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Modeling prefrontal functions for robot navigation

Hervé Frezza-Buet, frezza@loria.fr and Frédéric Alexandre, falex@loria.fr,

LORIA, BP 239, 54506 Vandoeuvre Cedex, France

Abstract—This paper presents a model of coopera-
tion between representations of correlation in the asso-
ciative cortex and goal oriented representations of ac-
tion in the prefrontal cortex. The model is applied to
robot navigation and gives a framework for addressing
planning with numerical neural techniques.

I. Introduction

Neural networks have turned out to be suitable for
numerical problems, as supervised and unsupervised
classification of numerical vectors. This capability of
neural techniques to deal with numerical data is re-
quired when addressing autonomous behavior of a real
robot, because perceptions from sensors are numerical
and noisy. But behavior is much more than classifying
perceptions. Behaving implies dealing with constraints,
like keeping internal variables within vital range by ex-
ploiting resources of the external world or avoiding ob-
stacles. Taking these constraints into account leads the
robot to plan actions. As opposed to computation of
numerical data, only few attempts have been made to
use neural techniques for planning, because planning
seems to be a symbolic task.

The purpose of this paper is to show that recent
works from biology concerning prefrontal cortex mod-
eling allow to design neural control architectures for
robot behavior that include planning capabilities. As
symbols are often difficult to ground on numerical data,
the challenge of planning with neural networks is to
avoid this grounding problem by keeping computation
at a numerical level and making planning emerge from
interaction of neurons.

The task we use to design our model is a simulated
application for the moment, and the model is to be
tested on a real robot. The experimental framework
related to the work presented in this paper is a sim-
ulated robot in a flat environment. Motions are con-
tinuous and colored patches on the floor corresponds
to food areas, water areas and obstacles. The robot
perceives the environment through a 360 degrees video
camera. It has to survive by “drinking” on water areas
and “eating” on food areas.

The architecture of the robot consists of two parts :
a model of associative cortex and a model of prefrontal
cortex. The cortical framework and the respective roles
of the two models will be first presented, and the corti-
cal associative model we use will be described. Then we
will present the main features of our model of prefrontal
cortex and conclude with a discussion of experimental
results.

II. The cortical framework

The cortex has been described as a bi-dimensional
sheet tiled with replicated neural circuits: the corti-
cal columns [4]. Cortical columns receive inputs from
the external world, from other columns of the cortex
and from other parts of the brain. As the cortical col-
umn is a large set of neurons, it is successfully modeled
by an automaton [1], dealing with input/output sig-
nals through several states of activation. That is why
the units of our model are far from the formal neuron
described in [16] and used in perceptrons.

Within our model, each unit is associated to a per-
ceptive or motor event. Units that concern events of
the same modality are gathered within cortical maps.
Primary maps then gather mono-modal units, related
to sensors or effectors, and associative maps, owning
units connected to units of other cortical maps, allow
to represent multi-modal events. The biological basis
for cortical maps and the way they are connected can
be found in [2], but our architecture only deals with
associative maps linking two other maps.

The functioning of the units is inspired from biologi-
cal observations [4]: A unit has three kinds of activity.
First, it can be at rest, because of absence of the exter-
nal event it is tuned on, or because of inhibition from
other units. Second, the unit can be excited, when the
associated external event occurs. Third, the unit can
be called, the call activity representing the fact that
the cortex, for any reason, needs for the occurrence of
the event associated to the called unit. A called unit
can thus be viewed as a goal.

It has been observed in the cortex that learning
consists in specializing some columns, among a set of



columns having the same connections [4]. A convenient
way to model this learning through specialization is to
first use a single unit, and then allow it to split when
something has to be learned [9]. Our cortical model is
then incremental.

III. The respective role of posterior and
prefrontal cortex models

A. Why making that distinction ?

Some cortical models addressing behavior can be
found in the literature, and some of them provide be-
havioral capabilities with only one kind of cortical unit
[3], [8]- On the one hand, the unit in such model have
to deal with perceptions, detecting causal relationships
between perceptive events in order to learn rules of the
external world. On the other hand, the system has to
take current needs into account, i.e. build sequences of
goals and subgoals that control behavior for goal reach-
ing. This sequence management can be global [3], or at
the level of each unit [8]. As sequences of perceptions
are often noisy, an efficient management of sequences
tends to be complex, and a large computational part of
the cortical units is devoted to this goal management,
whereas the cortical unit is supposed to represent a per-
ceptive event.

