

[M]air = L.
Suppose now that [M]g; = L. By theorem 1 we cannot have M5,
hence M 1, O.

5 Equivalence between the two semantics

In order to establish the computational adequacy of the CPS-semantics we
propose for A..,, we define an equivalence notion between direct semantics
and CPS-semantics by adapting Reynolds [Reynolds,1974] and then prove
that for non-exceptional terms, the two models yield equivalent results with
regard to termination.

Definition 9 Let o € T, d € [a]air, and d' € [a]d,,. The relation d ~ d' is
defined as follows:

L a=u d~d ifand only if (d = L[y, and d' = J‘lIOf]]érp~)’
or else (d = * and d' = \c.c (x)).

2. a=0—71. d~d if and only if (d = Ly, and d' = J-[[a]]jp,)f
or else there exists (f € ([o]aic = [T]aic) and f' € [o — 7]

d = up (strict (f))
such that: { d =N\c.c(f')

Ve € [o]air, € € [0]osr € ~ Ne.c (€f) implies f(e) ~ f' ().

c_ps)

Lemma 1 Let a € T. Then, under the following assumptions:

1. Vi a; € [[a]]din bz € [[a]](—:}—ps

2. Vi,j1<j=a; Ca; and b; C b;,

3. Yia; ~b;

we have: | |;(a;) ~ |];(b;)
Proof. (See Appendix A)

Proposition 1 Let p, p’ be such that Yz p(z) ~ \c - c(p'(z)).
Then, we have for all e € E: [e]airp ~ [€]cps p'-

Proof. (By structural induction on the terms)

e = %: One has: [*]qgir p = 5 [*]eps o’ “ e - c(*).

By definition of ~, one gets trivially: [*]air p ~ [*]cps 0’
e = x: Obvious from the semantics.
[Az - M]airp = up(strict(Nd - [M]air p[d/]))
[Ae - Mlpsp! = Ae (0l [M]ope pd/2]).
Let e and e’ be such that e ~ Ac¢ - ¢(e/). Then, by induction
hypothesis on M, we get:

e = Az - M: We have: {

(A - [M]air pld/2]) (e) = [M]air ple/7]
~ (A - [M]eps p[d/2])(€") = [M]cps p'[€' /2]

Thus, by definition of ~, we finally obtain:

Vp,p' s {Va i p(a) ~Ne-c(p(2))}
= {[Az - M]airp ~ [Me - M]cpsp'}

e = M N: From the semantics, we know:

{[[MN]]dirp = down([M]aicp) ([N]aicp)
[MN]epsp' = Ne - [M]cpsp’ (A - [N]cpsp’ (An - mnc)).

Suppose: Vz : p(z) ~ Ne- ¢(p'(z)).

Then, by induction hypothesis: {

with {

[M]aicp ~ [M]cpsp’
[N]aicp ~ [[N]]Cps/o/7
[M]aicp € [a = Blair, [M]epsp’ € [or = Bl
[Nairp € [a]air, [N]epsp” € [alde

first case: (M1 = Ljaosspars [Mleout’ = Lioyops, -
Then [MN]airp = Lygp,, and [MN]cpsp' =XAe- Lo

=1

([815.—0)—0 = J‘[[ﬁ]]érps are related by definition of ~.

second case: [MJairp # Lassgly,s [Mepsp’ # Lassslt.-

By the way, we know that: {

[M]airp = up(strict(far))
[M]epsp’ = Ae - c(f3y),

{fM € [o]air = [Blair
where

I € Lo = Blgps = ([odGps — 101)

and Ve € [a]air, € € [0]5, 1 € ~Newc(e') = far(e) ~ fi (€.

Hence we have:

[MN Jairp = strict(far) ([N]aiep)
[MN]epsp' = Ne - [N]epsp'(An - far(n)e).

Two cases are now possible:

1.

[I:N]]dlrp == J—[[oz]]dilﬂ [I:N]]CPSp/ = J_[l:Ol]]j-ps '
Then [M NJaip = Lgy,, and [MN]epsp’ = L
Hence, [M N]girp ~ [MN]cpsp'.

[81&%.

. dn € [a]qir such that [N]gip = n.

Then, by definition of ~ and induction hypothesis, we
know that 3n' € [a]7, such that [N]cpsp” = Ae - c(n')
and we have n ~ \c - ¢(n').

[MN]dgirp = frr(n)
[MN]cpsp' = Ne - fr(n')e,
are related by induction hypothesis, as f},(n’) and \e -
fas(n')c represent the same element in the functional

which

Thus we obtain:

space.

e = pf - Az - M: with the assumption: Vz p(z) ~ Ac - ¢(p'(2)),
we prove that: Ve up (strict (F;)) ~ e - ¢(F]))),

that is:

F{ (¢,

where:

Vi Ve € [o]air, € € [o]cps, € ~ Ne.c (€f) implies F; (e) ~

cps?

{FO = J_[[OA]]dilr_>[|:ﬁ]]di1r7 .
Fip1 = Nd - [M]air pld/z, up(strict(F;))/ f]

9

P;'/-}-l =\ - [[M]]cps p[d/xv F;//f]
Then, by the lemma and the fact that all the functions we use are

continuous, we will be in a position to conclude that the meanings
of wf - Ax - M in the two semantics are related by ~.

