Cutting Planes and the Elementary Closure in Fixed Dimension

Alexander Bockmayr 1 Friedrich Eisenbrand
1 PROTHEO - Constraints, automatic deduction and software properties proofs
INRIA Lorraine, LORIA - Laboratoire Lorrain de Recherche en Informatique et ses Applications
Abstract : The elementary closure $P'$ of a polyhedron $P$ is the intersection of $P$ with all its Gomory-Chvátal cutting planes. $P'$ is a rational polyhedron provided that $P$ is rational. The known bounds for the number of inequalities defining $P'$ are exponential, even in fixed dimension. We show that the number of inequalities needed to describe the elementary closure of a rational polyhedron is polynomially bounded in fixed dimension. If $P$ is a simplicial cone, we construct a polytope $Q$, whose integral elements correspond to cutting planes of $P$. The vertices of the integer hull $Q_I$ include the facets of $P'$. A polynomial upper bound on their number can be obtained by applying a result of Cook et al. Finally, we present a polynomial algorithm in varying dimension, which computes cutting planes for a simplicial cone that correspond to vertices of $Q_I$.
Type de document :
[Intern report] 99-R-362 || bockmayr_99a, 1999, 12 p
Liste complète des métadonnées
Contributeur : Publications Loria <>
Soumis le : mardi 26 septembre 2006 - 08:40:38
Dernière modification le : jeudi 11 janvier 2018 - 06:19:58


  • HAL Id : inria-00098944, version 1



Alexander Bockmayr, Friedrich Eisenbrand. Cutting Planes and the Elementary Closure in Fixed Dimension. [Intern report] 99-R-362 || bockmayr_99a, 1999, 12 p. 〈inria-00098944〉



Consultations de la notice