N

N

Using Rewriting and Strategies for Describing the B
Predicate Prover

Horatiu Cirstea, Claude Kirchner

» To cite this version:

Horatiu Cirstea, Claude Kirchner. Using Rewriting and Strategies for Describing the B Predicate
Prover. Proceedings of the Workshop on Strategies in Automated Deduction - CADE-15, F. Pfenning,
B. Gramlich, 1998, Lindau, Germany, pp.23-34. inria-00098715

HAL 1Id: inria-00098715
https://inria.hal.science/inria-00098715
Submitted on 26 Sep 2006

HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est
archive for the deposit and dissemination of sci- destinée au dépot et a la diffusion de documents
entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non,
lished or not. The documents may come from émanant des établissements d’enseignement et de
teaching and research institutions in France or recherche francais ou étrangers, des laboratoires
abroad, or from public or private research centers. publics ou privés.

https://inria.hal.science/inria-00098715
https://hal.archives-ouvertes.fr

Using Rewriting and Strategies for Describing
the B Predicate Prover
(Extended Abstract)

Horatiu Cirstea and Claude Kirchner

LORIA & INRIA
615, rue du Jardin Botanique, BP 101,
54602 Villers-les-Nancy Cedex, France
email: {Horatiu.Cirstea,Claude.Kirchner}@loria.fr

Abstract. The framework of computational systems has been already
used for describing several computational logics. In this paper is de-
scribed the way a propositional prover and a predicate prover are im-
plemented in ELAN, the system developed in Nancy for describing and
executing computational systems. The inference rules for the provers are
described by conditional rewrite rules and their application is controlled
by strategies. We show how different strategies using the same set of
rewrite rules can yield different proof methods.

1 Introduction

We start from the idea that logic programming in a broad sense, and theorem
proving can be uniformly described in a logical framework. The rewriting logic
([MOM96)), a particular case of general logics ([Mes92]), provide such a logical
framework in which many other logics can be represented by describing the
syntax of formulas, the set of axioms, the set of deduction rules and the proof
calculus.

The representation of a theorem prover like the predicate prover in this for-
malism allows to describe in a simple and expressive way the inference rules of
the prover allowing on one hand the user to better understand its behaviour and
on the other hand to prove properties of the rules. Furthermore, by making the
formalisation executable we allow either to directly use the prover or to replay
proofs done by another one.

In order to describe a computational version of a certain logic we use com-
putational systems that can express the proof calculus of the given logic. A
computational system ([KKV95]) is a combination of a rewrite theory and a
strategy describing the intended set of computations. Computational systems
are simple to understand as they are based on rewriting logic and first-order
tools.

These ideas are implemented in the language ELAN ([BKK*96]) which allows
to describe computational systems. In the environment provided by this language
alogic can be specified by describing its syntax and inference rules. The inference

rules of the logic are described by conditional rewrite rules possibly containing
local assignments. The application of these rules is controlled by strategies at two
levels: the first one consists of defining expressions built over the alphabet of rule
labels and the second one consists of using strategies in the local assignments of
rule definitions.

We use ELAN as a logical framework for implementing the propositional cal-
culus and the first-order predicate calculus whose syntax and inference rules are
presented by J.-R. Abrial in [Abr96,Abr97].

The implementation of these rules in ELAN is done in a very natural way,
most of the rewrite rules being syntactical transformations of the initial infer-
ence rules. ELAN provides a powerful definition of strategies used to guide the
application of the rewrite rules and a great flexibility in developing new strate-
gies. The description of the strategy is conceptually easy and the structure of the
denoted proof terms can be straightforwardly derived from the computations.
Thus, proofs of conjectures in the specified logics can be obtained by analysing
the trace (provided in the ELAN environment) of the computations performed
during the deduction process.

The section 2 presents the basic notions concerning the rewriting logic and the
computational systems. The way these ideas are implemented in ELAN is then
briefly presented. Section 3 presents some representative rules of the proposi-
tional and predicate prover and the strategies that guide their application. The
last section of the paper contains the conclusions and gives further perspectives
for this work. !

