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Convexifying Monotone PolygonsTherese C. Biedl1;?, Erik D. Demaine1, Sylvain Lazard2;?,Steven M. Robbins3, and Michael A. Soss31 Department of Computer Science, University of Waterloo, Waterloo, Ontario N2L3G1, Canada, fbiedl, eddemaineg@uwaterloo.ca2 INRIA Lorraine { LORIA, Projet ISA, 615 rue du jardin botanique B.P. 101, 54602Villers les Nancy Cedex, France, lazard@loria.fr3 School of Computer Science, McGill University, 3480 University Street, Montr�eal,Qu�ebec H3A 2A7, Canada, fstever, sossg@cgm.cs.mcgill.caAbstract. This paper considers recon�gurations of polygons, where eachpolygon edge is a rigid link, no two of which can cross during the motion.We prove that one can recon�gure any monotone polygon into a convexpolygon; a polygon is monotone if any vertical line intersects the interiorat a (possibly empty) interval. Our algorithm computes in O(n2) time asequence of O(n2) moves, each of which rotates just four joints at once.1 IntroductionAn interesting area in computational geometry is the recon�guration of (planar)linkages : collections of line segments in the plane (called links) joined at theirends to form a particular graph. A recon�guration is a continuous motion ofthe linkage, or equivalently a continuous motion of the joints, that preserves thelength of each link. We further enforce that links do not cross, that is, do notintersect during the motion. For a survey of work on linkages where crossing isallowed, see the paper by Whitesides [9].The case of noncrossing links has had a recent surge of interest. The mostfundamental question [7] is still open: Can every chain be recon�gured into anyother chain with the same sequence of link lengths? Here a chain is a linkagewhose underlying graph is a path. Because recon�gurations are reversible, anequivalent formulation of the question is this: Can every chain be straightened,that is, recon�gured so that the angle between any two successive links is �? Thisquestion has been posed independently by several researchers, including JosephMitchell, and William Lenhart and Sue Whitesides [6]. It has several applica-tions, including hydraulic tube and wire bending, and sheet metal folding [7].At �rst glance, it seems intuitive that any chain can be \unraveled" intoa straight line, but experimentation reveals that this is a nontrivial problem.Indeed, no such \general unraveling" motions have been formally speci�ed. Be-cause the problem is so elusive, it is natural to look at special classes of linkagesand prove that at least they can be straightened. For example, consider the classof monotone chains, where every vertical line intersects the chain at a point or? Research performed during a post-doctoral position at McGill University.



not at all. Such a chain can easily be straightened by repeatedly (1) rotating the�rst link until it lines up with the second link, and (2) fusing these links togetherinto a single \�rst link." This motion induces no crossings because it preservesmonotonicity throughout.This paper addresses the analogous question of straightenability for polygons(a linkage whose underlying graph is a cycle): Can every polygon be recon�guredinto a convex polygon? In other words, can every polygon be convexi�ed? Thisquestion was also raised by the researchers mentioned above. Note that a con-vex polygon can be recon�gured into any other convex polygon with the sameclockwise sequence of link lengths, and hence the question is equivalent to thefundamental question for polygons [7]: Can every polygon be recon�gured intoany other polygon with the same clockwise sequence of link lengths? BCAFig. 1. A monotone polygon.
In this paper we focus on the case ofmonotone polygons. Similar to the case ofchains, a polygon is monotone if the inter-section of every vertical line with the inte-rior of the polygon is an interval, that is,either a single vertical line segment, a point,or the empty set. See Fig. 1 for an example.A monotone polygon consists of two chains,the upper chain and the lower chain. Each chain is weakly monotone in the sensethat the intersection with a vertical line is either empty, a single point, or a ver-tical edge.1 The left [right] ends of the upper and lower chains may be identical(like point A in Fig. 1), or they may be connected by a vertical edge (like edge(B;C) in Fig. 1). The vertical edge (B;C) belongs to neither chain.In contrast to monotone chains, it is nontrivial to convexify monotone poly-gons. In this paper, we show that this is possible by a fairly simple motionconsisting of a sequence of O(n2) moves. We use just a single type of move,changing the angles of only four joints, which we show is the fewest possible.While the proof of correctness is nontrivial, our algorithm for computing themotion is simple and e�cient, taking O(n2) time.1.1 Related WorkLet us brie
y survey the work on recon�guring linkages whose links are notallowed to cross.The most related result, by Bose, Lenhart, and Liotta [3], is that all monotone-separable polygons can be convexi�ed. A monotone-separable polygon is a mono-tone polygon whose upper and lower chains are separated by a line segment(connecting the common ends of the chains). Their motion involves translatingalmost all joints in the upper chain at once, and appears not to extend to generalmonotone polygons.The only other result about convexifying classes of polygons is that everystar-shaped polygon can be convexi�ed [5]. A polygon is star-shaped if its bound-1 All straight (angle-�) vertices are removed, so there is no possibility of two adjacentvertical edges.



