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Abstract

p-calculus is a new calculus that integrates in a uniform and simple setting first-order rewriting,
A-calculus and non-deterministic computations. This paper describes the calculus from its syntax to
its basic properties in the untyped case. We show how it embeds first-order rewriting and A-calculus.
Finally we use p-calculus to give an operational semantics to the rewrite based language ELAN.

1 Introduction

The integration of first-order and higher-order paradigms is one of the main problems raised since the
beginning of the study of programming language semantics and of proof environments. The A-calculus
emerged in the thirties and had a deep influence on the development of theoretical computer-science as
a simple but powerful tool for describing programming language semantics as well as proof development
systems. Term rewriting for its part emerged as an identified concept in the late sixties and it had a deep
influence in the development of algebraic specifications as well as in theorem proving.

Because the two paradigms have a lot in common but have extremely useful complementary properties,
many works address the integration of term rewriting with A-calculus. This has been addressed either by
enriching first-order rewriting with higher-order capabilities or by adding to A-calculus algebraic features
allowing one in particular to deal with equality in an efficient way. In the first case, we find the works on
CRS [KvOvR93] and other higher-order rewriting systems [Wol93, NP98], in the second case the works
on combination of A-calculus with term rewriting [Oka89, BT88, GBT89, JO97] to mention only a few.

We come up with another point of view because of our previous works on the control of term rewrit-
ing [KKV95, Vit94, BKK98]. Indeed we realized that the tool that is needed in order to control rewriting
should be made explicit and could be itself naturally described using rewriting. This leads to the con-
cept presented in this paper which generalizes A-calculus and rewriting and that we call p-calculus: the
rewriting calculus.

In this calculus we can explicitly represent the application of a rule (say ¢ — b) to a term (like the
constant a) as the object [a — b](a) which evaluates to the singleton {b}. But the application of a
rule may fail like in [a — b](c) that evaluates to the empty set (). Of course variables may be used in
rewrite rules like in [f(z) — ](f(a)) that evaluates to {a}. In fact when evaluating this expression, the
variable  is bound to a via a mechanism classically called matching and we have shown in [BKK9§]
how a rewrite rule can be considered as a function with matching as the parameter passing mechanism.
The first simple but useful remark in this paper consists of noticing that a A-expression Az.t could be
represented as the rule # — ¢. Indeed the B-reduction of a redex (Az.t u) is nothing more than [ — t](u)
which reduces to {t{z/u}}. Of course we have to make clear what a substitution like {#/u} is and how it
applies to a term. But there is no surprise here and we consider a substitution mechanism that preserves
the correct variable bindings via the appropriate a-conversion. In order to make this point clear in the
paper, as in [DHK95], we will make a strong distinction between substitution (which takes care of variable



binding) and grafting (that performs replacement directly). So basic p-calculus objects are built from the
signature, the abstraction operator — and the application operator [ ]( ). For example the well-known
(ww) A-term is written in the syntax of p-calculus [¢ — [2](2)](z — [z](x)).

To summarize, in p-calculus, matching is used for binding variables to their actual values, abstraction
is handled via the arrow binary operator and substitution takes care of variable bindings. It is thus a
higher-order calculus like the A-calculus and in apparent opposition to first-order rewriting. We will see
later why this is not the case and why it allows us to understand the ”variable separation” conditions
traditionally imposed between first-order rules and the terms on which they are applied.

A p-calculus term (later called p-term) contains all the rewrite rules needed for its evaluation. This
is usual for A-calculus, this is generally not the case for term rewriting where the rewriting system
is implicit. For example, assuming the existence of all the normal forms involved, the sentence ”the
B-normal form of a term t” is self-explanatory (except for the strategy used), as the sentence ”the R-
normal form of the term ¢” needs to make more precise the term rewrite system R and the strategy
guiding the rewrite rules. In p-calculusthe rewrite rules and the strategy guiding them is coded in the
p-term. For example, if we consider the rules ¢ — b and f(z) — z the normal form of the p-term
[leftMostInnerMost(first(a — b, f(x) = x))](¢) is the p-term {t'}. The term ¢’ represents the normal form
of the term ¢ in the rewrite system R = {a — b, f(z) — =z} with a leftmost innermost strategy and
strategy of trying to apply first the rule a — b and afterwards the rule f(z) — =.