2 General Setting

This section presents the main concepts of rewriting logic that is fully described
in [Mes92,MOM96]. The computational systems are then defined as rewrite the-
ories in rewriting logic together with strategies that guide the computations.
This provides the semantical foundation of the ELAN system as an environment
in which computational systems can be described and executed.

2.1 Rewriting Logic

We just briefly recall the basic notions that are consistent with [JK91,DJ90] to
which the reader is referred for a more detailed presentation. The definitions
below are given in the one-sorted case, the many-sorted and order-sorted cases
can be given a similar treatment.

We consider a set F = U}'n of ranked function symbols, where F,, is the

n
subset of functions of arity n, a set X of variables and the set of terms 7 (F, X)
! The implementations of the propositional and predicate prover can be tried at

http://www .loria.fr/equipes/protheo/PROJECTS/ELAN/Applications/PropProver
and http://www.loria.fr/equipes/protheo/PROJECTS/ELAN/Applications/Prover

built on F using the variables in X. 7 (F, X')/FE denotes the free algebra of terms
modulo F, where F is a set of equalities.

In rewriting logic, proofs are first-order objects and are represented by proof
terms. In order to build proof terms the rules are labelled with a set £ of
ranked label symbols. A proof term is by definition a term built on equiva-
lence classes of T (F, X)/E, function symbols from F, label symbols from £ and

K2

the concatenation operator “;”. Thus, a proof term is an element of the algebra
PT=T(LU{;}UFUT(F,X)/E).

A theory in this logic is a generalisation of the notion of theory from [Mes89],
the axioms in the rewriting logic being identified by labels. A labelled rewrite
theory is a 4-tuple R=(F,E,L,R) where F is a ranked alphabet of function
symbols, E is the set of T(F, X)-equalities, £ is the set of labels and R a set
of labelled rewrite rules of the form ! : lhs — rhs where l € £ and lhs, rhs €
T(F, X) satistying Var(rhs) C Var(lhs). The arity of {is the number of variables
in Var(lhs).

2.2 Computational Systems

The rewriting logic is proposed in [MOM96] as a logical framework in which
other logics, like equational logic and Horn logic, can be represented and as a
semantic framework for the specification of languages and systems. The opera-
tional semantics for rewrite theories are presented in [KKV95] where it is shown
how computations in a rewrite theory can mirror computations in various logical
systems.

The equivalence relation generated by F and the set of equational axioms
(presented in [KKV95]) on the set of proof terms induces an equivalence on
computations by considering that two computations are equivalent if their proof
terms are equivalent.

A strategy is a subset of the set of proof terms P7 of the current rewrite
theory and is used to describe the computations one is interested in. The result
of applying a strategy on a term is the set (possibly empty) of all terms that can
be derived from the initial term using the strategy. We formally express this by
giving a functional representation to the application of a strategy S on a term ¢

S(t) =A{[t'lz|3 € S,[t]r = [t']e}

A computational system is defined as a labelled rewrite theory R=(F,E,L,R)
together with a strategy S. [KKV95] gives examples of languages and systems
designed in this formalism.

2.3 The ELAN Environment

ELAN is a language for designing and executing computational systems. In ELAN,
alogic can be expressed by specifying its syntax and its inference rules. The syn-
tax can be described using mixfix operators and the inference rules are described
by conditional rewrite rules. In order to guide the application of the rewrite rules

strategies are introduced. A full description of the language and its implemen-
tation is given in [BKK98] and a survey of several examples that have been
developed using ELAN is presented in [BKK™96].

All rewrite rules are working on equivalence classes induced by the set of
equations F that in the case of ELAN is restricted to associativity and commu-
tativity axioms, for the symbols defined to be associative-commutative.

