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Abstract

We show that rigid reachability, the non-symmetric form of rigid FE-
unification, is undecidable already in the case of a single constraint. From
this we infer the undecidability of a new rather restricted kind of second-
order unification. We also show that certain decidable subclasses of the
problem which are P-complete in the equational case become EXPTIME-
complete when symmetry is absent. By applying automata-theoretic meth-
ods, simultaneous monadic rigid reachability with ground rules is shown to
be in EXPTIME.
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1 Introduction

Rigid reachability is the problem, given a rewrite system R and two terms s
and t, whether there exists a ground substitution ¢ such that so rewrites in
some number of steps via Ro into to. The term “rigid” stems from the fact
that for no rule more than one instance can be used in the rewriting pro-
cess. Simultaneous rigid reachability is the problem in which a substitution
is sought which simultaneously solves each member of a system of reachabil-
ity constraints (R;, s;,t;). A special case of [simultaneous| rigid reachability
arises when the R; are symmetric, containing for each rule [ — r also its
converse r — [. The latter problem was introduced in (Gallier, Raatz &
Snyder 1987) as “simultaneous rigid E-unification”. (Symmetric systems R
arise, for instance, from orienting a given set of equations E in both direc-
tions.) It has been shown in (Degtyarev & Voronkov 1995) that simultaneous
rigid F-unification is undecidable, whereas the non-simultaneous case with
just one rigid equation to solve is NP-complete (Gallier, Narendran, Plaisted
& Snyder 1988). The main result in this paper is that for non-symmetric
rigid reachability already the case of a single reachability constraint is unde-
cidable, even when the rule set is ground. From this we infer undecidability
of a rather restricted form of second-order unification for problems which
contain just a single second-order variable which, in addition, occurs at most
twice in the unification problem. The latter result contrasts a statement
in (Levy 1998) to the opposite.

The absence of symmetry makes the problem much more difficult. This
phenomenon is also observed in decidable cases which we investigate in the
second part of the paper. For instance we prove that a certain class of rigid
problems which is P-complete in the equational case becomes EXPTIME-
complete when symmetry is absent. Our results demonstrate a very thin
borderline between the decidable and the undecidable fragments of rigid
reachability with respect to several syntactical criteria. In particular, for
ground R and variable-disjoint s and ¢, the problem is undecidable, whereas
it becomes decidable when, in addition, either s or ¢ is linear.

In the Section 6 we will apply automata-theoretic methods to the monadic
case and establish an EXPTIME upper bound for monadic simultaneous rigid
reachability for ground rewrite systems. This generalizes the analogous result
of (Gurevich & Voronkov 1997) for simultaneous rigid F-unification. Also,
our proof is more direct and provides a better upper bound, closer to the
PSPACE lower bound given in (Gurevich & Voronkov 1997). A PSPACE
upper bound for this problem has been proved more recently in a joint work
with Cortier (Cortier 1998).



2 Preliminaries

A signature X is a collection of function symbols with fixed arities > 0 and,
unless otherwise stated, Y is assumed to contain at least one constant, that
is, one function symbol with arity 0. The set of all constants in X is denoted
by Con(X). We use a,b, ¢, d, aq, ... for constants and f, g, fi, ... for function
symbols in general. A designated constant in ¥ is denoted by cy.

A term language or simply language is a triple L = (3, X, Fr) where
(i) ¥, is a signature, (ii) XL (z,y,21,v1,...) is a collection of first-order
variables, and (iii) F, (F,G, Fy1, F’,...) is a collection of symbols with fixed
arities > 1, called second-order variables. The various sets of symbols are
assumed to be pairwise disjoint. Let L be a language. L is first-order, if F,
is empty; L is second-order, otherwise. L is monadic if all function symbols
in Y7, have arity < 1. The set of all terms in a language L, or L-terms, is
denoted by 7;,. We use s,t,1,7, 51, ... for terms. We usually omit mentioning
L when it is clear from the context. The set of first-order variables of a term
t is denoted by Var(t). A ground term is one that contains no variables.
The set of all ground terms in a language L is denoted by 7y,. A term
is called shallow if all variables in it occur at depth < 1. The size ||¢]|
of a term t is defined recursively by: ||t]| = 1 if ¢ € X, U Con(X.) and
| f(te, .. to)| = lItall + ...+ ||ta]] + 1 when f e X, U Fy.

We assume that the reader is familiar with the basic concepts in term
rewriting (Dershowitz & Jouannaud 1990, Baader & Nipkow 1998). We write
u[s] when s occurs as a subterm of u. In that case u[t] denotes the replacement
of the indicated occurrence of s by t. An equation in L is an unordered pair
of L-terms, denoted by s ~ t. A rule in L is an ordered pair of L-terms,
denoted by s — t. An equation or a rule is ground if the terms in it are
ground. A system is a finite set. Let R be a system of ground rules, and s
and t two ground terms. Then s rewrites in R to ¢, denoted by s ¢, if £ is
obtained from s by replacing an occurrence of a term [ in s by a term r for
some rule [ — 7 in R. The term s reduces in R to ¢, denoted by s 2, if either
s =t or s rewrites to a term that reduces to t. R is called symmetric if, with
any rule [ — r in R, R also contains its converse r — [. Below we shall not
distinguish between systems of equations and symmetric systems of rewrite
rules. The size of a system R is the sum of the sizes of its components:

IRl = 220 e r U+ 7D

Rigid Reachability. Let L be a first-order language. A reachability con-
straint, or simply a constraint in L is a triple (R, s,t) where R is a set of
rules in L, and s and t are terms in L. We refer to R, s and t as the rule
set, the source term and the target term, respectively, of the constraint. A



substitution € in L solves (R, s,t) (in L) if 6 is grounding for R, s and ¢, and
st 45> t0. The problem of solving constraints (in L) is called rigid reachability
(for L). A system of constraints is solvable if there exists a substitution that
solves all constraints in that system. Simultaneous rigid reachability or SRR
is the problem of solving systems of constraints. Monadic (simultaneous)
rigid reachability is (simultaneous) rigid reachability for monadic languages.

