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ABSTRACT

Due to the popularization of Internet, virtual en-
terprises are expected to become commonplace on
the WEB. The concept of virtual enterprise depicts
the idea that many applications are the result of
cross-organisational cooperation between several ac-
tors, playing different roles, who build a relational sys-
tem which is structured by a common objective. Vir-
tual enterprises can be short- or long-lived. The ob-
jective of our work is to develop a framework to in-
stall and to support cooperation betwen the partners of
a virtual enterprise, with a particular focuss on con-
current engineering applications, and especially on co-
design activities. We have chosen a transactional ap-
proach which releases programmers from the burden of
interaction programming, and this approach has been
implemented in o distributed manner using a cooper-
ation model requesting a partner to negotiate coopera-
tion patterns with its direct neighbours.

KEYWORDS: cooperation, distributed systems,
transaction models

I. INTRODUCTION

Due to the popularization of Internet, wvirtual en-
terprises are expected to become commonplace on
the WEB. The concept of virtual enterprise depicts
the idea that many applications are the result of
cross-organisational cooperation between several ac-
tors, playing different roles, who build a relational sys-
tem which is structured by a common objective [1], [2].
Virtual enterprises can be short- or long-lived. We are
mainly interested in ephemeral enterprises with the
idea that they enhance the problems related to coop-
eration, and that what applies for short duration en-
terprises applies also for long duration ones. Building
trade is a good example of such short-lived enterprises:
it implicates a lot of partners (architect, research con-
sultant, control office, building firm, electrician, car-
penter, ...) who build an enterprise for the duration
of the building work.

The objective of our work is to develop a framework
to install and to support cooperation betwen the part-
ners of a virtual enterprise, with a particular focuss on
concurrent engineering applications, and especially on

co-design activities. This work has been governed by
two main requirements. First, partners of a virtual en-
terprise have not necessary a large computer men staff
and, as a consequence, cooperation processes must be
easy to implement. Second, partners of a virtual en-
terprise want to preserve their autonomy and, as a
consequence, the fact that organization crosses over
several partners must be as transparent as possible.

To fullfil the first requirement, we have chosen a
transactional approach which releases programmers
from the burden of interaction programming. To fullfil
the second requirement, this approach has been imple-
mented in a distributed manner using a cooperation
model requesting a partner to negotiate cooperation
patterns with its direct neighbours.

Before to deepen our transaction model (sec-
tion ITI), we present the main concepts of our approach
(section II). Section IV gives an idea of our execution
framework. Finally, section V gives some trends for
future work and concludes.

II. OVERVIEW OF THE APPROACH

Indirect cooperation. Cooperation has a lot of di-
mensions and we limit ourselves to a particular point
of view: cooperation by object sharing between part-
ners. That is what we call indirect cooperation. Ob-
jects can be texts, plans, reports ...in different ver-
sions, from very preliminary results to attested results.

Cooperation model. In most virtual enterprises,
due to the autonomy requirement, each partner
has its own local object repository (file directories,
database, ...). This local repository is composed of
a private object space and a cooperation object space.
Private objects can only be transferred by alocal agent
either in his proper workspace to be operated or in the
cooperation object space to be shared with other part-
ners. A distant partner can then transfer such cooper-
ation objects in its own cooperation object space (it im-
ports a copy). Periodically, a working agent can make
visible some of his (intermediate) results by transfer-
ring an object from his workspace to his partner coop-
eration object space.

Cooperation patterns. One important hypothesis
in this work is that these transfers follow rules which
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repeat inside one application and from one application
to another. More precisely, depending on the partners
roles and of (the) transferred object(s), different rules
can apply. Such a set of rules is called a cooperation
pattern. To illustrate this idea more concretely, let us
take some situations that repeats during concurrent
engineering activities and that we feel representative
of cooperation by exchanging objects.