A labelled rewrite rule in ELAN is defined as a pair of terms built on func-
tional symbols and local variables and additionally it can be applied under some
conditions and it can use some local assignments. Several rules may have the
same label, the resulting ambiguities being handled by the strategies. The rule
label is optional. In this case it is the responsibility of the designer to provide a
confluent and terminating set of unlabelled rewrite rules.

The application of the labelled rewrite rules is controlled by user-defined
strategies while the no-named rules are applied according to a default normali-
sation strategy. The normalisation strategy consists in applying no-named rules
at any position of a term until the normal form is reached, this strategy being
applied after each reduction produced by a labelled rewrite rule.

The application of a rewrite rule in ELAN can yield several results due to the
equational (associative-commutative) matching and to the where clauses that
can return as well several results. Applying consecutively two rules is represented
by the concatenation operator “;” and the non-determinism is handled by two
basic strategy operators: dont care choose(dc) that returns at most one result
un-deterministically chosen from the set of possible results of the application of
the rule and dont know choose(dk) that returns all the possible results. The
strategy repeat* apply sub-strategies in a loop until none of them is applicable.

The syntactic definitions and the rewrite rules can be implemented in ELAN
in a modular way. Each module represents a computational system that can be
parameterised and combined with other modules in order to build the whole
system

3 The Theorem Prover

Using the framework presented in the previous section we map the rules of the
predicate prover described by J.-R. Abrial [Abr96,Abr97] in a computational
system whose computations describe proofs in the initial proof calculus.
We just briefly describe the format of inference rules and the way these rules
are used, a more detailed presentation can be found in the B-Book [Abr96].
The conjectures to be proved are described by sequents consisting of a number
of hypotheses H and a goal P and they are represented in the form: H F P.
We use the notation presented in [Abr97] for describing the inference rules:

| | Antecedents | Consequent |
| RuleName | 51,5,..5, | S |

where RuleName is the name that uniquely identifies the rule and S; are the
antecedents that can be sequents of the form H F P or side-conditions written

in English. Such a rule represents the fact that the proof of the consequent can
be reduced to the proof of his antecedents. The rules that have no sequents in
the antecedents represent axioms. A sequent can be proved by an axiom having
it as consequent.

The theorem prover is described by a signature providing the syntax, an
inference system defining the possible inferences and a search plan that selects
at each step of the reduction the inference rules that can be applied. In our
approach the inference rules are expressed using conditional rewrite rules and
the search plan by a strategy that guides the application of the rewrite rules.
Depending on the strategies used for applying the inference rules the reduction
process can yield different proofs, i.e. different computations.

A sequent of the form H F P is proved to be valid when it is transformed
using the inference rules in a set of valid sequents, this proof corresponding
in ELAN in finding a derivation (H |— P) = $ (where $ represents the valid
sequent) using the rewrite rules guided by the specified strategy.

In the development of the theorem prover we can distinguish 3 steps: the
implementation of a propositional prover, its extention to a predicate prover and
finally the introduction of the notion of equality. Each of the provers extends
the previous one by adding a certain number of syntactic elements and inference
rules. Since the strategies used in the three cases are quite similar we insist on the
rules and strategies used in the propositional prover, a more detailed description
of its extensions is presented in [CK97].

3.1 The Propositional Prover

We present now the syntax and the inference rules of the first level of the prover
- the propositional prover. It is also described the strategy used to apply these
rules. Each of the described rules will be presented in the form proposed by J.-R.
Abrial in [Abr97] and by its implementation in ELAN.

The inference rules of the prover are applied on sequents having the form
Seq ::= Pred |— Pred with Pred a predicate in the form:

Pred ::= Pred <=> Pred | Pred | => Pred | Pred && Pred |

Pred or Pred |/ Pred | Prop

The operator “::” is provided for describing rules with several antecedents
thus, the syntax of Seq is extended with the clause Seq ::= Seq :: Seq. Intu-
itively, the rule describing the behaviour of this operator specifies that a sequent
of this form is valid if all its components are valid.