Rigid E-unification is rigid reachability for constraints (F, s,t) with sets
of equations FE. Simultaneous Rigid E-unification or SREU is defined ac-
cordingly.

Finite Tree Automata. Finite bottom-up tree automata, or simply, tree
automata, from here on, are a generalization of classical automata (Doner
1970, Thatcher & Wright 1968). Using a rewrite rule based defini-
tion (Coquidé, Dauchet, Gilleron & Vagvolgyi 1994, Dauchet 1993), a tree
automaton (or TA) A is a quadruple (Qa,>a, Ra, F4), where (i) Q4 is a
finite set of constants called states, (ii) X4 is a signature that is disjoint from
Qa, (iii) R4 is a system of rules of the form f(q1,...,q,) — ¢, where f € ¥4
has arity n > 0 and ¢,q1,...,¢, € Qa, and (iv) F4 C Q4 is the set of final
states. The size of a TA A is ||A]| = |Qa| + || Ral|-

We denote by T'(A,q) the set {t € 7s, | t F>¢} of ground terms ac-
cepted by A in state q. The set of terms recognized by the TA A is the
set Uyer, T(A,q). A set of terms is called recognizable or regular if it is
recognized by some TA.

Word automata. In monadic signatures, every function symbol has an
arity at most 1, thus terms are words. For monadic signatures, we thus
use the traditional, equivalent concepts of alphabets, words, finite automata,
and regular expressions. A word with a variable ay ... a,x corresponds to the
term ay(as(...a,(z))) € Ts. The substitution of « by a term u is the same
as the concatenation of the respective words. A finite (word) automaton
A is a tuple (Qa,%4, Ra,qYy, Fa) where the components Qa, Y4, Ra, Fa
have the same form and meaning as the corresponding components of a tree
automaton over a monadic signature, and where, additionally, ¢}, is the initial
state. A transition a(q) — ¢ of Ra (a € X4, q,¢" € Q4) is denoted ¢-%¢'.

Second-Order Unification. Second-order unification is unification for
second-order terms. For representing unifiers, we need expressions represent-
ing functions which, when applied, produce instances of a term in the given
language L. Following Goldfarb (Goldfarb 1981) and Farmer (Farmer 1991),
we, therefore, introduce the concept of an expansion L* of L. Let {z;}i>1



be an infinite collection of new symbols not in L. The language L* differs
from L by having {z;};>1 as additional first-order variables, called bound
variables. The rank of a term ¢ in L*, is either 0 if ¢ contains no bound
variables (i.e., t € 77), or the largest n such that z,, occurs in t. Given terms
t and ty,tq,...,t, in L*, we write t[ty,ts,...,t,] for the term that results
from ¢ by simultaneously replacing z; in t by ¢; for 1 < i < n. An L*-term
is called closed if it contains no variables other than bound variables. Note
that closed L*-terms of rank 0 are ground L-terms.

A substitution in L is a function § with finite domain dom(f) C X' U F,
that maps first-order variables to L-terms, and n-ary second-order variables
to L*-terms of rank < n. The result of applying a substitution 6 to an L-term
s, denoted by s6, is defined by induction on s:

1. If s=2 and x € dom() then s6 = 6(x).

2. If s = and 2 ¢ dom(0) then s = z.

3. If s = F(ty,...,t,) and F € dom(0) then s0 = 6(F)[t10, ..., t,0].
4. If s = F(ty,...,t,) and F' ¢ dom(0) then sO = F(t10,...,t,0).
5. If s = f(t1,...,t,) then s8 = f(t10,...,t,0).

We also write F'6 for §(F'), where F'is a second-order variable. A substitution
is called closed, if its range is a set of closed terms. Given a term t, a
substitution @ is said to be grounding for t if tf is ground, similarly for other
L-expressions. Given a sequence ¢ = t1,...,t, of terms, we write 0 for
th0, ... t,0.

Let E be a system of equations in L. A unifier of E is a substitution 6
(in L) such that s6 = tf for all equations s ~ t in E. E is unifiable if there
exists a unifier of E. Note that if F is unifiable then it has a closed unifier
that is grounding for E, since 7y, is nonempty. The wunification problem
for L is the problem of deciding whether a given equation system in L is
unifiable. In general, the second-order unification problem or SOU is the
unification problem for arbitrary second-order languages. Monadic SOU is
SOU for monadic second-order languages. By SOU with one second-order
variable we mean the unification problem for second-order languages L such
that |f L| =1.

Following common practice, by an exponential function we mean an in-
teger function of the form f(n) = 2™ where P is a polynomial. The
complexity class EXPTIME is defined accordingly.



Figure 1: Shifted pairing.
The terms recognized by Amy, ((v1,v]), (v2,v5),..., (vn,v;)), represent a
sequence of moves of a given Turing machine, where v;r is the successor of
v; according to the transition function of the TM.

Each term t recognized by Ajq represents a sequence of IDs of the TM
(’wl,ZUg, PN ,wn).