Another important feature of the p-calculus is its ability to handle non-determinism in the sense of
sets of results. This is achieved via the explicit handling of reduction result sets, including the empty
set that records failure of rule application. It allows us to make use in an explicit and direct way of
non-terminating or non-confluent (equational) rewrite systems. For example if the symbol + is assumed
to be commutative then applying the rule z +y — 2 to the term a+ b results in {a, b} since there are two
different ways to apply this rule modulo commutativity, and it gives two different results. This ability
to integrate specific computations in the matching process allows us for example to use p-calculus for
deduction modulo purposes like proposed in [DHK9S].

The p-calculus is confluent when its evaluation rules are guided by an innermost strategy. This relies
on the appropriate handling of non-determinism using sets of results. What is confluent is of course
the calculus, not the rewrite systems it applies. So the p-normal form of the term a for the set of rules
{a = b,a — ¢} is {b, ¢}, which is unique. This is of course different from the R-normal forms of a which
are b and c.

The purpose of this paper is to introduce the p-calculus, its syntax and deduction rules and to show
how it can be used in order to naturally encode A-calculus and standard, possibly conditional, term
rewriting and finally why it provides an easy semantics for the rewrite based language ELAN.

In the first part we introduce the basic p-calculus and its syntax and deduction rules. We emphasize
in particular here the fundamental role of the matching theory. We show in section 3 how p-calculus
can be used to encode in a uniform way term rewriting and A-calculus. Then in section 4 we enrich the
basic calculus with primitives allowing us to describe more complex objects like choice operators. In the
last part, we use the p-calculus to give an operational semantics to the ELAN language. This permits in
particular to give a full account of the strategy objects and their use. We conclude by providing some
of the research directions that are of main interest in the context of ELAN and more generally of rewrite
based languages like ASF4+SDF, ML, Maude or CafeOB.J.

The full version of this paper is available on the web!.

2 The Basic p-calculus

A calculus is defined by four components:

e First its syntax that makes precise the formation of the terms manipulated by the calculus as well
as the substitutions that are used during the evaluation mechanism. In the case of p-calculus, the
core of the term formation relies on rewrite rules and rule application.

e The description of the substitution application on terms. This description is often given at the
meta-level, except for explicit substitution frameworks like the one we describe in a later part of
this paper. In the case of p-calculus, substitutions are higher-order substitutions and not grafting.

'http://www.loria.fr/ cirstea/roCalculusi.ps.gz



e The matching algorithm used to bind variables to their actual arguments. In the case of p-calculus,
this is in general higher-order matching and in practical cases pattern and equational matching.

e The rules describing the way the calculus operates. It is the glue between the previous components
and the simplicity and clarity of these rules are fundamental for the calculus usability.

This section makes explicit all these components for the p-calculus and comments our main choices.

2.1 Syntax

Definition 2.1 We consider a set F = |J,, Fn of ranked function symbols, where F,, is the subset of
function symbols of arity m, and A’ a set of variables. We denote by 7 (F, X) the set of first-order terms
built on F using the variables in X'. The set of basic p-terms, denoted R(F,X), is the smallest set of
objects formed according to the following rules:

e X (variables) and 7 (F,X) are p-terms,

o ifty,... 1, are p-terms and f € F,,, then f(¢1,...,ty) is a p-term,

o ifty,...,t, are p-terms then {t1,...,t,} is a p-term (if n = 0 we have the p-term ),

e if t and u are p-terms then [t](u) is a p-term (application of the p-term ¢ to the p-term u),
e if t and u are p-terms then ¢ — u is a p-term (rewrite rule).