We should point out that the logical operators or, &&, <=> are declared
in ELAN as being associative-commutative so the matching concerning these
operators is done modulo associativity- commutativity. The constants TRUE
and FALSE identify the true and respectively the false predicate and Hvide
an empty set of predicates. This symbol is used in order to represent sequents
of the form F P in our syntax, i.e. sequents with no hypotheses.

For each of the binary connectors (AND, OR, EQV, IMP) a collection
of four inference rules is defined together with another two ones for NOT and

additionally a set of axioms that allow to stop the reduction process is provided.
A detailed presentation of these rules can be found in [Abr97] and [Abr96].

We start by presenting a rule with two antecedents, the rules with only one
antecedent are handled in a similar way.

AND4 HFQ HFPAQ
HFP

For the case where the rule contains more than one antecedent the reduction
strategy (dedstrat) is applied recursively on the antecedents and the combination
of the two results is provided as final result. The strategy used is presented later
on in this section. The representation of the rule AND4 in ELAN is (with H,
P, Q : Pred; S1, S2 : Seq):

[AND4] H |- (P && Q) => S1 :: 82
where S1 := (dedstrat) H |- Q
where S2 := (dedstrat) H |- P end

In the current implementation the strategy dedstrat used in the local assign-
ments is the strategy applied on the initial sequent but we can use some other
strategy built by the user for proving the antecedents.

The other rules for the conjunction, disjunction, implication and equivalence
are represented in the same way except one rule for the implication that trans-
forms the sequent to be proved in a sequent with an additional hypothesis:

[IMP4 || HPFQ | HFP=Q |

If we use a strategy where the IMP4 rule is applied after none of the other
rules is applicable then we can prove that only simple propositions can be added
to the hypotheses, where by simple proposition we understand a proposition
containing no binary logical connectors. In order to make this property explicit
in our system we implement the IMP4 rule by the following rules (with Ps :
Prop; H, Q : Pred):

[IMP4a] H |- (Ps |=> Q) => H & Ps |- Q end
[IMP4b] H |- ("Ps I=> Q) => H && “Ps |- Q end

By specifying that Psis an object of Prop we prevent the rule to be applied
on sequents of the form H F P = Q when P is not a simple proposition. For
example, if we consider the sequent H - (A A B) = (A A B) a strategy try-
ing to apply the IMP4 rule at the beginning would give as result the sequent
H A (A AB) F (A A B) that cannot be proved using the rules of the prover.
Using the rules IMP4a and IMP4b we are sure that the hypotheses part con-
sists of a conjunction of simple propositions independently of the strategy used.

Since in ELAN the no-named rules are efficiently implemented we can improve
the performance of the prover by replacing the labelled rule that reflects that
the predicates (P && P) and P are equivalent with a no-named rule that is used
in the normalising strategy.

[1P &P => P end

The number of rules applied in order to prove a sequent depends as well on
the strategy used to guide the application of these rules.

Two strategies are proposed for applying the rules presented above. In the
first approach the strategy is described by a loop in which at each step we try
to apply one of the rules presented above in the following order: one of the rules
AND, OR, IMP1, IMP2, IMP3, EQV, NOT, one of the rules AXM, the
rule IMP4 and the auxiliary rule TB.

[1 dedstrat =>
repeat*(dc(SetAON, SetAXM, SetIMP, SetTB)); dc(FR) end

The rule FR is applied at the end of the strategy in order to check if the
result is a valid sequent. If this is not the case we backtrack to the last choice
point in the strategy repeat and we try the next applicable set of rules. If none
of the rules from this level leads to a valid sequent we backtrack again and we
continue like this until we obtain a proof for the input sequent or when all the
possibilities have been tried without success.

For reasons of modularity we group together the similar rules by using a
strategy dont care choose (dc) that tries to apply each of the enumerated
rules in the specified order. The set AON below is an example of using this
method:

[1 SetAON => dc(AND1,AND2,AND3,AND4,0R1,0R2,0R3,0R4,
IMP1,IMP2,IMP3,EQV1,EQV2,EQV3,EQV4,NOT1,NOT2) end

A second approach consists in trying to apply the strategy Set AON repeat-
edly and as soon as none of the rules used by the strategy is applicable we start
to do the same thing for the next strategy Set AXM. We proceed in the same
manner for the rest of strategies and after SetTB is no more applicable we re-
iterate the process from the beginning. The reduction process stops when none
of the rules is applicable on the current sequent.