! —
and {FO = Lamsplz

The proof will be carried out by an auxiliary induction on i.

base case: one has, by the semantics:

up (strict (Fo)) = up (strict (Lja],, —[8]a)
Ne - e FY) =N e(Lp,g-,)-

L =1
AS ve c [[a]]dlr7 ve c [I:a]]cps : ([[aﬂdlr%[[ﬁﬂdlr)() [[ﬁ]]dlr
Loz (€)= L,
the case is established for z = 0.
induction step: Let e and e’ be respectively elements of [a]qir

and [a],s- Then, by the semantics given above:

{ Fiyi(e) = [Mair ple/d, up(strict(F;))/ f]
Fi(€) = [M]eps p'[€'/d, (FY))/ 1.
Suppose that e ~ Ae-¢(e’). By auxiliary induction hypothesis,

we then have: up (strict (F;)) ~ Nc- ¢(F})) and by principal
induction hypothesis, we finally get Fiyi(e) ~ F{ ,(€'). O

We can now conclude that, as far as non-exceptional terms are concerned,
the CPS-semantics above possesses the property of computational adequacy,
which is expressed by the following corollary:

Corollary 2 Let M : 1 be a non-exceptional term such that FV (M) = {).

Then: M 1, <— [[M]]cps = J-[L]]cpb'

Proof. By Corollary 1 and Proposition 1. O

6 Conclusion

The previous results seem to indicate that the CPS-semantics we propose
for Aezp is convenient for modeling the evaluation rules of the calculus, even
if, of course, it remains to prove the property of computational adequacy for
exceptional terms.

The next step will be then to study what properties are conserved by
addition of the recursion operator and if others constructions, like for ex-
ample if-then-else may in turn be added with benefit to make A.,,, a really
expressive functional language.

10

References

[de Groote,1995] Ph. de Groote, A Simple Calculus of Exception Handling.
Lectures Notes in Computer Science 902, 1995

[Winskel,1993] G. Winskel, The Formal Semantics of Programming Lan-
guages. MIT Press, 1993

[Gunter,1992] Carl A. Gunter, Semantics of Programming Languages. MIT
Press, 1992

[Paulson,1987] L. C. Paulson, Logic and Computation: Interactive Proof
with Cambridge LCF. Cambridge University Press, 1987

[Reynolds,1974] John C. Reynolds, On the Relation between Direct and
Continuation Semantics. Proceedings of the second Colloquium on Au-
tomata, Language and Programming, LNCS 14, 1974

Appendix A: Proof of the Lemma 1

We shall proceed by induction on the type of a¢; and b;:

Base case: Vi: a; € [t]air, b; € [[L]]j_ps

first case: we have, forall i: a; = L, , bi = J‘[[a]]ips'
Hence, U(ai) = L LJuir |_|(b2) = J‘[[A]]ips’
which giz/es, by the definition of ~: L, (ag) ~ 1 (bs)-
second case: 3Jig such that Vi, ¢ > ip implies: a; = %, b; = Ne - ¢(*).

Then, we have: |_|(a2-) = x, |_|(bz) =Ne - ¢(x),

which are related by definition.

induction case: Vi: a; € [a = Bair, bi € [0 — ﬁ]]j—ps
first case: Vi: (a;) = Lyap7,,, (b)) = Lassppt,-

As before, we get |_|(ai) ~ |_|(b2) by definition.

second case: dig such that Ve, ¢ > 7p implies

Elfiv fi/ Pa; =up (StT’iCt (fl))? b; = Ae- C(fi/)
and we know then from the third assumption that:

Ve € [alair, € € [a]ge: e ~Ne-c(€) = fi(e) ~ fi(€).

11

Hence we have: |_|(ai) # L[asp]s, and |_|(b2) # Liassapt.

Then, by the definition of ~ for the functional types, in order to
get |_|(a2-) ~ |_|(b2) , we need to prove:

7

Elf € [[a]]dir — [[ﬁ]]dir) f/ € [[Oé — ﬁ]]c_ps = [I:a]]c_ps - [[ﬁ]]j_ps
|_|(ai) = up (strict (f)),

such that: |i|(b2) =N\c-e(f),

Ve € [a]air, €' € [a],s : e~ Ne-c(e') = fe) ~ ['(€').

As the functions up, sTRICT and the continuations ¢ are con-
tinuous and as the function space we use is that of continuous
functions, we have:

| (@) = | JCup (strict(£))) = up (strict (|_](f:)))

7 7 7

| @) =] |(re-e(£]) =Ne-ef| |(5)

where: VZ: 5.fi € [[Oéﬂdir = [Blair, fi € o — Bl
Vi,j: i1<j= (fiC f;, fz'/Ef]/‘)-

As the sets [a]dir — [B]air and [— B],s are CPOs whenever

a — (4 is a type, we have |_|(f2) € [e]air = [B]dair
and Ll(f{) € [a = Bl

Let e € [@]air, €' € [a]7, be such that e ~ Ac - c(€).

We have: (|| fi)(e) = |_|(fi(e)and(|] f)(¢) = [J(F ().

K3

K3

From the second assumption above, we know that: Vi, f;(e) ~
J!(€') and we have too: Vi: fi(e) € [Blair, f/(€) € [ﬁ]]j'ps.
Hence, by induction hypothesis, we can conclude |_|(f2(e)) ~

K3

12

