Finiteness Theorems for Graphs and Posets Obtained by Compositions

Jens Gustedt 1
1 RESEDAS - Software Tools for Telecommunications and Distributed Systems
INRIA Lorraine, LORIA - Laboratoire Lorrain de Recherche en Informatique et ses Applications
Abstract : We investigate classes of graphs and posets that admit decompositions to obtain or disprove finiteness results for obstruction sets. To do so we develop a theory of minimal infinite antichains that allows us to characterize such antichains by means of the set of elements below it. In particular we show that the following classes have infiniteantichains with resp. to the induced subgraph/poset relation : interval graphs and orders, $N$-free orders, orders with bounded decomposition width. On the other hand for orders with bounded decomposition diameter finiteness of all antichains is shown. As a consequence those classes with infinite antichains have undecidable hereditary properties whereas those with finite antichains have fast algorithms for all such properties.
Type de document :
Article dans une revue
Order, Springer Verlag, 1999, 15 (3), pp.203-220
Liste complète des métadonnées

https://hal.inria.fr/inria-00098825
Contributeur : Jens Gustedt <>
Soumis le : mardi 26 septembre 2006 - 08:38:54
Dernière modification le : jeudi 11 janvier 2018 - 06:20:00

Identifiants

  • HAL Id : inria-00098825, version 1

Collections

Citation

Jens Gustedt. Finiteness Theorems for Graphs and Posets Obtained by Compositions. Order, Springer Verlag, 1999, 15 (3), pp.203-220. 〈inria-00098825〉

Partager

Métriques

Consultations de la notice

186