This strategy is represented in ELAN in the following way:

[] SetAON => repeat*(dc(AND1,AND2,AND3,AND4,0R1,0R2,0R3,0R4,
IMP1,IMP2,IMP3,EQV1,EQV2,EQV3,EQV4,NOT1,NOT2)) end

[1 SetSEQ => SetAON; SetAXM; SetIMP; SetTB end
[1 dedstrat => repeat*(dc(RuleSEQ)) end

The strategy repeat*() used to build the loop returns the same sequent as the
one received as input if none of the rules tried inside it is applicable. Thus, we
have to introduce a new rule RuleSEQ that verifies if anything new has been
achieved by executing one time the loop (if the sequent received as input has
been changed) and if not it returns the input without continuing the loop.

[RuleSEQ] H |- B => S
where S := (SetSEQ) H |- B
if neq_Seq(S, H |- B) end

The difference between the two approaches is that while for the first one,
after a rule is applied successfully we try to use rules starting with the ones with

high priority, the second strategy applies the rules from the same level of priority
(rules grouped in a strategy Setop_name) until none of them is applicable and
then continues with the rules from the next level.

The problem that can arise in the second case is that applying IMP4a or
IMP4b sooner in the reduction process can lead to a longer proof path. We give
a simple example that illustrates the behaviour of the two strategies. We use the
sequent Hvide F A = (B = A). The rules used for the first strategy are:

»IMP4a’ : (Hvide && A) |- (C |=> A)
' AXMA4’ $

and for the second one:

*IMP4a’: (Hvide && A) |- (C |=> A)
’IMP4a’: ((Hvide && A) & C) |- A
’AXM3’: $

The environment ELAN allows to get the trace of the computations exe-
cuted and to obtain statistics about the application of the rewrite rules. We
show this by providing the output obtained when we try to prove the sequent
(Hvide |- (A |=> (B |=>C)) [=> (A |=> B) |=> A [=> C.

For the first strategy the following output is obtained using the ELAN inter-
pretor:

[1 start with term :
Hvide|-((A|=>(BI[=>C)) |=>((A|=>B) |=>(A]=>C)))
[result term:

$
Statistics:
total time (0.176+0.000)=0.176 sec (main+subprocesses)
average speed 159 inf/sec

0 nonamed rules applied, 0 tried
28 named rules applied, 913 tried
named rules
applied tried rule for symbol
13 TB:Seq
9 FR:Seq
25 IMP3:Seq
19 IMP4a:Seq
17 IMP4b:Seq
21 AXM1:Seq
26 AXM5:Seq
28 AXM4b:Seq

NN BN D O

The application of the second strategy on the same sequent yields the fol-
lowing result:

[start with term :
Hvide|-((A|=>(BI[=>C)) |=>((A|=>B) |=>(A[=>C)))
[result term:

$

Statistics:
total time (0.360+0.000)=0.360 sec (maintsubprocesses)
average speed 136 inf/sec

0 nonamed rules applied, 0 tried
49 named rules applied, 725 tried
named rules
applied tried rule for symbol

4 19 TB:Seq

9 9 FR:Seq

4 19 IMP3:Seq
1 16 AXM4:Seq
3 33 STOP:Seq
5 24 IMP4a:Seq
4 19 IMP4b:Seq
1 19 AXM1:Seq
2 18 AXM2:Seq
1 16 AXM5:Seq
15 24 RuleSEQab:Seq

We notice that the main difference between the two consists in the number
of rules IMP4a applied, the rule RuleSEQ consisting practically in a test.