The idea is then to separate perception-related com-
putation from goal-related computation. This separa-
tion is inspired from biological findings concerning the
organization of the cortex [10]: whereas the posterior
(associative) cortex is the perceptive pole of the cor-
tex, the prefrontal cortex appears to be dedicated to
goal-oriented representation.

B. What can we expect from a model of associative cor-
tex ?

As we make a distinction between associative cor-
tex computation and frontal cortex computation within
our model, we try to define the limits of the role of
associative cortex. Our model of associative cortex is
designed for correlation detection between multi-modal
perceptions. These correlations can be both spatial and
temporal. Time management is sometimes reported
as a specificity of prefrontal cortex. On the contrary,
we actually consider computation of temporal correla-
tions within associative cortex. These correlations are
short-term associations between consecutive events of
the world, and they can be used as some kind of one
step ahead prediction. Associative cortex representa-
tions, within our model, are the result of the learning
of the transition function between states of the per-
ceptive world, i.e. they represent the regularity of the

world as a kind of differential equation.

For example, hand controling with vision during a
reaching task requires to learn associations of the posi-
tion of the hand on the retina with motor commands to
muscles [5]. These associations allow to predict imme-
diate consequences of actions, i.e choosing the correct
muscle command to make the hand be in the desired
place on the retina.

Using the associative model then consists in calling
a desired perceptive event (i.e. creating a call activ-
ity within the corresponding cortical column). This
call will propagate to columns corresponding to close
events. If one of these latter columns corresponds to a
current event, the associative cortex triggers the action
that allows to get the initially desired perceptive event.
This principle is illustrated in section IV.

C. Computing behavior with prefrontal cortex model

We roughly consider the role of the prefrontal cortex
model as controling sequences of calls toward associa-
tive cortex. Each of these calls aims at triggering an
action to attain an elementary perceptive state from
the current one (the latter being relatively close to the
former). Suitable sequences of calls are those who lead
to a behavior that maximizes reward, making a com-
promise between multiple vital needs and unexpected
features of the world.

1) Functional view: We present in this section some
of the main features of prefrontal cortex computation,
according to functional descriptions found in the bio-
logical literature. These results are mainly obtained by
studies with impaired patients that are not presented
in this paper.

e Prefrontal cortex is strongly connected to limbic
structures dealing with drives and rewards. These
connections “[impart] prefrontal functions their
eminently “active” character” [10]. As opposed to
associative cortex that learn transition function of
the world, prefrontal cortex units are driven by
some kind of reinforcement learning rules.

¢ Prefrontal cortex, according to observations dur-
ing delayed-response task experiments, can play
the role of a “working memory” [12], that stores
current context when this context is relevant for
getting a reward. A delayed-response task consists
in presenting a cue, removing the cue during a de-
lay period, and then presenting a situation to the
subject. The way to get rewarded depends on the
initial cue, and a subject that succeeds in getting
the reward has to keep the cue in mind during the
delay period. Frontal cortex plays a central role
in such capabilities [12], and this role have been



modeled in [7]. Models and observations involve
neurons that have a sustained activity during the
delay period.

e As mentioned in [10], the prefrontal cortex pro-
vides the ability to bind time separated events in
order to build temporal gestalts. This binding role
is the result of the processing of “cross-temporal
contingencies”. Such representations enable to an-
ticipate long term consequences of actions, and can
be viewed a a “memory of future” [10]. “Set cells”
have been observed that fire before the occurrence
of an event. The anticipatory function of those
cells is increasing the sensibility of associated cor-
tical cells, that can be interpreted as a call in the
associative cortex, according to the definition of
call activity in [4].

e The planning ability of the prefrontal cortex is
grounded on its ability to schedule contention [17].
A large part of prefrontal activity consists of in-
hibiting influences of other possible sequences of
action. This allows to keep attention to the cur-
rent plan, without being distractible.

e Last, let us mention a central function of frontal ac-
tivity. This function concerns the ability to quickly
adapt to unexpected events. An expected reward
that actually cannot be obtained will result in a
fast changing of the current strategy. This prop-
erty has been modeled in [7].