The two rewrite systems II; and Ily are such that s reduces in II; to ¢ if
and only if v; = w; for 1 < i < k = n, and tjq . s reduces in Il to t if and
only if t;q represents wq, v;r = w;41 for 1 <14 < n, and w, is the final ID of
the TM. It follows that such s and t exist if and only if the TM accepts the
input string represented by tiq.

3 Rigid Reachability is Undecidable

We prove that rigid reachability is undecidable. The undecidability holds
already for constraints with some fixed ground rule set which is, moreover,
terminating. Our main tool in proving the undecidability result is the fol-
lowing statement.

Lemma 1 ((Gurevich & Veanes 1998)) One can effectively construct
two tree automata Amy = (Qumys Yy By, {0 }), Aia = (Qid, Bid, Ria; {qia}),
and two canonical systems of ground rules 111,11y C Ty, X Ty, where the
only common symbol in A, and Aiq is a binary function symbol .,' such
that, it is undecidable whether, given tiq € Ty, ,, there exists s € T(Any) and
t € T(Aiq) such that St and tiq « st

The main idea behind the proof of Lemma 1 is illustrated in Figure 1.
In the rest of this section, we consider fixed A, Aiq, II; and Il; given by
Lemma 1.

Undecidability of simultaneous rigid FE-unification follows from this
lemma by viewing the rules R,, and R;q of the automata A,, and A,
respectively, as well as the rewrite systems II; and I, as sets of equations,
and by formulating the reachability constraints between s and t as a system
of rigid equations. It is not possible, though, to achieve the same effect by
a single rigid F-unification constraint for a combined system of equations.

"We write . (“dot”) as an infix operator.



The interference between the component systems cannot be controlled due
to the symmetry of equality. This is different for reachability where rewrite
rules are only applied from left to right. In fact, our main idea in the unde-
cidability proof is to combine the four rewrite systems R, Riq, 11, and Il
into a single system and achieve mutual non-overlapping of rewrite rules by
renaming the constants in the respective signatures.

3.1 Renaming of Constants

For any integer m and a signature ¥ we write £(™ for the constant-disjoint
copy of ¥ where each constant ¢ has been replaced with a new constant
c™ | we say that ¢™ has label m. Note that non-constant symbols are not
renamed. For a ground term ¢ and a set of ground rules R over X, we define
tm and R(™ over (™ accordingly.

Given a signature X and two different integers m and n, we write X
for the following set of rules that simply replaces each label m with label n:

(m;,n)

yimn) — fem ™ | ¢ e Con(X) }.
We write TI(™™  where II is either II; or I, for the following set of rules:
e = 10 ()| ] - e T},

Lemma 2 Let m, n, k and | be distinct integers. The statements (i) and
(i1) are equivalent for all all s € Ty, and tiq,t € Ts,,.

(i) st and tiq st

) o(m) _ x (n) O (k) __x O]
(ZZ) S Wt and tid . S Hg(—k’l))t .

Proof. The left-hand sides of the rules in II; and Il, are terms in 7y and
the right-hand sides of the rules in II; and I, are terms in 7y, ,. But ¥,
and Y4 are constant-disjoint. X

3.2 The Main Construction

Let R, be the following system of ground rules:

R, = ROURAD UL, ,OYUs,,®YURY URY UD U, U
Eid(475) U H1(075) U Eid(&?) U H2(277)



Note that constants with odd labels occur only in the right-hand sides of rules
and can, once introduced, subsequently not be removed by R,. Let f, be a
new function symbol with arity 12. We consider the following constraint:

(2) (4) (6)

7
Ru7 fu( Zo, T2, To, T2, Y4, Y6, Y4, Y6, Y4, To, Ys, tl(d) « L2 )7 (1)
0
fu( qéﬂ)/v Gmv, T1, T1, dia > Ga > Y3, Y3, Ys, Ys, Yr, Yr )

Our goal is to show that solvability of (1), for a given tiq € ¥iq, is equivalent
to the existence of s and t satisfying the condition in Lemma 1. Note that,
for all ground terms t; and s;, for 1 <17 < 12,

fu(tla e ,t12>RLu>fu(Sl, .. .,512> = tZRLuhS’Z (fOI' 1< < 12)

As a first step, we prove a lemma that allows us to separate the different sub-
systems of R, that are relevant for the reductions between the corresponding
arguments of f, in the source term and the target term of (1).

Lemma 3 For every substitution 0, 0 solves the constraint (1) if and only
if 0 solves the system (2)—-(5) of constraints.

( RY) Zo gt ) \

2 2

(0,1)
( va ) X, X1 )
( Zmv(zl); Z2, X1 ) )
;

. T
( Ry I Y6, Ga ) (3)
( Sa™?, Ya, ys )
( =%, (3 ys )
( Zid(475)a Yy, Y
(10,09 5 ) (4)

1 5 Zo, Ys )
( 2id(677)7 yﬁ? y7 ) } (5)
( H2(2’7)7 tl((? T2, Y7 )

Proof. The direction ‘<=’ is immediate, since if 0 solves a constraint (R, s, t)
then obviously it solves any constraint (R’,s,t) where R C R'. We prove
the direction ‘=", by showing that 6 solves the subsystems (2) and (4). The
other cases are symmetrical. So assume that 6 solves (1).