Another possibility for guiding the rewrite rules would be to use the implicit
normalising strategy, in this case the rules have to be unlabelled. The advantage
of this approach is the efficient implementation of the unlabelled rules in ELAN
but a great disadvantage is the lack of control in applying the rewrite rules. The
statistics for such a strategy on the same input sequent are:

[1 start with term :
Hvide|-((A|=>(B[=>C)) |=>((A|=>B) [=>(A|=>C)))
[1 result term:
$
Statistics:
total time (0.052+0.000)=0.052 sec (main+subprocesses)
average speed 596 inf/sec
31 nonamed rules applied, 381 tried
0 named rules applied, 0 tried

This normalisation strategy is not appropriate for the predicate prover where
multiple instantiations for universally quantified predicates should be obtained
by strategies that returns all possible results.

We should point out that not only the way the strategy operators are applied
on the deductions rules is important but the order of these rules in the guiding
strategy can be crucial in some cases. For instance a strategy that would try to
apply the axioms only when none of the other main rules is applicable:

[1 dedstrat =>
repeat*(dc(SetAON, SetIMP, SetAXM, SetTB)); dc(FR) end

yields the use of 42 rules for the first strategy and 44 for the second one.
We can obtain all the possible proofs for a sequent by replacing the dont
care choose(dc) operator with a dont know choose(dk) one that generates

10

all the possible matchings (due especially to associative-commutative operators)
of rewrite rule on the input sequent and applies the rules in all the possible
orders. For example, the rule AND4 applied on H - A A B A C matches P on
AandQon BACorPonBACand Qon A and so on.

3.2 The Predicate Prover

The propositional prover is simple but in the same time very restrictive since we
cannot reason about quantified predicates.

The syntax of the prover is extended with quantified predicates and we add
a set of inference rules that transform the structure of the sequents received as
input until they are proved or they are in the form (H + FALSE) and a rule
(called INS) that tries to instantiate the quantified variables from sequents of
this form with proper values in order to discover contradictions in the hypotheses
and thus, to prove the respective sequents. We just present the rule INS and
the way it is applied, the other rules are used in a similar way as the ones of the
propositional prover.

In the INS rule we are looking for instantiations that transform the quantified
predicates in simple predicates (or at least in predicates with a smaller number
of quantified variables) that can lead further on to contradictions.

INS Determine the instantiations Py,Ps,...,P, H + FALSE
HF P = (P> ..(P, = FALSE)...)

The search of proper instantiations is done by matching the universally quan-
tified predicates on the already instantiated predicates from the hypotheses.
Since for the matching problem we use a combined matching algorithm that
combines algorithms for empty, commutative and associative-commutative the-
ories we can obtain more than one result, each of them corresponding to different
solutions of the matching algorithm.

In order to explore all the solutions of the matching algorithm we have to use
a dont know choose strategy that allows to backtrack to a new instantiation
if the application of the strategy on the previous one has failed.

[1 SetINS => dk(INS) end

The main strategy looks similar to the one for the propositional prover and
is containing the sets of rules for dealing with quantified predicates.

[l dedstrat =>
repeat*(dc(SetALLXST, SetAON, SetAXM, SetIMP, SetINS, SetTB));
dc (FR) end

This strategy works like described in section 3.1 only that for the rule INS
all its results will be considered when backtracking at its level.

11
4 Conclusions

We have shown how computational systems can be used as a logical framework
for representing the first-order predicate prover proposed by J.-R. Abrial. The
inference rules describing the two logics are naturally represented by conditional
rewrite rules, the mapping of an inference rule from the form proposed by J.-
R. Abrial in a rewrite rule in the system ELAN being in most of the cases a
syntactical transformation.

Due to the semantics of ELAN that is based on many-sorted rewriting logic
and to the possibility to define associative-commutative operators, we have been
able to represent rules in a fairly intuitive way. By assigning types to the vari-
ables involved in the rewrite rules we have implicitly specified conditions on
the structure of the terms that can be transformed by each rule thus, taking
advantage of the well known benefit of typing objects. The definition of some
operators as being associative-commutative has permitted to eliminate infer-
ence rules simulating these properties in the approach proposed by J.-R. Abrial.
Some additional no-named rules have been introduced in order to improve the
efficiency of the prover.