The server-consumer pattern corresponds to the
case in which a partner, hereinafter called the con-
sumer reads (does not write) intermediate results of
another partner, the server. The two partners work
in parallel and these exchanges can occur one or sev-
eral times before the server terminates. For example,
this situation occurs when a partner edits an object
which includes a section written by another partner
and refresh periodically its view of this section.

The cooperative write pattern corresponds to the
case in which two partners modify two copies of the
same object at the same time and exchange values of
this object when working. The two partners involved
in a cooperative write relationship are simultaneously
server and consumer for one another for the same ob-
ject.

The server-reviewer pattern corresponds to the case
in which a partner produces an object which is re-
viewed by a second partner. This review is in turn
read by the first partner which takes into account this
review and can produce a new version of his object in
response to his review. In this case, server/consumer

relationships form a cycle, like in the cooperative write
paradigm, but involves two different objects.

To conclude this short list, let us point out that we
consider concurrency as a degenerated case of coop-
eration in which partners cannot share intermediate
results, i.e. work in isolation.

It is clear that these patterns do not represent all
the cooperation situations but our experience shows
that they cover a large set of situations when they
are combined. Moreover, current work aims to define
a taxonomy of patterns based on taxonomy criteria,
in relation with users in the domain of AEC and car
manufacturing.

Cooperation architecture. A common way to or-
ganize cooperation is to centralize data storage and
cooperation control, as depicted in figure 1-a. Due
to the requirement of autonomy and the geographical
distribution of sites, such an organization is not well
suited to virtual enterprise needs. It breaks the auton-
omy of partners: first they become heavily dependant
on some server; second this solution implies the exis-
tence of an administrator to which all partners whill
have to entrust their data. The approach described in
this paper aims to distribute both the storage and con-
trol to the partner sites in a peer to peer organization
(cf. figure 1-b).

As introduced above, a partner is responsible to
share or not an object, to designate the partner(s)
with whom he wants to share this object, and the way
he wants to share this object (the cooperation pattern



he wants to follow). More precisely, when two partners
want to share an object, they first have to negotiate
a cooperation pattern. Then, for each transfer oper-
ation invoked between these partners and related to
this object, both of them check that all the rules fixed
by the cooperation pattern are satisfied with regard
to their own repository state. If both partners agree
on this exchange, the transfer operation between their
respective local repositories is done, otherwise this op-
eration is denied. In that way, each partner controls
himself his interactions with the other partner. Fol-
lowing this approach, a virtual enterprise is a graph
of partners where edges are the cooperation patterns
negotiated between partners to coordinate their ex-
changes(cf. figure 1-b).

An advantage of such a peer-to-peer architecture is
its scalability: as there is no more centralized site,
bottlenecks are avoided.

To conclude this overview, our approach can be
summarizes in three points: cooperation (partners can
exchange intermediate results), distribution (decen-
tralization of interaction control, autonomy of part-
ners), negotiation (partners can negotiate cooperation
patterns).

III. A TRANSACTIONAL APPROACH

Within such a cooperation context in virtual enter-
prises, it seems difficult for a programmer or a set of
programmers to have a global view of the whole ap-
plication and to explicitly program all the interactions
between activities: it is necessary to release program-
mers from the burden of interaction programming. In
other terms, it must be possible to program a large
part of cooperating activities independently of each
other: application programmers should be concerned
with the behavior of each activity individually, not
with the interactions with other activities. In relation
with these remarks, a concurrency control approach is
better suited to this class of applications than a con-
current programming one. Thus, correctness of coop-
erative executions is based on a correctness criterion
in the spirit of criteria defined for concurrency control
purposes, i.e a criterion which is as much as possible
not depending on the semantics of the application be-
ing synchronized [3], [4]. Another argument in favor
of the concurrency control approach is that, on one
hand, due to their uncertainty, it is not possible to
assert correctness of executions of cooperative appli-
cations a priori; on the other hand, due to their long
duration, it is not possible to do it a posteriori: it
must be done incrementally.