ary is entirely visible from a single point. This motion rotates all joints simulta-neously, and it seems di�cult to �nd a motion involving few joints [10].The remaining related results are for types of linkages other than polygons.For tree linkages, it is known that the answer to the fundamental problem is\no" [2]: There are some trees which cannot be recon�gured into other trees withthe same link lengths and planar embedding. Indeed, there can be an exponentialnumber of trees with the same link lengths and planar embedding that arepairwise unreachable. The complexity of determining whether a tree can berecon�gured into another remains open.Another way to change the problem is to allow linkages in higher dimensions.If we start with a polygon in the plane, and allow motions in three dimensions,then every polygon can be convexi�ed [8]. Indeed, a 1935 problem by Erd}osasks whether a particular sequence of moves through 3D, each rotating only twojoints (called a \
ip"), converges in �nite time. While the answer is positive, thenumber of moves is unfortunately unbounded in n. Recently, it was shown thatO(n) moves of a di�erent kind su�ce [1]; each rotates at most four joints.If the polygon lies in three dimensions and we want to convexify it by mo-tion through three dimensions, then it is surely not convexi�able if it is knotted.But there are unknotted polygons that cannot be convexi�ed [1]. The complex-ity of determining whether a polygon in 3D can be convexi�ed also remainsopen. Amazingly, Cocan and O'Rourke [4] have shown that every polygon in ddimensions can be convexi�ed through d dimensions for any d � 4.1.2 OutlineThe rest of this paper is organized as follows. Section 2 begins with a more formaldescription of the problem. Section 3 describes our algorithm for computingthe motion. Sections 4 and 5 prove its correctness and bound its performance,respectively. We conclude in Section 6.2 De�nitionsThis section gives more formal de�nitions of the concepts considered in thispaper: linkages, con�gurations, and motions.Consider a graph, each edge labeled with a positive number. Such a graphmay be thought of as a collection of distance constraints between pairs of pointsin a Euclidean space. A realization of such a graph maps each vertex to a point,also called a joint, and maps each edge to the closed line segment, called alink, connecting its incident joints. The link length must equal the label of theunderlying graph edge. If a graph has one or more such realizations, we call it alinkage.An embedding of a linkage in space is called a con�guration of the linkage.In a simple con�guration, any pair of links intersect only at a common endpoint,and in this case the links must be incident at this joint in the linkage. We consideronly simple con�gurations in this paper. A motion of a linkage is a continuousmovement of its joints respecting the link lengths such that the con�guration ofthe linkage remains simple at all times.



In this paper, we consider linkages embedded in the plane whose graph isa single cycle. The con�gurations are simple polygons, and so divide the planeinto the exterior and interior regions (distinguished by the fact that the interiorregion is bounded). Joints of an n-link linkage are labeled j0; j1; : : : ; jn�1 in acounterclockwise manner: traversing the boundary in sequence j0; j1; : : : ; jn�1keeps the interior region on the left. The joint angle �i is the interior angle atjoint ji: �i = 6 ji+1jiji�1 2 (0; 2�). We call a joint straight if the joint angleis �, convex if the joint angle is strictly less than �, and re
ex otherwise. Acon�guration is convex if none of its joints are re
ex.The question considered is whether every monotone con�guration of a cycliclinkage (or polygon) can be convexi�ed, that is, moved to a convex con�guration.We show this is true by giving an algorithm to compute such a motion.3 AlgorithmAs input, the algorithm requires a description (that is, the joint coordinates) ofa polygon with n links. In each main step, the algorithm computes a sequence ofO(n) moves that ultimately straighten a joint. This joint angle is then held �xedso that it remains straight forever after, e�ectively reducing the number of joints.As the algorithm continues, the con�guration has fewer and fewer nonstraightjoints. We stop when no re
ex joint is left, and so the polygon is convex asdesired.First we need some notation for basic geometric concepts. Let p and q be twopoints in the plane. De�ne kpqk to be the Euclidean distance between p and q.If p and q are distinct, de�ne ray(p; q) to be the ray originating at p and passingthrough point q. We use \left" and \right" in two di�erent senses, one for pointsand one for rays. A point r is left or right of ray(p; q) if it is strictly left or right(respectively) of the oriented line supporting ray(p; q). A point p is left or rightof point q if p has a strictly smaller or larger x coordinate than q, respectively.In both cases, we use nonstrictly left/right to denote left/right or equality, i.e.,neither left nor right.The algorithm works as follows:Algorithm Convexify{ Until the polygon is convex:� Find a rightmost re
ex joint (a joint with maximum x coordinate, break-ing ties arbitrarily).� Relabel joints counterclockwise along the polygon so that this rightmostre
ex joint is j1, and all straight joints are ignored.� If j1 belongs to the lower chain:1. Compute the largest index p such that j2; : : : ; jp�1 are right of ray(j0; j1).2. Until a joint has straightened:(a) Perform the following move (see Fig. 2) until either the joints j0,j1, and jp�1 become collinear; or one of the joints fj0; j1; jp�1; jpgstraightens:



i. Fix the positions of joints jp,jp+1, . . . , jn�1, and j0.ii. Fix all joint angles exceptthose at j0, j1, jp�1, and jp.iii. Rotate j1 clockwise about j0.iv. Move joint jp�1 as uniquelyde�ned by maintaining the dis-tances kj1jp�1k and kjp�1jpk.v. Move joint ji, 2 � i � p�2, asuniquely de�ned by maintain-ing the distances kj1jik andkjijp�1k.
ray(j0; j1)j0 j1 jp�1

jp
Fig. 2. The movement ofjoints j1 and jp�1. The thickdashed lines represent \vir-tual links" whose lengths arepreserved.(b) Update the coordinates of j1 and jp�1.(c) If j0, j1, and jp�1 are collinear, then decrement p, because withthe new positions, jp�1 is on ray(j0; j1). Also update the coordi-nates of the new jp�1.3. Update the coordinates of any remaining joints that have moved.� If j1 belongs to the upper chain, the algorithm is similar.First let us justify that the algorithm is well-de�ned.Lemma 1. The de�nition of p in Step 1 is well-de�ned and at least 3.Proof. Because j1 is re
ex, ray(j0; j1) must intersect the polygon elsewhere thanthe segment (j0; j1). This implies that there are joints on both sides of the ray,and hence p is well-de�ned. Furthermore, because j1 is re
ex and the joints areoriented counterclockwise on the polygon, j2 is right of ray(j0; j1). Hence, 2 is avalid value for p� 1, so p � 3. 2Note further that the number of simultaneously rotating joints (four) is thebest possible, because any motion of a polygon that rotates just three jointsrecon�gures a virtual triangle, which is rigid.4 Proof of CorrectnessIn this section, we prove the following theorem.Theorem 1. Given any monotone polygon, Algorithm Convexify computes aconvexifying motion, during which the polygon remains simple and monotone.The di�culty is in showing that the polygon remains monotone and simpleduring the motion. For the remainder of this section, assume without loss ofgenerality that the link (j0; j1) is on the lower chain. First we need some trivialbut important observations.Lemma 2. During each move, no re
ex angle becomes convex and no convexangle becomes re
ex.



Proof. Because all other joint angles are �xed, any such transition means thata joint j0, j1, jp�1, or jp straightens, which stops the move. 2Lemma 3. Joints j2; : : : ; jp�1 are convex.Proof. Consider such a joint ji. Because j1 is a rightmost re
ex vertex, ji isconvex if it is right of j1. By monotonicity and the property that ji is right ofray(j0; j1), ji cannot be left of j1. The only case that remains is when ji has thesame x coordinate as j1. Because we ignore straight joints, ji must in fact be j2in this case. Because j1 is re
ex, j2 must be below j1. Now j3 must be strictlyright of j2, and hence the angle at j2 is convex. 2�2�3�1j0 j1 j2�0
j3