Proof of 6§ solving (2)

1. We show that ;0 —5-¢%) for i = 0. (by symmetry, this also proves

lnv

the case ¢ = 2.) We know that :):ﬁ#gﬁ?& We prove by induction on
the length of reductions that, for all ¢, if t—>qmv then t & (0) q\9.
The base case (reduction is empty) holds trivially. If the reduction

is nonempty, then we have for some [ — r € R,, and by using the
induction hypothesis, that

; (0)
b s o R(g) Ty

Therefore, all constants in r have label 0, since r is a subterm of s and
s € T0) o Hence l —r € Rmv, and consequently tj—pq

lnv mv

2. We prove that z;6 —*—x10 for i = 0. (The proof is symmetrical for

E[Ilv(lyl)
i = 2.) We know that ;0 5= 216 for i = 0,2. Suppose (by contradic-
tion) that
xoﬁ o) s—>tR—>a:19

where [ — r € R, \ Emv(o’l . All constants in s and thus in [ have label
0 or 1, since all constants in zyf have label 0 by above. It follows that
lsreRQorl—re I1,(>%. We consider both cases separately.

(a) Assume that [ — r € RY. Then r € QY), and thus Con(t) N
QW) # 0. Hence Con(z10) N QW) # (). This contradicts that
I2HRLU>3519, because all constants in x40 have label 2 by above.

(b) Assume that [ — r € II;®®. Then 2,6 contains a constant with
label 5, contradicting again that 93295—“>:B19.

It follows that xoe—mﬁxle

Proof of 0 solving (4) We know that ys0 7-ys0 and zof F-ys0. We
prove first that y49 ( 5 Us0. Suppose (by Contradlctlon) that:

*
y4‘9 Sid (45) s I—r tRu y597

where | — r € R, \ Zid(4’5). Then either [ — r € Ri(;l) orl —re Zid(4’3).
The former case implies that Con(ys0) N Qi(ﬁ) # () and the latter case implies

that Con(ys0) N Ei(s) # (). Both cases contradict that 0 RLu>y59, because all
constants in xq6 have label 0.



To prove that xo0 —5= (0 —o5 Ys0, note that any rule outside 11, %% with the
left- hand side having constants with label 0 would either introduce a constant

from va to ys0 or a constant with label 1 to y56, in both cases contradicting
that y49 (4 = Ys. X

The followmg lemma relates the solvability of (1) to the Lemma 1.

Lemma 4 For tiq € Ty,,, the constraint (1) is solvable if and only if there
exists s € T(Amy) and t € T(Ajq) such that st and tiq « st

Proof. (<) Assuming that given s and t exist, define z,0 = s@ for i €
{0,1,2} and y;0 = t© for i € {3,4,5,6,7}. It follows easily from Lemma 2
and Lemma 3 that 6 solves (1).

(=) Assume that 6 solves (1). By Lemma 3, 6 solves (2)—(5). First we
observe the following facts.
(i) From @ solving (2), it follows that there exists s € T(Ayy) such that
200 = s and 2,0 = s,
(ii) From 6 solving (3), it follows that there exists t € T(Ajq) such that
y40 = t(4) and y6«9 = t(ﬁ)
From 6 solving (4) and by using (ii), it follows that ys0 = t®. Now, due to

the second component of (4) and by using (i), we get that: s )‘Wt( )

From 6 solving (5) and by using (ii), it follows that 3,6 = t('. Now, due to
the second component of (5) and by using (i), we get that: {7 .s(?) Tt
Finally, use Lemma 2. X

We conclude with the following result.

Theorem 1 Rigid reachability is undecidable. Specifically, it is undecidable
already under the following restrictions:

e the rule set is some fixed ground terminating rewrite system;
e there are at most eight variables;

e cach variable occurs at most three times;

e the source term and the target term do not share variables.

Proof. The undecidability follows from Lemma 1 and Lemma 4. The system
R, is easily seen to be terminating, by simply examining the subsystems.
The other restrictions follow immediately as properties of (1). X

We have not attempted to minimize the number of variables in (1). Observe
also that all but one of the occurrences of variables are shallow (the target
term is shallow).



4 A New Undecidability Result for SOU

We prove that SOU is undecidable already when unification problems con-
tain just a single second-order variable which, in addition, occurs twice.
This result contrasts a claim to the opposite in (Levy 1998). Let ¥, be
the signature consisting of the symbols in R, and the symbol f,. Let
R, ={l; = r; |1 <i<m} Let I, denote the sequence l1,lo, ..., 1y
and 7, the sequence r1,7s,...,7r,. Let L, be the following language:

Lu = (Eua {330, L1, T2, Y3, Y4, Y5, Ys, y?})

Let F, be a new second-order variable with arity m + 1. Let cons be a new
binary function symbol and nil a new constant. The language L; is defined
as the following expansion of L,:

Ll - (Eu U {m;n_ﬂ}7 XL.ﬂ {Fu})

We can show that, given ¢4 € 7y, the following second-order equation in
L, is solvable if and only if the constraint (1) is solvable:

Fou(ly, cons(fu(@, ¢2, 21, 21,450, ¢ s, ys, us, vs, vz, ), mil)) =~

M(fu(an T2, X0, T2, Y4, Y6, Y4, Y6, Y4, Lo, Ys, tl((? . .73'2), Fu(Fua H_ll)) (6)

Lemma 5 Given tiq € Tx,, (1) is solvable if and only if (6) is solvable.