2) Biologically plausible bistable mechanism : A bi-
ologically plausible mechanism has been proposed in
[4], and it has been used for modeling experimental
data in go-no go tasks [13]. The idea is to consider the
sustained activity observed with frontal neurons as a
bistable behavior of the prefrontal unit. Each frontal
unit is associated with a perceptive event (i.e. a unit
in the associative cortex) and is able to store a call on
this event if the associative cortex is not able to get the
event (i.e. there is no direct action to trigger to get the
desired perceptive state). This storing provide stack-
ing capabilities, as described in the following example
(figure 1).

Let us suppose that getting events A; and A, is re-
quired for being rewarded. Moreover, let us suppose
that getting successively Ajy, A1 and A3 is required
to make a call in A; efficient enough to get A;. In
the same way, let us suppose that getting A;» requires
getting A1 and Ajss. The behavior of the frontal as-
sociated bistables F; is the following. First, F} is called.
A transient call is propagated to A; without success in
getting A;. Then F) goes to the ON state and calls Fy;.
The ON state of F} is an uneffective call in Fj, that only
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Fig. 1. Hierarchical organization of bistables: stacking prop-
erty of prefrontal units.

aims at stacking the initial goal of calling 4;. In the
same way, F1; calls A1;. When A is excited (the call
has succeeded), the call in Fj; spreads to Fi». As for
Fy, Fi5 goes to the ON state, stacking the subgoal of
calling A;» and call is transmitted to Fis1, and then to
Aq21. When Ajs; occurs, call is transmitted to Fioq,
and then to Aj29. When A;95 occurs, Fios makes Fio
go to the transient OFF state. The calling of A;s dur-
ing the ON state is made effective on A12. When A5 is
obtained, call is transmitted to Fi3: the call previously
stored in Fi» is popped up from the stack. In the same
way, call will be transmitted to Ay after A;3 and A;
are obtained, popping up the call initially stored in Fj.

On the basis of this stacking mechanism, sustained
activities observed in frontal neurons have to be related
to the ON state of units in the model. This storage can
be viewed as a prediction of the OFF state (memory of
the future, cross-temporal contingencies), or as a con-
text for further computations (working memory).

Last, if a call that is expected is not obtained, the
local “frustration” may trigger the stacking of that call
while trying to get it by using other sequences. If this
latter sequence succeeds in allowing the success of the
stored call, it will be introduced by learning in the hi-
erarchical structure of bistables. This can be related to
the capacity of the prefrontal cortex to quickly adapt
to unexpected events.

IV. The associative cortex model

The associative cortex model consists in several maps
connected to perceptions and actions. Perceptions of
the robot are the video input and the state of inter-
nal vital variables, and actions to the world are eating,
drinking, turning (with a continuous angle) and going
ahead. Another set of actions is defined, concerning
ocular saccades. Primary maps are connected to ac-
tuators or sensors, whereas associative maps combine
primary maps. The global architecture is sketched in
figure 2 and detailed below.
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Fig. 2. Architecture of the model of associative cortex.

A. Ingestions maps

These four maps are very straightforward in our
model, they all contain one unit. The “Eat” and
“Drink” maps contain units that trigger the corre-
sponding action when excited. The “Hunger” and
“Thirst” maps are somesthesic maps, whose units per-
ceives the global sensation of being “hungry” and
“thirsty” (the corresponding unit is excited).

B. Motor and saccades maps

Motor maps contain units that trigger a motion when
excited. The “Rotation” map owns units that are topo-
logically organized, from the triggering of a strong left
rotation to the triggering of a strong right rotation. If
several rotation units are excited, the mean rotation
angle is performed by the robot, units in the map act-
ing as a population vector [11]. A “go-ahead’ map, not
represented on figure 2, is organized the same way, from
low speed to high speed motions. Two other “Horizon-
tal eye-saccade” and “vertical-eye saccade” (not repre-
sented on figure) are used to move an attention point
in the video image.