Fig. 3. Illustration ofLemma 4.
Next we need a general result about quadrangles.Lemma 4. [1] Consider a simple quadranglej0; j1; j2; j3 (in counterclockwise order) with j1 re
ex.(See Fig. 3.) Let �i denote the interior angle at jointji. If the linkage moves so that j1 rotates clockwiseabout j0, then �1 decreases and �i increases for alli 2 f0; 2; 3g, until �1 straightens. In other words, allof the angles approach �.By the de�nition of p, j1 is re
ex in the quadrangle Q = (j0; j1; jp�1; jp), sowe can apply Lemma 4 to Q and obtain the following result about our motion:Lemma 5. During each move in Step 2a, jp�1 rotates counterclockwise aboutjp, and the joint angles �1 and �p�1 both approach �.Next we analyze the movement of j1 relative to jp�1's reference frame, deter-mined by �xing the position of jp�1 and keeping the axes parallel to the worldframe's. This can be visualized by imagining that during the motion we translatethe entire linkage so that jp�1 stays in its original position.Lemma 6. j1 rotates counterclockwise about jp�1.Proof. Consider the relative movement of j1 and jp about jp�1. Joint jp is ro-tating counterclockwise about jp�1 and the angle 6 j1jp�1jp is increasing byLemma 5. Hence, j1 must also be rotating counterclockwise about jp�1. 2We are now in the position to prove that the polygon remains simple andmonotone throughout the motion.Proof (Theorem 1). The only way that simplicity or monotonicity can be vio-lated is that either a link intersects another link, or a vertical link rotates in the\wrong" direction. The wrong direction for link (ji; ji+1) on the lower [upper]chain is when ji+1 becomes left [right] of ji. Consider the �rst time at which alink intersects another, or a vertical link rotates in the wrong direction.Suppose �rst that a vertical link (ji; ji+1) rotates in the wrong direction.Because only joints j1; : : : ; jp�1 move, we must have 0 � i � p�1. We distinguishthree cases:



Case 1: Link (j0; j1) is verticalBecause j1 is re
ex and j2 is nonstrictly right of j1, j1 must be above j0.But j1 rotates clockwise about j0, so monotonicity is preserved.Case 2: Link (j1; j2) is verticalBecause j1 is re
ex, j1 is above j2. By Lemma 6, j1 rotates counterclockwiseabout jp�1. Hence, the rigid triangle jp�1j1j2 rotates counterclockwise aboutjp�1. Thus because the link (j1; j2) is vertical, j1 is above j2, and jp�1 is(nonstrictly) right of j1, j1 moves left of j2. Thus, monotonicity is preserved.Case 3: Link (ji; ji+1) is vertical, 2 � i � p� 1We show that joints ji and ji+1 are both convex. First, if i � p�2, then thisfollows by Lemma 3. Second, if i = p� 1, then jp�1 and jp must be right ofj1 in order for them to be on opposite sides of ray(j0; j1). Hence, jp�1 andjp must be convex because they are right of j1 which is a rightmost re
exvertex.Thus, joints ji�1 and ji+2 are both left of the link (ji; ji+1); that is, (ji�1; ji)belongs to the lower chain and (ji+1; ji+2) belongs to the upper chain. Thismeans that link (ji; ji+1) joins the top chain to the bottom chain (like linkBC in Fig. 1). The polygon remains monotone no matter which way the linkmoves.Now suppose that two links intersect each other, but the polygon remainedsimple and monotone before this time. By Lemma 5, the joint angles �1 and�p�1 approach �, and hence the chain of moving links (j0; : : : ; jp) cannot self-intersect. Hence, the only concern is whether any of these links could intersectthe rest of the polygon.In the following, refer to Fig. 4. Let u denote the original position of ray(j0; j1),and v denote the downward vertical ray emanating from j0. LetW be the wedgeright of ray u and left of ray v.Joint j1 starts on the boundary ofW ; because it rotates clockwise about j0, itenters region W at the start of the move. By the choice of p, joints j2; : : : ; jp�1all lie to the right of u. These joints must also lie to the left of v, becauseotherwise the polygon would not be monotone. Thus, after the move starts, thechain j1; : : : ; jp�1 lies inside W .We now argue that the only joints that can be inside W are j1; : : : ; jp�1.We know that j0 and jp are not interior to W . If some other joint lies insideW , the chain must cross one of the boundaries of W . The chain cannot crossray v, because that would violate monotonicity. Nor can the chain cross ray u,because that would require a re
ex vertex to the right of j1 or a violation ofmonotonicity. Because none of jp; : : : ; jn�1; j0 are moving, this chain remainsoutside W during the motion.To establish that the polygon remains simple, we claim further that the jointsj1, . . . , jp�1 never leaveW . Suppose to the contrary that one does. Let ji be the�rst such joint to leave W . It must reach either ray u or ray v. Consider eachpossibility in turn.ji crosses v: Because j1 stays re
ex (unless it straightens which stops the move),it cannot be the �rst to cross v. If ji crosses v for 1 < i < p, then we haveboth j0 and ji left of j1, so the chain is not monotone, a contradiction.