The p-terms can also be inductively defined using a BNF syntax:
terms ¢t = x| {t,.. .t} f@, . ) | @) [t =t

where z € X and f € F.

We adopt a very general discipline for the rule formation, and we do not enforce any of the standard
restrictions like non-variable left-hand-sides or occurrence of the right-hand-side variables in the left-
hand-side. We also allow rules containing rules as well as rule application.

The main intuition behind this syntax is that a rewrite rule is an abstractor, the left-hand-side of
which determines the bound variables and some contextual information. Having new variables in the
right-hand-side is just the ability to have free variables in the calculus. We will come back to this later
but to support the intuition of the reader let us mention that the A-term Az.(y x) corresponds to the
p-term z — [y](z) and that standard first-order rewrite rules [DJ90, BN98] are clearly embedded in the
calculus.

Example 2.1 Some more examples of p-terms are:

e [a — b](a); this denotes the application of the rule ¢ — b to the term a.

[f(z,y) = g(z,y)](f(a,b)); a classical rule application.

[z = y](a); as expected, we will see later why the result is {y}.

[ = (z = 2)]([x = y](a)); a more complicated p-term similar to the A-term ((Az.Az.z) (Az.y a)).

[z — [#](2)](z = [z](x)); the well-known (ww) A-term.

e [(a = b) = ¢](a); a more complicated p-term without corresponding A-term.
Definition 2.2 The set of free variables of a p-term ¢ is denoted by F'V (t) and is defined by:

1. if t = # then FV(t) = {«},

2. ift = {us,..., up} then FV(t) = Usj=1 o FV(w),

3. ift = f(ur,...,u,) then FV(t) = Uiz, o FV (),

4. if t = [u](v) then FV(t) = FV(u) U FV(v),

5. ift = u — v then FV(t) = FV(v) \ FV(u).

As in A-calculus, a-conversion should be used in order to obtain a correct substitution calculus and
the first order substitution (called here grafting) is not directly suitable for our calculus. We consider
the usual notions of a-conversion and higher-order substitution as defined for example in [DHK95].



2.2 Matching

Computing the matching substitutions from a p-term ¢ to a p-term ¢’ is the fundamental parameter in
the evaluation rules of the p-calculus.

For a theory 1" a T-match-equation is a formula of the form ¢ <. ¢/, where t and ' are p-terms. A
substitution o is a solution of the T-match-equation t <% ¢’ if T' |= o(t) = t'. A T-matching system is a
conjunction of T-match-equations. A substitution is solution of a T-matching system P if it is a solution
of all the T-match-equations in P. We denote by F a T-matching system without solution.

Since in general we consider higher-order terms as well as arbitrary equational theories, T-matching
is in general undecidable, even when restricted to first-order equational theories [JK91].

A T-matching system is called trivial when all substitutions are solution of it. We define the function
Solution on a T-matching system & as returning the set of all T-matches of § when & is not trivial and
{IID} where TD is the identity substitution when & is trivial. When the matching algorithm fails Solution
returns the empty set ().

One can think at using constraints as in constrained higher-order resolution [Hue73] or constrained de-
duction [KKR90] if one wants to use undecidable matching theories. But we are primarily interested here
in the decidable cases. Among them we can mention higher-order pattern matching that is decidable and
unitary as a consequence of pattern unification [Mil91, DHKP96], higher-order matching which is known
to be decidable up to the fourth order [Pad96, Dow92, HL78] (the decidability of the general case being
still open) , many first-order equational theories including associativity, commutativity, distributivity and
most of their combinations [JK91].

Indeed we restrict ourselves later in this paper to just considering syntactic matching. In this case
we assume that the left members of matching equations are composed only of first-order terms (i.e. not
containing sets, arrows or applications). The syntactic matching substitution from ¢ to ¢/, when it exists,
is unique and can be computed by a simple recursive algorithm given for example by G. Huet [Hue76]. It
can also be computed by the following set of rules SyntacticMatching where the symbol A is assumed
to be associative and commutative and where < is denoted <<6.