Proof. The direction ‘=" follows from (Veanes 1998, Lemma 2) and the ob-
servation that if 6 solves (1) then 26 € Ty, for all x € A. In particular, it
is not possible that cons or nil appear in the terms that are substituted for

XL,
We prove the other direction. Assume that 6 solves (6). We show that
0 solves (1). A straightforward inductive argument shows that F,0 is an
Li-term of rank m + 1 of the following form: (recall that z; is the i’th bound
variable)

F,0 = cons(sy, cons(ss, . .., cons(Sg, Zm+1) -+ *)),

for some k£ > 1, by using that R, is ground and that cons ¢ 3, (see (Veanes
1998, Lemma 1)). Hence, since 6 solves (6), it follows that

cons(sy[ln, ], ... cons(sis1[l, ], ... cons(t6, nil)--+)--) = (7)
cons(s6, ... cons(s;[Fy,nil], ... cons(sg|[ry,nil], nil)---)---),

where s is the source term of (1), t is the target term of (1), and t' =
cons(t6, nil). So there exists a reduction in R, U {#' — nil} of the following

10



form:

— — —

s1[l, '] Solly, t'] Sk [lu, '] to
I N I I N I
st $1[7u, nil] Sk—1[T, nil] Sk [T, nil]

This means that s§ ——=——t#, i.e.,
R, U{t' —nil}

7
ul To, X2, Lo, T2, Y4, Y6, Y4, Y6, Y4, To, Y6, lig = T2
ful ty ey )0

*
e
R, U{t' —nil}

0 2 4 6
fu( QI(n\)/, qf(n\)7> xy1, 1, Qi(d)> qi(d)> Y3, Ys, Ys, Ys, Y7, Y7 )9

It is sufficient to show that xo0, x20, y40,ys6 € Tx,,. Because then sf € Ty,
and the rule ¢ — nil can not be used in the reduction of sf to tf, since nil
does not occur in ¥,. To begin with, we observe that

) * (@) - ) * (@) s
xﬂmqmv (’L = 0, 2) and that yﬂmqid (Z = 4, 6)
It follows by easy induction on the length of reductions that ¢ — nil can

not be used in these reductions, since nil does not not occur in R,. Hence,
x00, 120, y40, yst € Ty, , as needed. X

We conclude with the following result, that follows from Lemma 1, Lemma 4,
and Lemma 5.

Theorem 2 Second-order unification is undecidable with one second-order
variable that occurs at most twice.

The role of first-order variables in the above undecidability result is im-
portant. Without first-order variables, and if there is only one second-order
variable that occurs at most twice, second-order unification reduces to ground
reachability, (Levy & Veanes 1998), and is thus decidable.

5 Decidable Cases

We show that rigid reachability and simultaneous rigid reachability are de-
cidable when the rules are all ground, either the source s or the target ¢
of any constraint is linear, and the source s and the target t are wvariable-
disjoint, that is, Var(s) N Var(t) = . The non-simultaneous case then turns
out to be EXPTIME-complete. EXPTIME-hardness holds already with
just a single variable. This contrasts with the fact that rigid E-unification
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with one variable is P-complete (Degtyarev, Gurevich, Narendran, Veanes
& Voronkov 1998). When additionally both the source and target terms are
linear, then rigid reachability and simultaneous rigid reachability are both
P-complete.

Note that the only difference between the conditions for undecidability
of rigid reachability in Theorem 1 and the condition for decidability in The-
orems 6, 7, and 8 is the linearity of source and (or) target terms. In the rest
of the section, we assume fixed a signature 3.

5.1 Decidable Cases of Rigid Reachability

We begin with defining a reduction from rigid reachability to the empti-
ness problem of the intersection of n regular languages recognized by tree
automata Aj,...,A,. This intersection emptiness problem is known to
be EXPTIME-complete, see (Frithwirth, Shapiro, Vardi & Yardemi 1991),
(Seidl 1994) and (Veanes 1997). We may assume the states sets of the
Aq,...,A, to be disjoint and that each of these tree automata has only one
final state. We call these final states, respectively, ¢', JETN qfqn. For stating
the following lemma, we extend the signature ¥ by a new symbol f of arity
n, and assume that n > 1.

Lemma 6 T(A;) N ... N T(A,) # 0 iff the following constraint:
(Ra, U...URa,, f(z,...,z), f(d4,,---.d4)) has a solution.

Proof. (=) is obvious. For (<) we use the fact that the new symbol does not

occur in any transition rule of the Ay, ..., A,. Therefore, and since the state
sets are disjoint, any reduction in f(z,.. )Hmf(qgl,...,qgn)
(where 6 is a solution) takes place in one of the arguments of f(x,...,z)6.

Moreover, if the reduction is in the i-th subterm, it corresponds to the appli-
cation of a rule in R,,. (It is possible, though, to apply a start rule in R4,
within the i-th subterm, with ¢ # j. But any reduction of this form blocks
in that the final state ¢';, can not be reached from the reduct.) The fact that
n > 1 prohibits states of the automata to appear in xf. X

Theorem 3 Rigid reachability is EXPTIME-hard even when the rules and
the target are ground and the source contains only a single variable.

For obtaining also an EXPTIME upper bound for a somewhat less restrictive
case of rigid reachability we will apply tree automata techniques. In particu-
lar, we will exploit the following fact of preservation of recognizability under
rewriting, which is a direct consequence of results in (Dauchet, Heuillard,
Lescanne & Tison 1988).
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Proposition 4 ((Coquidé & Gilleron 1990)) Let R be a ground rewrite
system and t a linear term. The set {u € Ty | u»to,to ground} is recog-
nizable by a tree automaton A the size of which is in O(||t|| * ||R||?).

Proposition 5 The subset of 75, of ground instances of a given linear term
s is recognizable by a tree automaton A, the size of which is linear in the
size of s.

Theorem 6 Rigid reachability, when rules are ground, the target is linear
and the source and the target are variable-disjoint, can be decided in time
O(n3*4), where n is the size of the constraint, and k is the total number of
occurrences of non-linear variables in the source term.

Observe that the time upper bound becomes O(n*) when s is linear, since
k = 0 in this case.