v0vv PP
v0

P ujp+1 jp+1
W u Wjp�1 jp�1j0 j1 jp

j0 j1 jp
Fig. 4. De�nition of v, v0, W , and P . (Left) When (jp; jp+1) is not on the lower chain.(Right) When (jp; jp+1) is on the lower chain.ji crosses u: Because j1 rotates clockwise about j0, it never crosses u. If j2crosses, j1 cannot be re
ex, a contradiction. If jp�1 crosses, the move musthave already stopped from j0, j1, and jp�1 becoming collinear because j1rotates clockwise about j0. Finally, if ji crosses u for 2 < i < p� 1, ji mustbe re
ex because ji�1 and ji+1 are both right of u, contradicting Lemma 3.Hence, the links of the chain j0; : : : ; jp�1 always remain insideW , so they cannotintersect links outside of W .This leaves just one moving link, (jp�1; jp). By Lemma 5, jp�1 rotates coun-terclockwise about jp. De�ne v0 to be the vertical ray emanating from jp thatpoints away from the interior of the polygon, preferring upward if both directionsare possible. Thus, v0 points downward [upward] when the link (jp; jp+1) is [not]on the lower chain.Let P be the pie wedge bounded by the link (jp�1; jp), the ray v0, and thecounterclockwise circular arc, centered at jp, starting at jp�1 and ending on v0 (atdistance kjpjp�1k from jp). Because monotonicity is preserved up to this point,P is empty of nonmoving links. P also contains the entire sweep of (jp�1; jp): ifv0 points upward, jp�1 cannot cross v0 without �rst becoming collinear with j0and j1; if v0 points downward, it cannot cross without �rst straightening jp. 25 Time and Move BoundsFinally we establish the time and move bounds on the algorithm. Our modelof computation is a real random-access machine supporting comparisons, basicarithmetic, and square roots.Lemma 7. Each iteration of Step 2 takes constant time.



Proof. The computations in this step are computing which of the �ve candi-date events for stopping the motion occurs �rst (Step 2a), and updating O(1)coordinate positions (Steps 2b and 2c). '�p
'�p�1m�da'�0 cb'�1j�1
jp

j0 j�p�1Fig. 5. Illustration of the proof ofLemma 7.
In order to compute the halting event, wede�ne the following (refer to Fig. 5). Here x�denotes that x changes during the move.a = kj0j1k; b = kj1jp�1k; c = kjp�1jpk;d = kjpj0k; m� = kj1jpk;'�0 = 6 jpj0j�1 ; '�1 = 6 j0j1j�p�1;'�p�1 = 6 j�1j�p�1jp; '�p = 6 j�p�1jpj0:Note that m� increases during the move,because j�1 rotates clockwise about j0, in-creasing '�0 and thus (by law of cosines) m�.Hence, we parameterize the move by the di-agonal distance m�. More precisely, we de-termine the halting event by computing the value of (m�)2 for each of the �vecandidate events, and choosing the event with smallest (m�)2.Now the event that ji straightens happens when its angle ��i is �, and theevent that j0, j�1 , and j�p�1 become collinear happens when '�1 = �. Note how-ever that j�1 can only straighten after j0, j�1 , and j�p�1 become collinear (because6 j0; j�1 ; j�p�1 is initially re
ex), and hence we do not need to consider this event.Using the law of cosines, we obtain the following solutions to these event equa-tions:j0 straightens: (m�)2 = a2 + d2 + 2ad cos( 6 jn�1j0jp) and 6 jn�1j0jp < �.j�p�1 straightens: (m�)2 = b2 + c2 + 2bc cos( 6 jp�2jp�1j1).jp straightens: Provided 6 j0jpjp+1 < � (which is necessary for this event),(m�)2 is the solution of a quadratic polynomial involving a, b, c, d, andcos(6 j0jpjp+1). This reduces to an arithmetic expression involving squareroots.j0; j�1 ; j�p�1 collinear: (m�)2 = (ac2+ bd2�ab(a+ b))=(a+ b), because cos��1 =� cos��1 .The new joint coordinates can be computed as follows: Suppose that we knowthe new coordinates of joints ji�1 and ji (initially i = 0). Let v be the vectorfrom ji to ji�1, rescaled to have the known length kjiji+1k. Rotate this vectorclockwise by the new �i, which only involves cosines and sines of this angle, andthen add it to the point ji. The result is the new position of joint j�i+1. We cansimilarly compute the new coordinates of j�p�1 from the coordinates of jp andjp+1. Thus, each update of j�1 , j�p�1 (Step 2b), and possibly j�p�2 (Step 2c) takesconstant time as desired. 2Theorem 2. Algorithm Convexify computes O(n2) moves in O(n2) time.Proof. By Lemma 7, any one move takes O(1) time to compute. Any executionof Step 2 therefore takes O(n) time, because initially p � n� 1, and p decreases