Decomposition (Flte, .. ta) <5 F(#), .. 1)) AP w» Nizi, nti Lgth AP
SymbolClash (F(tr, ... tn) <<5 gy, .. L) AP w» T
iff#g
MergingClash (z<gt) A (zyt') AP W
ift £t
SymbolVariableClash  (f(¢1,...,tn) <<é z) AN P w» IF
ifeed
SyntacticMatching: Rules for syntactic matching

The normal form by the rules in SyntacticMatching of any matching problem ¢ <<6 t' exists and
is unique. After removing the trivial match equations of the form =z <<é x from a normal form, if the
resulting system is:

1. T, then there is no match from ¢ to ¢’ and Solution(F) = 0,

2. of the form /\z’eI z; <<6 t; with I # (), then the substitution o = {z; ~ t; };cs is the unique match
from ¢ to ¢ and Solution(/;¢; z: < ti) = {c},

3. empty then ¢ and ¢’ are identical and Solution()) = {ID}.

Indeed this can be extended in a natural way when a symbol + is commutative. In this case, the
previous set of rules should be completed by:

CommDec (t; +t2) <t +th) AP v (1 <t Ao <"tV (L < th ANa <)) AP

where disjunction should be handled in the usual way. In this case of course the number of matches
could be exponential in the size of the initial left-hand sides.



Fire [l — 7)) = r(Solution(l <} t))
Distrib [{s1,.., s }1(2) = UL, [si](t)

Batch [s1({t1, - tn}) = UL, [s](t:)

Switchy, (. L} = rl() = Uizl = 7](0)
Switchp L= {r,...,m () = Uil =)

Set F(A1, .t A = {f(a1,.. ., t,...,an)|a € A}
Congruence [Fls1,s8a)l(f (s tn)) = [(s1l(t), - [sn](tn))
Congruence_fail  [f(s1,...,8:)](g(t1,.. . tn)) = Dif f#g

Clashp [0](¢) = 0

Clashg [t1(0) = 0

Clashs, [0 — r](t) = 0

Clashsg [l — 0](t) = 0

Clashs .0, = 0

Figure 1: Basic pp-calculus

Propagate  r{{s1,...,sn}) ~ {s1(r),...,sn(r)}

Clash r{0Y) ~ 0

Figure 2: Substitution rules

2.3 Deduction Rules

Given a rewrite rule { — r, its application to a term ¢ (denoted [l — r](t)) consists of replacing the term
t by or, where o is the substitution obtained by T-matching ! on ¢ and or represents the application of
the substitution on the term r as detailed above. The semantics of the application of a rewrite rule is
given by the rules in Figure 1.

The Fire rule starts the reduction process by T-matching the left-hand side of the rule on the argument
of the rule. This generalizes the §-rule of A-calculus. As we have seen before, the matching problem
l <<?T t is solved in the theory T and depending on the theory 7', we will obtain various rewriting calculi
of interest.

The Distrib, Batch, Switch rules and their Clash versions describe the behavior of the application
when one of the left-hand side, the right-hand side or the argument of the rule are (empty) sets.

The Set rule describes the semantics of a function with set arguments.

In order to push rule application deeper into terms, we introduce two Congruence rules that deal
with the application of a term of the form f(¢1,...,t,) (where f € F,) to another term of the same form.

The behavior of the ”{))” operator is described by the rules in Figure 2. Note that these rules are
applied at the meta-level and are not made explicit in the p-calculus. We are giving in a forthcoming
paper a version of the p-calculus with explicit substitutions in the spirit of [ACCL91].



The Propagate rule yields as a result the union of the partial results obtained by applying each of the
substitutions to the respective term. When the matching problem has no solution the rule Clash gives
as result the empty set.