Proof. Assume to be given a reachability constraint (R, s,t) of the required
form. We first construct a tree automaton A from ¢ and R with the proper-
ties as provided by Proposition 4, that is, recognizing the predecessors with
respect to R of the ground instances of . The size ||A]| of A is in O(n?).

If the source s is linear, then there is a solution for (R, s,t) iff T'(A) N
T(As) # 0, where A is the tree automaton of Proposition 5. Since the
intersection of recognizable languages is recognizable by a tree automaton
the size of which is the product of the sizes of the original tree automata, the
solvability of the given constraint can be decided in time O(||s||*n?) C O(n?).

If the source s is not linear, we reduce our rigid reachability problem to
|Q 4|* problems of the above type. We assume wlog that A has only one final
state ¢f. Let (s;) be the finite sequence of terms which can be obtained from
the source s by the following replacements: for every variable x which occurs
j > 2 times in s, we choose a tuple (qi,...,q;) of states of A such that?
Ni<;T(A, ¢;) # 0, and we replace the ith occurrence of x with ¢; for ¢ < j
in s.

Then the two following statements are equivalent:

(i) the constraint (R, s,t) has a solution.
(ii) one of the constraints (R4, s;,¢") has a solution.

(i) = (ii): Assume that o is a solution of the constraint (R, s,t). This
means in particular that so € T(A) i.e. so%>¢". Let T be the restriction of

20ne can decide this property in time ||A||* € O(n3%).
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o to the set of linear variables of s and € be its restriction to the set of non-
linear variables of s. We have s TS by construction and 7 is a solution of

the constraint (Ra, s;,q").

(i1) = (i): Assume s;7 #qf for some i and some grounding substitution
7. To each non-linear variable x of s, we associate a term s, € N;<,;T(A, ¢;)
(it exists by construction) where q,...,q; are the states occurring in s; at
positions corresponding to x in s. This defines a substitution # on the non-
linear variables of s (by #6 = s,) such that s76 € T'(A). Hence s70 +»to for
some grounding substitution ¢ which is only defined on the variables of t.
Since Var(s) N Var(t) = 0, the domains of §, 7 and o are pairwise disjoint
and 7 U0 U o is indeed a solution to the constraint (R, s,t).

Complexity: The number of possible s; is smaller than |Q4|* i.e. it is
in O(n3F). Rigid reachability for one constraint (4, s;, ¢") can be decided in
time O(n?), according to the first part of this proof. Altogether, this gives a
decision time in O(n3+4). X

By symmetry, rigid reachability is also decidable when rules are ground, the
source is linear and the source and the target are variable-disjoint, with the
same complexities as in Theorem 6 according to the (non)-linearity of the
target.

As a consequence we obtain these two theorems:

Theorem 7 Rigid reachability is EXPTIME-complete when rules are
ground, the source and the target are variable-disjoint, and either the source
or the target is linear.

Theorem 8 Rigid reachability is P-complete when the rules are ground, the
source and the target are variable-disjoint, one of the source or the target is
linear, and the number of occurrences of non-linear variables in the other is
bounded by some fixed constant k£ independent from the problem.

Note that the linear case corresponds to k£ = 0.

Proof. For obtaining the lower bound, one may reduce the P-complete uni-
form ground word problem (see (Kozen 1977)) to rigid reachability where
rules, source and target are ground. The upper bound has been proved in
Theorem 6. X

5.2 Decidable Cases of Simultaneous Rigid Reachabil-
ity

We now generalize Theorem 8 to the simultaneous case of rigid reachability.
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Theorem 9 Simultaneous rigid reachability is P-complete for systems of
pairwise variable-disjoint constraints with ground rules, and sources and tar-
gets that are variable-disjoint and linear.

Proof. Apply Theorem 8 separately to each constraint of the system. X
Similarly, we can prove:

Theorem 10 Simultaneous rigid reachability is EXPTIME-complete for
systems of pairwise variable-disjoint constraints with ground rules, and
sources and targets that are variable-disjoint and such that at least one of
them is linear for each constraint.

The problem remains in P (see Theorem 8) if there is a constant k indepen-
dent from the problem and for each s; (resp. t;) which is non-linear, the total
number of occurrences of non-linear variable in s; (resp. t;) is smaller than
k.

We can relax the conditions in the above Theorem 10 by allowing some
common variables between the s;.

Theorem 11 Simultaneous rigid reachability is in EXPTIME when all the
rules of a system of constraints ((Ri,s1,t1),..., (Rm,Sm,tm)) are ground,
either every t; is linear or every s; is linear, and for all 7, j < m, the terms s;
and t; and respectively the terms ¢; and ¢; (when i # j) are variable-disjoint.

Proof. We prove for the case where every t; is linear, the other case follows
by symmetry. We reduce this problem to an exponential number of problems
of the type of Theorem 10.