Following a transactionnal approach as described
in [5], a cooperative application is viewed as a set of

transactions accessing at the same time a set of ob-
jects. Each activity of the application is encapsulated
in a transaction that hides problems of concurrent ac-
cesses to shared objects. A transaction is then repre-
sented by the sequence of operations invoked on shared
objects. However, the way of synchronizing these
transactions is more complex than in classical trans-
actional systems (administration, banking, ...) [6] in
which all activities are mainly concurrent: they exe-
cute in isolation and are unaware of the others. In the
context of virtual enterprises, one should rather speak
about a cooperation control approach than a concur-
rency control approach. In the same way than [7], [8],
a new extended transaction model was defined that
could support such distributed cooperative applica-
tions [9], [10].

Local view. As explained in section II, the first step
toward a greater autonomy of transactions is to pro-
vide each of them with a local repository in which it
keeps copies of shared objects. With regard to classi-
cal transaction models where all transactions are as-
sumed to access a common repository, a new concept
was specified within our transaction model: the con-
cept of local repository. Whereas classical models ex-
pressed py;[ob] in ACTA formalism [11] to denote the
object event corresponding to the invocation of the
operation p on object ob by transaction %;, the same
operation will be represented by py, [0b;;] in our model,
where ob;, identifies the copy of the logical object ob on
which the operation is invoked. ob;; denotes the copy
stored in the local repository of the transaction ¢;.

In that way, interactions between transactions oc-
cur through explicit data transfers beetween their re-
spective local repositories. Such a transfer operation
allows two transactions to synchronize their copies of
the same logical object. A transfer operation is de-
fined as a sequence of two operations, typically a read
operation to get the value of the source copy and a
write operation to set the value of the target copy. For
instance, (ready,[ob,], writes,[ob,]) means that the
transaction ¢ imports the object ob from the transac-
tion 1. Another way to synchroize ob;, with ob;, is to
let the transaction ¢; export the object ob toward the
transaction to, i.e. (ready, [0by, ], write, [0by,]).

Using transfer operations, a third notion could be
defined: the local history for a transaction. It cor-
responds to the sequence of events (operations in-
voked on local/remote objects and transaction man-
agement primitives) which are relevant for this trans-
action.  Object events logged by the local his-
tory of the transaction ¢;, denoted Viewy,, are all
the operations invoked by the transaction ¢; itself
(i.e. {p;[obs;] € He}) and all the operations invoked



by any other transaction on objects of the transac-
tion t; (i.e. {p,[oby;] € Het}). This defines the local
view of the whole system for the transaction ¢;. There-
fore, an operation py,[obs;] will be logged in the lo-
cal history of both transactions ¢; (operation invoked
by ¢;) and t; (object owned by t;). Such operations
will be used to synchronize the local histories of the
various transactions.

Distributed control. The second step to improve
the autonomy of the activities is to decentralize the
control of the interactions. When two transactions
want to exchange an object between their local repos-
itories (one of them invokes a transfer operation), the
goal is to avoid that transactions have to ask the per-
mission to some server responsible for the control of
all the interactions between all the transactions. As
explained in section II, each transaction should be re-
sponsible for (i.e. to control) its own exchanges with
other transactions. In other words, new properties on
these exchanges have to be defined so that each trans-
action can ensure locally, that means using informa-
tions logged in its local history only, the same behavior
of the whole system than centralized controls.

Starting from an existing correctness criterion, the
COOQ-serializability! [12], formalized by way of ax-
ioms on the whole global history, a new distributed
correctness criterion was provided: the DisCOO-
serializability. It is defined as a set of cooperation
rules (axioms) to be verified by each transaction on
its local history. When these rules are satisfied by
all the transactions (the distributed execution is said
DisCOO-serializable), they ensure the whole execution
is correct according to the COO-serializability. In-
versely, if the global execution is not COO-serializable,
then it exists a transaction whose local history breaks
one of the axioms of the DisCOQ-serializability.