It should be pointed out that the interpretation of f is overloaded: in the left-hand side of the rule
Congruence the first f operates on strategies and the second on terms; on the right-hand side the f
operates on sets. Thus, we can say that for any symbol f € F, satisfying f : A; x ... x A, = A we have
two more symbols: f. : (41 = A1) x ... x (A, = Ap)) = (A — A) which operates on strategies and
fs {A1} x ... x {An} — {A} which operates on sets.

Because it is already quite general and since we want to have a clear focus, in the rest of this paper
we restrict to

o T =10 ie. to first-order syntactic matching,

o rewrite rules of the form | — r wherel € T(F,X) i.e. | is a first-order term and thus does not
contain any set, application or abstraction symbol.

Notice that the last p-term presented in Example 2.1 does not satisfy this restriction.

Proposition 2.1 Under the above hypothesis, if the Fire rule is applied when none of the other rules
is applicable and the left-hand side, right-hand side and argument of the rule are completely normalized
then the p-calculus is confluent.

This restriction on the evaluation strategy is due to the handling of results sets and we believe that
it can be weakened by explicitely describing the appropriate behavior of sets.

We conjecture that CRS and HRS [OR93] are specific pp-calculi where the theory 7' consists of
A-patterns [Mil91].

3 Encoding the A-calculus and term rewriting in the p-calculus

We show in this section how the syntax and the deduction rules of the p-calculus can be restricted to
some simpler calculi such as the A-calculus and rewriting.

3.1 Encoding the A-calculus

Let us consider the following restriction of the p-calculus, denoted pj-calculus:
terms ¢t = x| {t}| flt,.. ) | [E](E) e =t

where z € X' and f € F.

Since the matching performed in this case in the rule Fire always succeeds, the rules Clash of the
p-calculus are never applied.

The result of the matching from the rule Fire is always of the form {z — t} so, the rules Fire and
Propagate are equivalent to the simplified rule:

Fire' [z —r](t) = {{z/t}r}

At this moment we can notice that the restricted pj-calculus and the A-calculus are similar modulo
the notations for the application, abstraction and substitution application. The rules F'ire’ and Beta
both initiate the application of a substitution on a term; the other rules from the pj-calculus are auxiliary
rules describing the behavior of sets.

The function ¢ that transforms terms in the syntax of the A-calculus into the syntax of the py-calculus
is defined by:

p(Azt) —» w—t
pltu) — [

Proposition 3.1 Given ¢ and t’ two A-terms. Then, t —p ¢/ iff p(t) —, {¢(t)}.



3.2 Encoding rewriting

We proceed similarly as for the A-calculus and we restrict the syntax of the p-calculus to:
terms ¢t = oz |[{t}| flt,.. ) IO |1 =
where z € X, f € F and l € T(F, X).

Proposition 3.2 Given ¢ and ¢’ two terms in 7 (F,X) and R a first order term rewrite system. If
t —5x t' then there exists a p-term u constructed using the rules in R such that [u](t) —, {t'}.

3.3 Encoding conditional rewriting

Conditional rewrite rules can be represented in an extended version of the p-calculus. The syntax is
extended with a conditional operator if and with the boolean constants T'rue and False:
terms t = if t|True| False
The following rules describe the semantics of the if operator:
Ift [if Truel(t) — {t}
Iff [if False]l(t) = 0
For the first two rules we can give equivalent (implicit) definitions:
Ift if True — 1id
Iff if False — fail

The semantics of the conditions should be described by a set of rules. If we consider the equality
operator the rules that should be defined are:
Eq a=a = True
NEq a=b — False,ifa#tb
A conditional rewrite rule of the form ({ — r, if ¢) is represented by the p-term (I — [if ]r).

Proposition 3.3 Given ¢t and t' two terms in 7 (F,X) and R a first order conditional term rewrite
system. If t —55 t' then there exists a p-term u constructed using the rules in R such that [u](t) —,

{0

4 The p-calculus

The basic p-calculus is already quite powerful because of the matching and substitution mechanisms it
relies on, but we would like to enrich it further to allow an easy specification of choice operators. Indeed
the whole calculus is intended to facilitate the specification and execution of non-deterministic possibly
non-confluent rewrite systems as needed for concurrent systems as well as general deduction systems like
theorem provers or constraint solvers.