We associate a TA A; to each pair (¢;, R;) which recognizes the language
{u € Tx | uf>tio,t;0 ground} (see Proposition 4). The size of each A;
is in O(||t;]| * ||Ri]|*). We assume wlog that the states sets of the A; are
pairwise disjoint and that the final states sets of the A; are singletons, namely
Fa, = {q¢}}. We construct for each i < m a sequence of terms (s; ;) obtained
by replacement of variables occurrences in s; (regardless of linearity) by states
of A;. To each m-tuple (s1,, ..., Sm j, ), We associate a system which contains
the constraints:

L. (RAl? S1,515 Q{), SR (RAm7 S1,5m> qu)

2. for every variable x which occurs k times in {s1,...,s,}, with &k > 2,
(R, W.. WRA,, fXx,....2), f¥(q1,. .., q)), where f¥ is a new function
symbol of arity k and q;,. .. ,g; are the states occurring in sy j,,...,51,,.
at the positions corresponding to x in s1,...,S,.
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Then the system ((Ry,s1,t1),..., (Rn,sn,t,)) has a solution iff one of the
above systems has a solution. Each of these systems has a size which is
polynomial in the size of the original system and moreover, each fulfills the
hypothesis of Theorem 10 and can thus be decided in EXPTIME. Since
the number of the above systems is exponential (in the size of the initial
problem), we have an EXPTIME upper bound for the decision problem. X

6 Monadic Simultaneous Rigid Reachability

Our second main decidability result generalizes the decidability proof of
Monadic SREU for ground rules (Gurevich & Voronkov 1997). Moreover,
our proof gives an EXPTIME upper bound to monadic SREU for ground
rules. Although the lower bound is known to be PSPACE (Gurevich &
Voronkov 1997), no interesting upper bound has been known before for
this problem. We shall use basic automata theory for obtaining our result.
More recently, and using different techniques, monadic rigid reachability with
ground rules was found to be decidable also in PSPACE (Cortier 1998). The
presentation in this section will be in terms of words rather than monadic
terms.

Recognizing Substitution Instances. We will first show that n-tuples
of substitution instances of monadic terms are recognizable. For this purpose
we let automata compute on ((X U {L1})")*, where L is a new symbol. The
representation of a pair of words of ¥* as a word ((X U {L})?)* is given by
the product ® defined as follows:

a...a, ®by... b, = <a1,bl)...<an,bn)(J_,bn+1>...(J_,bm> ifn<m
ap...a, @by...by, = {a1,b1) ... (am,bm){ami1, L) ... {ap, L) ifn>m

We extend this definition of ® associatively to tuples of arbitrary length in
the obvious way.

Lemma 7 Let Ly, ..., L, be recognizable subsets of ¥*. Then 41 ®...® L,
is recognizable (in (X U{L})™)*). The size of the product automaton can be
bounded by the product of the sizes of its factor automata.

Proof. We present the construction for n = 2. It may be generalized by a
straightforward induction argument to arbitrary n. Let A; and A,, respec-
tively, recognize Li1* and Ly L*. We define:

Al ® A2 = ((Q/h U {QJ_}> X (QAQ U {QJ-}>7 E? R? <qi417 qi42>7 FAl X FA2>

where ¢, is a new state symbol (¢, ¢ Qa, UQ4,) and R is such that:
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o if p-%p € Ry, then <p,qJ_>M><p/7qJ_> cR

o if ¢2¢ € Ry, then (g1, q) =2 (g, ¢) € R

e if p&p/ € Ry, and g ¢' € Ry, then (p,q) %L (o ¢y € R
X

When constructing an automaton for ¥* ® L from an automaton A for L, the
size of the product automaton can be bounded by ¢ x || Al|, for some (small)
constant c¢ if the alphabet ¥ is assumed to be fixed.

Theorem 12 Given p monadic X-terms s;, the set of tuples of their ground
instances {510 ®...® s,0 | § ground } is recognizable by an automaton with
size exponential in ", [s;].

The proof of Theorem 12 will be based on three technical lemmas.

Lemma 8 Let L be a language of tuples of the form a1 ® ... ® a, that is
recognized by A. Then, for any permutation 7w, the language

Li={an®..Qam|a®...0a, € L}
can be recognized by an automaton of the same size as A.

Proof. We apply the permutation 7 to the tuples of symbols appearing in
the rules of R4. X

Lemma 9 Given s,t € X%, the set {su @ tu | u € X*} is recognizable by an
automaton with size exponential in |s| + [t|.

Proof. Let s = sg...s, and t = ty...t,. By symmetry, we assume that
m > n and we let p = > 7" "(]X] — 1)". The automaton we are going to
construct has n 4+ 2p + 1 states. The n first states are denoted qq, . . ., g, and
the others are [w] and Jw] where w € ¥,

The initial state of A is qq.

We classify the transitions of A in 4 categories, corresponding to the
following decomposition of the word su ® tu in 4 segments:
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For category 1, there are n + 1 transitions between states ¢;, in order to
recognize a first segment of length n of su ® tu. This gives the transitions:

i MQi_i_l fori <n (8)
We ensure the transition between states g; and states [w] with the epsilon
transition:

(1 — [ ] (9)

The purpose of the rules in category 2 is to memorize (into states [w]) the
first symbols of u, in segment 2, while checking the rest of ¢. These rules are:

[w] 2%, [wa] where a € %, |w| < m —n,i=n+ |w|+ 1 (10)
It may also be the case that the length of w is smaller than m —n (the length
of segment 2). This corresponds to the apparition of some (L, ;) in segment
2, which causes a jump to category 4. The rules for this case are:

[w] =55 Tty . tw] where [w| <m—n—1,i=n+ |w|+ 1 (11)
[w]ﬁﬂb[[w]] where |w|=m —n—1 (12)

The most important segment in the above decomposition is the third one.
Note that it is the only segment which is not bounded in the length of s and
t. Thus, the transitions of A which go through this segment have to make
possible some loop between the states [w]| where |w| = m — n. The purpose
of these transitions is to check that the u is the same in su and tu, with a
delay m — n.