The main advantage of this approach is that it is no
longer needed to build the global history (using a cen-
tral site or full replication mechanisms) to control the
interactions between transactions. Within a classical
transaction model, transactions have to connect to the
common repository to invoke operations on objects.
This centralization makes it easier, at the expense of
transaction autonomy, to synchronize and monitor the
overall execution as all controls are performed on this
server which can build the global history of the whole

IThe COO-serializability allows transactions to share inter-
mediate results during their execution, but ensures that if a
transaction reads an intermediate result, then this transaction
will read the corresponding final result before it commits. If
a cycle between transaction dependencies is detected, all the
transactions implied in the cycle are grouped, they have to reach
a common state, and they will commit at the same time.

system?. Using this new advanced transaction model,
when an operation p,[0b;] is invoked (eg: within a
transfer operation), each of transactions ¢; and t; ver-
ifies axioms of the DisCOOQ-serializability with regard
to its own local history. If they both agree, the new
event is accepted and logged into their local histories.
Otherwise, the event is rejected. Transactions ¢; and
t; are the only ones to be aware of this event and they
can take themselves the decision of acceptance for this
event. So they can cooperate by exchanging data even
if they are cut off from the outside world; they only
need to be connected together.

Such a peer-to-peer architecture is well suited for
transaction autonomy. However, the impact on the
axiomatic definition of the correctness criteria is sig-
nificant. Each transaction should be able to evaluate
these axioms using informations logged in its local his-
tory only. Particularly, that means it is not possible
to detect, on this local view of the system, any cy-
cle in the graph of transaction dependencies. And
the definitions of classical correctness criteria, like the
COOQ-serializability or the serializability, are precisely
based on the notion of cycle of dependencies between
transactions. So it is mandatory to define new prop-
erties on local histories that ensure, step by step, the
same behavior of transactions than properties based
on cycles.

For instance, whereas the COO-serializability sets
a dependency between transactions ¢, and ¢, when ¢,
reads an intermediate result from ¢4, defines groups of
transactions, and imposes that all transactions within
a group reach a common state before they commit
(such a property must be defined on the whole global
history), the DisCOO-serializability only requires for
a transaction to be up to date with regard to all trans-
actions from which it read some result before it can
commit. That means that if a transaction ¢, imported
an object ob from a transaction t,, t, must have im-
ported the last version of ob produced by t; when ¢,
want to commit. Such a property is easily evaluated
on the local history of each transaction ¢ used in the
local history of t.. If ever a situation occurs where
the COO-serializability should have grouped a set of
transactions, the property up_to_date of the DisCOO-
serializability will ensure, step by step, that all these
transactions are up to date one with regard to the
others before they can commit, and consequently that
they agree on the final state of shared objects.

2Specifically, when a transaction invokes an operation, the
preconditions of this event derived from the axiomatic defini-
tion of the transaction model are evaluated with respect to the
current history. If its preconditions are satisfied, the new event
is accepted and appended to the current history. Otherwise, the
event is rejected.



Cooperation schemas. Following this approach,
transactions are really autonomous, both for the ac-
cesses to shared objects (each transaction owns a copy)
and for the interaction control (each transaction is re-
sponsible for its own exchanges with other transac-
tions). Within such a context, the next step is to
allow DisCOO-transactions to negotiate the coopera-
tion rules to be checked for their exchanges. In other
words, when two transactions ¢; and ¢; want to share
an object ob, they first have to negotiate a cooper-
ation schema sch. Such a cooperation schema is a
set of cooperation rules (or local properties) and cor-
responds to a given correctness criterion of data ex-
changes between two transactions. This negotiation is
denoted by the event Contract[t;, t;, 0b, sch] appended
to the current local history of each transaction ¢; and
t;. Then, whenever a transfer operation for this object
is invoked between these two transactions (containing
either py, [oby;] or py,[oby,]), both t; and t; will verify
that all properties of the cooperation schema, sch are
satisfied with regard to its local history.