The basic calculus could be enriched in two ways. The first one is to consider a fixpoint operator,
the second one consists of an extention of the syntax and the inference rules of the calculus in order to
integrate directly the desirable operators. In this paper we have chosen the second approach as it is more
direct and close to what is done in ELAN as we will discuss later.

4.1 Primal strategies

Considering the p-terms as functions that apply rewrite rules, we called them strategies and since we are
building an extention of the basic terms, we call primal strategies basic terms to which we add a sequence
operator in order to denote the successive application of two strategies.

To this end, the syntax from section 2.1 is extended with the operators id and fail that correspond
respectively to the identity rule (z — z) and the failure rule whose application fails on any term (z — ).

terms t = id]| fail

and the deduction rules are:



Identity id - oz

Fail fail — z—10

.,

The sequential application of two strategies is achieved by using the concatenation operator ”;
terms t = ;i
The behavior of the concatenation operator is expressed by the following deduction rule:

Compose  [s1;s2](t) = [s2]([s1](t))

Definition 4.1 Primal strategies are built starting from rewrite rules (! — r) and the two operators id
and fail and using concatenation. Their application is defined by the rules in Figure 1, Identity, Fail
and C'ompose.

Example 4.1 If we consider the primal strategy
9(f(f(z) = 2));9(f(2) = 2);9(a) = a

then the only term on which the application of the strategy yields as result a non-empty set is g(f(f(a))).

If the term is of the form g(f(¢)) with ¢ not of the form f(¢') then the Congruence rule can be applied
but the matching would fail and the result is the empty set. If ¢ is of the form f(¢') with ¢ different
from a then the application of the strategy g(f(f(z) — #));9(f(z) — z) to the term would yield as
result g(¢') and we obtain once again the {} set due to the rule Match_Fail. In the other cases the rule
Congruence_fail would lead immediately to an empty set result.

4.2 Elementary strategies

The strategy language is now enriched by operators allowing us to describe the computation space in a
convenient way.

The added operators select the final result(s) from a list of results and choose the strategy to be
applied from a list of strategies. For the first type of selection we introduce the unary operators one and
all that operate on strategies and whose semantics are described by the following rules:

One [one(s)](t) = {t'}
where ¢’ € [s]()
All - [all(s)]t) = [s](?)

Then we can also introduce selection operators select-one, select-first, select-all on strategy tuples
([BKK98]). Their semantics is defined by the rules:

Select_first [select_first(s1,...,s,)|(t) = [s;](¢)

if Uiy [s:](t) = 0 and [s;](2) # 0
Select_one [select_one(sy, ..., s,)](T) = [si](?)

if [si](t) # 0
Select_all [select_all(sy, ..., sn)](t) = U, [s]()

The operator select-first returns the result of the first successful application, select-one selects one
of the successful applications and select-all provides the union of all (successful) applications. These
selection operators allow us to describe the operators first, de( dont care) and dk( dont know) by the
rules:



Dk [dk(s1,...,sn)](%) = [select_all(all(s1),...,all(sn))](?)
Dc [de(s1, ..., 80)](2) = [select_one(all(sy), ..., all(sy))](?)
First [first(s1,...,sn)|(t) = [select_first(all(s1),...,all(sy))](?)

Intuitively, the selectors are used to select the strategy and the one and all operators determine the
number of results to be returned when applying the respective strategy to the input term.

Some other strategies can be constructed starting from the above operators. For example, an elemen-
tary strategy that chooses one result in each set of results provided by a sequence of strategies would cut
dramatically the number of reductions is :

One [one(sy,...,sn)](t) = [select_one(one(sy),...,one(sy))](t)

Note also that the result selector can be made more precise when a different representation for results
is chosen. For example, when using lists, the one operator could be completed with “nth” ones.