The application of all labelled rewrite rules is guided by strategies. Two ap-
proaches for defining them have been proposed and the results yielded by the
two strategies have been compared. The effects of changing the order of the ap-
plication of the rules have been presented and the use of an implicit normalising
strategy has been considered. Although the differences between the proofs ob-
tained with the different strategies for a simple sequent are not significant, we
have to point out that small changes in the guiding strategy can influence signifi-
cantly the efficiency of the computational system in the case of more complicated
conjectures.

One of the advantages of representing the prover in rewriting logic is that we
are then able to use standard rewrite tools for proving properties of the system
like the termination for the propositional prover ([CK97]).

Among the perspectives open by this work, one concerns the implementation
of interfaces for integers as well as for sets. The current syntax of the prover can
be easily extended to include new operators on integers and sets and new infer-
ence rules describing their properties have to be introduced. Proper strategies
should be designed for guiding the application of these new rules.

Acknowledgements We sincerely thank Thierry Lecompte for helpful dis-
cussions on the Atelier B predicate prover and Peter Borovansky and Pierre-
Etienne Moreau for their useful hints and suggestions concerning the implemen-
tation in ELAN .

References

[Abr96] J.-R. Abrial. The B-Book. Cambridge University Press, 1996. ISBN 0-521-
49619-5.
[Abr97] J.-R. Abrial. Le prouveur de prédicat. Technical report, 1997.

12

[BKK'96] Peter Borovansky, Claude Kirchner, Héléne Kirchner, Pierre-Etienne

[BKK98]

[CK97]

[DJ90]

[JKO1]

[KKV95]

[Mes89]

[Mes92]

[MOMOY6]

Moreau, and Marian Vittek. ELAN: A logical framework based on com-
putational systems. In José Meseguer, editor, Proceedings of the first inter-
national workshop on rewriting logic, volume 4 of Electronic Notes in TCS,
Asilomar (California), September 1996.

Peter Borovansky, Claude Kirchner, and Héléne Kirchner. A functional
view of rewriting and strategies for a semantics of ELAN. In Masahiko Sato
and Yoshihito Toyama, editors, The Third Fuji International Symposium
on Functional and Logic Programming, pages 143-167, Kyoto, April 1998.
World Scientific.

Horatiu Cirstea and Claude Kirchner. Theorem proving using computa-
tional systems: The case of the B predicate prover. In Workshop CCL’97,
Schlob Dagstuhl, Germany, September 1997.

N. Dershowitz and J.-P. Jouannaud. Handbook of Theoretical Computer
Science, volume B, chapter 6: Rewrite Systems, pages 244-320. 1990. Also
as: Research report 478, LRI.

J.-P. Jouannaud and Claude Kirchner. Solving equations in abstract alge-
bras: a rule-based survey of unification. In Jean-Louis Lassez and G. Plotkin,
editors, Computational Logic. Essays in honor of Alan Robinson, chapter 8,
pages 257-321. Cambridge (MA, USA), 1991.

Claude Kirchner, Héléne Kirchner, and Marian Vittek. Designing constraint
logic programming languages using computational systems. In P. Van Hen-
tenryck and V. Saraswat, editors, Principles and Practice of Constraint Pro-
gramming. The Newport Papers., chapter 8, pages 131-158. 1995.

J. Meseguer. General logics. In Proc. Logic Colloguium ’87. North Holland,
1989.

J. Meseguer. Conditional rewriting logic as a unified model of concurrency.
Theoretical Computer Science, 96(1):73-155, 1992.

Narciso Marti-Oliet and José Meseguer. Rewriting logic as a logical and
semantic framework. In José Meseguer, editor, Proceedings of the first in-
ternational workshop on rewriting logic, volume 4, Asilomar (California),
September 1996. Electronic Notes in Theoretical Computer Science.