In this way, this new advanced transaction model
is not linked with a given (complex) correctness cri-
terion that should be defined to support all kinds of
interactions between all the transactions of the system.
On the contrary, it provides mechanisms to configure
the "interaction control” component of the figure 1-
b with various cooperation schemas (viewed as ba-
sic correctness criteria) negotiated between DisCOO-
transactions. Within this transaction model, the con-
cept of negotiation is formalized by adding new axioms
on events Contract]...]. For instance, one axiom im-
poses that both transactions ¢; and t; log the event
Contract[t;, t;,...] in their local hitory at the same
time. As explained above, another axiom ensures
that transactions t; and t; negotiated a cooperation
schema, sch for the object ob and that sch is satisfied
before the invocation of an operation like py, [oby;].

This new advanced transaction model was designed
to support the cooperation between distributed activ-
ities as described in figure 1-b. We focused this paper
on our main requirement: the autonomy of these activ-
ities. By autonomy we mean that each activity owns
a local repository, is responsible for the control of its
exchanges with other activities, and can negotiate the
cooperation rules with its partners.

IV. IMPLEMENTATION

This new advanced transaction model was put into
practice within the prototype DisCOQ. This middle-
ware application aims to manage and coordinate ob-
ject sharing between distributed activities. DisCOO

provides each activity with three main components
(cf. figure 2): a cooperation object space, a private
workspace, and a coordinator. The cooperation object
space is the public part of the local repository of the
activity. The workspace allows us to view objects of
the cooperation space as files and directories so that
an agent can use its legacy applications (Word, Au-
tocad, emacs,...) to work on shared objects (cf. the
cooperation model description in section II). When
an agent want to publish its work, it updates modi-
fied objects in its cooperation space. Thus, updates
are made visible to partners which can import them
within their own cooperation space. Finally, the most
interesting component is the coordinator that denotes
the ”interaction control” component shown in figure 1-
b. All object exchanges between cooperation spaces of
activities have to occur through their respective coor-
dinator. For an activity, its coordinator is responsible
for storing cooperation schemas negotiated by this ac-
tivity with its partners and for ensuring that all oper-
ations invoked wih regard to this activity satisfy these
cooperation schemas (cf. the distributed control in
section IIT).

Within the prototype DisCOO, activities are con-
nected together on the Internet by the use of a
CORBA? software object bus. Thus DisCOO is re-
ally based on a peer-to-peer architecture as described
in figure 1-b. For ease of deployment, all DisCOO
components were developed in Java, so the same
code is used to connect activities running on Win-
dows 98/NT computers with activities running on So-
laris/Linux/...stations. The last part, but not the
least, concerns the cooperation schemas and the way
they are verified. Each of them was formally defined as
a set of ACTA axioms (first ordre logic formulae). In-
stead of developping specific protocols, we rather chose
to translate these ACTA axioms in Prolog predicates
evaluated on local histories. Thus new cooperation
schemas can easily be defined for use within DisCOO.

V. CONCLUDING REMARKS

The transactional approach we presented in this pa-
per releases programmers from the burden of inter-
action programming for cross-organizational coopera-
tion support. Compared to classical transaction mod-
els, our DisCOO-transaction model introduces three
innovations: cooperation (activities can exchange in-
termediate results during their execution), distribu-
tion (decentralization of interaction control, cooper-
ation rules evaluated on local histories, autonomy of
activities), negotiation (activities can negotiate coop-

3Common Object Request Broker Architecture
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eration schemas to share objects). Further details on
this work can be found in [13].

One of our prospects is to integrate the negotia-
tion step within our model. For now, our framework
provides activities with cooperation support from the
time the Contract]...] event, i.e. the result of the ne-
gotiation, is logged in their local histories. We are
working for formalizing this negotiation step at the
same level than the other operations. Doing this, we
aim to better support later cooperation schema nego-
tiation or conflict resolution.

Another prospect is to analyse cooperation be-
haviour to deduce new cooperation schemas that we
can formalize as correctness criteria and implement
within our prototype DisCOO. The paper [14] presents
some early work in this way.
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