C. Attention point maps

These two maps (only “horizontal eye position” is in
figure 2) are perceptive maps whose units are excited for
a particular abscissa (resp. ordinate) of the attention
point. The robot then perceives the location of the
point it stares in the picture, which is a self-centered
referential.

D. Visual maps

Two virtual overlapping grids are centered on the
position (posX,posY’) of the attention point (see fig-

ure 2), respectively corresponding to central and pe-
ripheral vision. There are two visual maps for each
color to be detected, one concerning the central vision
and one concerning peripheral vision. If one unit of a
“central vision” map is excited (the corresponding color
is perceived on the corresponding place in the picture),
the corresponding unit in the “color map” is excited.
Reversely, a call activity in a unit in the “color map”
make all units in the two corresponding central and
peripheral visual maps increase the intensity of their
response (priming effect of call).

Then, calling a color unit allows the corresponding
primary visual maps to own columns that are excited.
This excitation is then strong enough to make the units
of the “visual patterns” maps be excited. The excited
patterns are those who fit best the activation distribu-
tion in the primed primary visual maps. The “visual
patterns” maps are topologically organized, as observed
in [14] and modeled with SOM architecture [15].

E. Associative maps

In our model, an associative map combines two per-
ceptive and motor maps. Its role is to use motor com-
mands to make call units in perceptive maps be excited,
i.e. to allow to get the desired perceptive event by trig-
gering the appropriate action.

An example is detailed for the positioning of the at-
tention point to a desired place in the picture. Let us
suppose that the desired abscissa of the attention point
is “near extreme left”, the corresponding unit of the
“horizontal eye position is called” (empty circle in fig-
ure 2). If the actual position of the attention point is
“centered” (black circle), the call will spread in the as-
sociative map to directly associate units (see the row
of empty circles), and from there it will spread to other
units in the associative map through learned links (ar-



rows on the figure). This priming call then allows some
units (one in the example) to be excited enough to make
the corresponding motor unit trigger the appropriate
saccade. The same is done (but is not represented) for
vertical positions and saccades.

The topological organization of visual patterns al-
lows to do the same with abscissa and ordinate of the
pattern in the map. If a pattern unit is called and if
another is perceived, the saccade that will be triggered
through an appropriate associative map will move the
attention point so that the desired pattern is close to
the attention point. It allows to look for color patches
with peripheral vision (call in the “centered” pattern of
peripheral vision), and then to stare an edge, an upper
left angle, etc. with patterns of central vision.

Concerning motion, the principle is the same. First,
a color unit and a pattern unit have to be called, so
that the ordinate of the attention point corresponds to
the target in the picture. Then, associative maps al-
low to turn (see “Robot rotation” map) to make the
target centered (call on center unit in “Horizontal eye
position”). Reaching the targeted area is provided the
same way by associating vertical position of the atten-
tion point with “go ahead” map (not on figure 2).

F. Using the model

The use of associative cortex is then robust and quite
simple. For example, if the robot has to reach a blue
area, the unit in the “color map” corresponding to blue
has to be called. Then a call on the unit of the pe-
ripheral vision pattern map corresponding to pattern
(=] will make the attention point fix a blue patch. Then
the latter call has to be stopped, and a call in the cen-
ter vision pattern map corresponding to pattern B has
to be sustained. A call in bottom center position of at-
tention point will make the robot center the target and
reach it, by turning and going ahead until the called
pattern is at the bottom center of the picture.

The model can also be used to avoid obstacles. If
obstacles are grey, an analog call sequence, for grey
color unit and central vision pattern k], make the robot
turning around the grey area, with this area on its left.

V. The prefrontal cortex model

A. Architecture of the model

The architecture of the model is more basic than the
hierarchical organization of the associative cortex. The
prefrontal cortex model consists of one map gathering
prefrontal units. Each of these units is connected to a
unit in the associative cortex. A prefrontal unit sends
calls to the corresponding associative unit and receives

excitation from it when the perceptive event occurs. In
order to reduce the number of frontal units to man-
age, we only choose a subset of associative units to be
connected to a frontal unit (those in the color map,
the central pattern of peripheral vision, left-bottom,
center-bottom and right bottom central vision patterns,
the units of the four ingestion maps, and those of the
“posX” and “posY” map). Units in the frontal map are
totally interconnected, and they can split when special-
izing for a particular computation after learning. The
learning rules, not detailed in this paper, are temporal
correlation rules.