4.3 Defined strategies

Using this kind of operators and primal strategies we can define more elaborate strategies. For example,
a function map can be defined in an explicit way by:

Mapy  [map(s)](nil) — nil
Mapy  [map(s)](a.l) = [s](a).[map(s)](l)

or in an implicit (and more compact) way:
Map map(s) = first(nil, s.map(s))
Other basic strategy definitions like iterate or repeat can be given in a similar way.

More complicated control structures can be constructed if we extend the Congruence with new cases
that deal with constant head symbols in the strategy application:

Congruence M [®(s1,...,82)](f(t1,..,tn)) = f([s1](t1), ..., [sal(tn))
Congruence_S  [¥(s)](f(t1,...,tn)) = f([sl(t1), ..., [s](n))

where ®, ¥ are constants of the language (®, ¥ ¢ F) acting as wildcards for the head symbol of a strategy
application.
A strategy operator applying a strategy in an innermost way is easy to define at this moment:

Im im(s) = Y(im(s));s
while the outermost strategy has a similar description:
Om om(s) = s;¥(om(s))

Depending on the order used in evaluating the arguments of the function in the right-hand side of the
rule Congruence_S the strategy im is a leftmost innermost, rightmost innermost or random innermost
strategy.

5 A p-calculus semantics for the ELAN language
ELAN is an environment for specifying and prototyping deduction systems in a language based on labeled

conditional rewrite rules, and strategies to control rule application. The ELAN system offers a compiler
and an interpreter of the language. The ELAN language allows us to describe in a natural and elegant



way various deduction systems and to experiment with for example the combination of theorem provers,
constraint solvers and decision procedures [Vit94, KKV95, BKKT96]. It has been experimented on several
non-trivial applications ranging from constraint solvers to logic programming and automated theorem
proving?.

ELAN provides a kernel that implements the leftmost innermost standard rewriting strategy, the
elementary strategies, and which allows the iteration of the construction on defined strategies as defined
in the previous section.

A first semantics could be given to an ELAN program using rewriting logic [Mes92], but more con-
veniently ELAN’s rules can be expressed using the p-calculus and thus an ELAN program is just a set
of p-terms. A rule with no conditions and no local assignments [ = r is represented by [ — r. The
local assignments are let-like constructions that allow applications of strategies on some terms. A typical

ELAN rule is of the form:
[label] I = r

if condition
where x:= [strategy] term
For example the ELAN rewrite rule:
[deriveSum] p1+p2 = pl+ph
where p) = [derive]p;
where p, = [derive]ps
is represented by the p-term p; + py = [derive]p; + [derive]ps.
As detailed in the full version of the paper, the semantics of the primal and elementary strategies of
ELAN are reflected by the corresponding strategies in the p-calculus and the user defined strategies are
similar to the p defined strategies.

6 Conclusion

The p-calculus introduced in this paper is a calculus of rule application. It allows the rule syntax to be
very general, allowing A-calculus as well as first-order rewriting to be simply embedded in it.

In this paper, the p-calculus syntax and elementary properties have been presented in the untyped
case. We are currently extending these results to the typed case and we are also building an explicit
substitution version of the calculus in the spirit of A-calculus with explicit substitutions.

We believe that this calculus is both conceptually simple as well as very powerful. This allowed
us to show how the p-calculus can be used as the operational semantics of ELAN. More generally, the
applications to many other frameworks have to be investigated, including rewrite based languages like
ASF+SDF, ML, Maude or CafeOBJ but also non-deterministic transition systems.

Among the many research directions concerned by the use of the p-calculus for the combination of
first-order and higher-order paradigms we are now deepening the relationship of p-calculus with rewriting
logic [Mes92] and we plan to investigate the relationship of this calculus with higher-order rewrite concepts

like CRS and HOR as mentioned earlier.
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