with every move, until a joint straightens and Step 2 terminates. All other stepscan also be implemented in O(n) time. One iteration of the main loop thustakes O(n) time. Because each iteration straightens a joint, the polygon becomesconvex after O(n) iterations. Hence, there are O(n2) moves, which are computedin O(n2) time. 26 ConclusionWe have presented an O(n2)-time algorithm to compute a sequence of O(n2)moves, each rotating the minimum possible number of four joints at once, thatrecon�gures a given monotone polygon into a convex polygon with the same linklengths. By running the algorithm twice we can �nd a motion between any twomonotone polygons with the same clockwise sequence of link lengths.Several interesting open problems remain. Can our algorithm be improved touse o(n2) moves each rotating o(n) joints? More generally, what is the tradeo�between the number of simultaneously rotated joints and the number of moves?Our result adds to the class of polygons that are known to be convexi�-able; previously, the only nontrivial classes were star-shaped polygons [5] andmonotone-separable polygons [3]. A natural area of research is to explore moregeneral classes of polygons. Is there a convexi�able class containing both mono-tone and star-shaped polygons (other than trivial classes like the union)?Acknowledgments. We thank William Lenhart, Anna Lubiw, Godfried Tous-saint, and Sue Whitesides for helpful discussions. This work was partially supportedby FCAR and NSERC.References1. T. Biedl, E. Demaine, M. Demaine, S. Lazard, A. Lubiw, J. O'Rourke, M. Over-mars, S. Robbins, I. Streinu, G. Toussaint, and S. Whitesides. Locked and unlockedpolygonal chains in 3D. Manuscript in preparation, 1999. A preliminary versionappeared in Proc. 10th ACM-SIAM Sympos. Discrete Algorithms, 1999, 866-867.2. Therese Biedl, Erik Demaine, Martin Demaine, Sylvain Lazard, Anna Lubiw,Joseph O'Rourke, Steve Robbins, Ileana Streinu, Godfried Toussaint, and SueWhitesides. On recon�guring tree linkages: Trees can lock. In Proc. 10th CanadianConf. Comput. Geom., Montr�eal, Aug. 1998.3. Prosenjit Bose, William Lenhart, and Giuseppe Liotta. Personal comm., 1999.4. Roxana Cocan and Joseph O'Rourke. Polygonal chains cannot lock in 4D. In Proc.11th Canadian Conf. Comput. Geom., Vancouver, Aug. 1999.5. H. Everett, S. Lazard, S. Robbins, H. Schr�oder, and S. Whitesides. Convexifyingstar-shaped polygons. In Proc. 10th Canadian Conf. Comput. Geom., Montr�eal,Aug. 1998.6. W. J. Lenhart and S. H. Whitesides. Recon�guring closed polygonal chains inEuclidean d-space. Discrete Comput. Geom., 13:123{140, 1995.7. Joseph O'Rourke. Folding and unfolding in computational geometry. In Proc.Japan Conf. Discrete and Computational Geometry, Tokyo, Dec. 1998. To appear.8. Godfried Toussaint. The Erd}os-Nagy theorem and its rami�cations. In Proc. 11thCanadian Conf. Comput. Geom., Vancouver, Aug. 1999.9. Sue Whitesides. Algorithmic issues in the geometry of planar linkage movement.Australian Computer Journal, 24(2):42{50, May 1992.10. Sue Whitesides. Personal communication, Oct. 1998.