[E— Sea), [ag . ..am_nal (13)

Finally, the transitions of the fourth category are supposed to finish the
computation of A.

lay ... a;] =9 [ay . . . a;] where i =m —n (14)
Jay ... a;] =% [ay . . . a;] where i < m —n (15)

The automaton A with transitions 8-15 recognizes {su @ tu | u € ¥*}. K

Example 1 Let ¥ = {0,1}, s =0 and t = 101, thus n = 0, m = 2. The
automaton recognizing {su & tu} is depicted in figure 2. The categories to
which the transition rules belong are indicated at the bottom of the figure.

The construction underlying the proof of Lemma 9 cannot be generalized to
the case of non-monadic signatures. However, one can generalize it (in the
monadic case) to the product of an arbitrary number p of words.
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Figure 2: An example illustrating the proof of Lemma 9.

Lemma 10 Given p > 1, the set {s1ju® ... ® syu | u € £*} is recognizable
by an automaton with size exponential in Y 77_, |s;].

Proof. By induction on p. The base case p = 1 is trivial, and the case p = 2
is proved in Lemma 9. Assume that p > 2 and that we have an automaton
A with T(A) ={s1u® ... ®s,u | v € ¥*} and one more word s,;;. Let A”
be an automaton such that T'(A”) = {s,u ® spru | v € £*}. A” may be
obtained by applying Lemma 9 again. Clearly,

(TAEZ)IN(Z'®...0Y T(A") ={s1u®...® sppu | u € X'}
—_———
p—1

According to Lemma 7, this language is recognizable by an automaton A’
and, by Lemmas 7 and 9, ||A’|| is of the order 225=1 15 4 2lspl+lspr1], X

Now we are ready to prove the Theorem 12 which says that, given p
monadic Y-terms s;, the set of tuples of their ground instances

{10 ® ... ® s,0 | 6 ground }
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. . . . . . p
is recognizable by an automaton with size exponential in > =, |s;].

Proof. The terms s; are either ground or have the form s;(z;) with one oc-
currence of a variable x; “at the end”. Let, for any variable x occurring in
any of the terms, s;,...,s;, be those terms among the s; which contain z.
According to Lemma 10, the language

LY ={5,0®...®s,;,0| 6 ground }

is recognizable by an automaton of size exponential in »_;|s;;[. From
Lemma 7 we infer that L = L{ ® ¥* ® ... ® X*, with p — n factors of
¥, is recognizable by an automaton with size exponential in . |s;[. Fi-
nally, L” = (L3),, with 7 a permutation which maps the first n indices j to
i;, that is, puts the s;; into their right place in the sequence 1...p, is also
recognizable by an automaton of the same size, see Lemma 8. Moreover, it
is not difficult to see that

Ly={ti®...®t,|t; =s; if s; ground, and ¢; € X*, otherwise}

is recognizable by an automaton with size polynomial in max|s;|. The de-
sired language arises as the intersection of the languages L* and L, so that
recognizability with the stated complexity bound follows. X

For solving reachability constraints, we also need to recognize rewriting
relations.

Theorem 13 ((Dauchet et al. 1988)) Given a ground rewrite system R
on ¥*, the set {u ® v | u»v} is recognizable by an automaton the size of
which is polynomial in the size of R.

Theorem 14 Rigid reachability in monadic signatures is in EXPTIME
when the rules are ground.

Proof. Let (R, s,t) be a constraint over the monadic signature 3. We show
that the set of “solutions” & = {sfl ® t0 | s0 % t0} is recognizable. s and ¢
may contain at most one variable which we denote by = and y, respectively.
These two variables may or may not be identical. Applying Theorem 12, we
may infer that {s0®t0 | 20 and yf ground } is recognizable by an automaton
A with size exponential in |s| + |¢|. By Theorem 13, the set {u ®@ v | u,v €
¥, u+»v} is recognizable by an automaton A’ with size polynomial in the
size of R. Clearly S = T'(A)NT(A’), and emptiness is decidable in time linear
in the size of the corresponding intersection automaton (which is exponential
in |s| + |t| and polynomial in the size of R). X
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The extension to the simultaneous case of Theorem 14 generalizes and im-
proves a result of (Gurevich & Voronkov 1997).

Theorem 15 Simultaneous rigid reachability in monadic signatures is de-
cidable in EXPTIME when the rules are ground.

Proof. The construction is a generalization of the one for Theorem 14. Sup-
pose we are given the system of constraints (R;, s;,t;), 1 < i < n. We first
construct an automaton A; for each ¢ < n such that T(A;) ={u®v | u,v €
Y%, uf>v}. Then A= Q) A; (see Lemma 7) recognizes the language:

TA) ={u1 @ Qua ® ... du, ®v, | foralli <n u;,v; € E*,ui?vi}.

The size of A is the product of the sizes of the A;, hence of order M™ where
M is the maximum of the sizes of the A;. In Theorem 12 we have shown
that the language

LY ={500t0®...® 5,0 @1,0 |0 ground}

is recognizable by an automaton A® of size exponential in Y, |s;| + |t;|. The
simultaneous reachability constraint is solvable if and only the intersection
L% NT(A) is non-empty. According to the respective sizes of the automata
in the above intersection, this gives an EXPTIME upper-bound for deciding
simultaneous rigid reachability. X

7 Conclusion

We have shown that absence of symmetry makes the solving of rigid reach-
ability constraints in general much harder. In the non-simultaneous case
one jumps from decidability to undecidability. In the case of ground rewrite
rules, source terms with just a single variable, and ground target terms,
the complexity increases from P-completeness to EXPTIME-completeness.
The undecidability of rigid reachability implies a new undecidability result
for second-order unification problems with just a single second-order vari-
able that occurs twice. We have also seen that automata-theoretic methods
provide us with rather simple proofs of upper bounds in the monadic case.
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