The drive is a global scalar parameter that is high
when one of the vital variables is weak, and reward
occurs when the level of one vital variable increases.
reward is also a global scalar parameter.

B. Functioning of units

As we mentioned, each frontal unit is connected to an
associative unit. The frontal unit is “activated” when
the frontal unit is excited. When the end of activation
of a unit is correlated with the global reward, the unit is
said to be a “need unit”. Mainly, units that correspond
to the sensitive effects of drives on the “body” are need
units, because the sensation stops when reward occurs.
In our model, “hunger” and “thirst” frontal units are
considered, after learning, as need units. Need units
play the role of perceptions from the body that are
related to motivational state. This has been inspired
from the somatic markers described in [6].

The stronger the global drive is, the more frequently
frontal units randomly start to trigger a call on the asso-
ciative cortical unit. This “calling” state has a random
duration. This allows to try some patterns of calls on
the associative cortex. If a calling unit is excited, it is
said to be “successful”. This latter state is more re-
lated to action than the activated state which depends
only on perceptions. The learned probabilities of acti-
vations of other units when a unit is successful defines
the “perceptive context” of the unit. The perceptive
context is used to increase the frequency of the random
trigger of call.

A need unit, whose decrease of activation is related
to reward, can learn correlations between this decrease
and success of other units in the map. These correla-
tions define the “effective context”. It has to be viewed
as the actions that actually work when the reward oc-
curs. When a need unit is active and “knows” its ef-
fective context (it has split), the units of that context
have a high probability to trigger a sustained call on
the corresponding associative unit.

The bistable activity is then grounded on the follow-
ing principle. When a drive unit D has computed is ef-



fective context, the success of the units of that context
is an action that is supposed to lead to the reward of
the drive unit. If not, because of a change in the exter-
nal world, the units C; in the effective context go to the
ON state. Units in the ON state behave as drive units:
they allow spontaneous calls on other units in a map
in order to compute their own effective context (the C;
splits when it is learned). When this latter context is
learned, the specialized unit C} is a drive unit, being
activated when D is activated, but rewarded when its
specific effective context is obtained.

To sum up, the initial task is to solve the drive D.
When a solution C} is found, it is used until the external
world changes. The reaction of this change is first a
random try of other calls on the associative units (see
random behavior of rule units in [7]), until an efficient
solution C} is found. Then, bistable activities of D and
C! are analog to those described in section 2).

C. Ezperiments

Experiments are based on step by step changes in
the external world, as it is the case in the learning of
delayed-response tasks [13]. First, the robot is set on
the area corresponding to its current need, so that it
learns that “hunger” is a drive unit whose effective con-
text is “eat”, and the same for “thirst” and “drink”.
Then, when learning is performed, i.e. when the robot
eat and drink when it is respectively hungry and thirsty,
we randomly put the robot on a wrong area, so that the
effective context for drinking is “asking for a blue color
at the bottom center”, and the same for eating. Then,
the changing consists in putting the robot near the area,
etc.

Currently, convergence is quite long, and inhibition
mechanisms between calls that can be simultaneously
tested are still complex and not robust enough. Never-
theless, the model gives a framework for making plan-
ning capabilities emerge from a set of units, dealing
with different kinds of needs, with a unified drive and
reward management. Moreover, the architecture works
on-line, not requiring start signals or discrete step by
step events where consequences of action at time ¢ must
occur at time ¢ + 1.

VI. Discussion

Encouraging results observed with the model leads
ongoing works to focus on a refinement of inhibition
mechanism between frontal units allowed to call on the
one hand, and a use of the associative cortex by the
prefrontal cortex to predict consequences of calls on
the other hand, in order to help search of adapted calls

when the world changes. This will make the model
quicker to find effective context of drive units.
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