N

N

Rewriting and Multisets in the Rewriting Calculus and
ELAN

Horatiu Cirstea, Claude Kirchner

» To cite this version:

Horatiu Cirstea, Claude Kirchner. Rewriting and Multisets in the Rewriting Calculus and ELAN.
Workshop on Multiset Processing, Aug 2000, Curtea de Arges, Romania, 17 p. inria-00099053

HAL Id: inria-00099053
https://inria.hal.science/inria-00099053
Submitted on 26 Sep 2006

HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est
archive for the deposit and dissemination of sci- destinée au dépot et a la diffusion de documents
entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non,
lished or not. The documents may come from émanant des établissements d’enseignement et de
teaching and research institutions in France or recherche francais ou étrangers, des laboratoires
abroad, or from public or private research centers. publics ou privés.

https://inria.hal.science/inria-00099053
https://hal.archives-ouvertes.fr

Rewriting and Multisets in p-calculus and
ELAN

Horatiu Cirstea & Claude Kirchner
LORIA and INRIA and UHP
615, rue du Jardin Botanique
54600 Villers-les-Nancy Cedex, France
{Horatiu.Cirstea,Claude.Kirchner}@loria.fr

Abstract

The p-calculus is a new calculus that integrates in a uniform and simple
setting first-order rewriting, A-calculus and non-deterministic computations.
The main design concept of the p-calculus is to make all the basic ingredients
of rewriting explicit objects, in particular the notions of rule application and
multisets of results. This paper describes the calculus from its syntax to its basic
properties in the untyped case. The p-calculus embeds first-order conditional
rewriting and A-calculus and it can be used in order to give an operational
semantics to the rewrite based language ELAN. We show how the set-like data
structures are easily represented in ELAN and how this can be used in order to
specify the Needham-Schroeder public-key protocol.

Keywords: Rewriting, Strategy, Multisets, Matching.

1 Introduction

It is a common claim that rewriting is ubiquitous in computer science and mathe-
matical logic. And indeed the rewriting concept appears from the very theoretical
settings to the very practical implementations. Some extreme examples are the
mail system under Unix that uses rules in order to rewrite mail addresses in canon-
ical forms (see the /etc/sendmail.cf file in the configuration of the mail system)
and the transition rules describing the behaviors of a tree automata. Rewriting is
used in semantics in order to describe the meaning of programming languages as
well as in program transformations like, for example, re-engineering of Cobol pro-
grams [vdBvDK™196]. It is used in order to compute [Der85], implicitly or explicitly
like in Mathematica [Wol99] or OBJ [GKK™87], but also to perform deduction
when describing by inference rules a logic [GLT89], a theorem prover [JK86] or a
constraint solver [JK91]. It is of course central in systems making the notion of rule
an explicit and first class object, like expert systems, programming languages based
on equational logic, algebraic specifications, functional programming and transition
systems.

In this very general picture, we introduce a calculus whose main design concept
is to make all the basic ingredients of rewriting explicit objects, in particular the no-
tions of rule application and multisets of results. We concentrate on term rewriting,

we introduce a very general notion of rewrite rule and we make the rule application
and result explicit concepts. These are the basic ingredients of the rewriting- or
p-calculus whose originality comes from the fact that terms, rules, rule application
and therefore rule application strategies are all treated at the object level.

In p-calculus we can explicitly represent the application of a rewrite rule (say
a — b) to a term (like the constant a) as the object [a — b](a) which evaluates to
the singleton {b}. This means that the rule application symbol @ (where @ is
our notation for the placeholder) is part of the calculus syntax.

But the application of a rewrite rule may fail like in [a — b](c) that evaluates to
the empty set () or it can be reduced to a multiset with more than one element like
exemplified later in this section and explained in Section 2.3. Of course, variables
may be used in rewrite rules like in [f(z) — z](f(a)). In this last case the evalu-
ation mechanism of the calculus will reduce the application to {a}. In fact, when
evaluating this expression, the variable z is bound to a via a mechanism classically
called matching, and we recover the classical way term rewriting is acting.

Where this game becomes even more interesting is that @ — @, the rewrite
arrow operator, is also part of the calculus syntax. This is a powerful abstractor
whose relationship with A-abstraction [Chu40] could provide a useful intuition: A
A-expression Az.t could be represented in the p-calculus as the rewrite rule z — .
Indeed the f-redex (Az.t w) is nothing else than [z — ¢](u) (i.e. the application of
the rewrite rule z — ¢ on the term w) which reduces to {{z/u}t} (i.e. the application
of the substitution {z/u} to the term t).

So, basic p-calculus objects are built from a signature, a set of variables, the
abstraction operator @ — @, the application operator @, and we consider
multisets of such objects. That gives to the p-calculus the ability to handle non-
determinism in the sense of multisets of results. This is achieved via the explicit
handling of reduction result multisets, including the empty set that records the
fundamental information of rule application failure. For example, if the symbol +
is assumed to be commutative then applying the rule z + y — z to the term a + b
results in {a,b}. Since there are two different ways to apply (match) this rewrite
rule modulo commutativity the result is a set that contains two different elements
corresponding to two possibilities.

To summarize, in p-calculus abstraction is handled via the arrow binary operator,
matching is used as the parameter passing mechanism, substitution takes care of
variable bindings and results multisets are handled explicitly.

The operational semantics of ELAN, a language based on labeled conditional
rewrite rules and strategies controlling the rule application, can be described using
the p-calculus. We use the ELAN language in order to describe and analyze the
Needham-Schroeder public-key protocol [NS78].The implementation in ELAN is very
concise and the rewrite rules describing the protocol are directly obtained from a
classical presentation like the one given in Section 3.2.1.

2 Description of the pr-calculus

We assume given in this section a theory T' defined equationally or by any other
means and we present the components of the ppr-calculus and we comment our main
choices.

2.1 Syntax of the pr-calculus

The syntar makes precise the formation of the objects manipulated by the calculus
as well as the formation of substitutions that are used by the evaluation mechanism.
In the case of pr-calculus, the core of the object formation relies on a first-order
signature together with rewrite rules formation, rule application and multisets of
results.

Definition 2.1 We consider X’ a set of variables and F = |J,,, Fm a set of ranked
function symbols, where for all m, F,, is the subset of function symbols of arity m.
We assume that each symbol has a unique arity i.e. that the F,, are disjoint. We
denote by T(F,X) the set of first-order terms built on F using the variables in X.

The set of basic p-terms can thus be inductively defined by the following gram-
mar:

p-terms t = x| f(t,...,t) | {t,...,t}|[H]@®) |t > ¢
where z € X and f € F.

We adopt a very general discipline for the rewrite rule formation, and we do
not enforce any of the standard restrictions often used in the rewriting community
like non-variable left-hand-sides or occurrence of the right-hand-side variables in the
left-hand-side. We also allow rewrite rules containing rewrite rules as well as rewrite
rule application. We consider that the symbols {} and @ both represent the empty
set. For the terms of the form {#i,...,%,} we assume as usual that the comma is
associative and commutative.

The main intuition behind this syntax is that a rewrite rule is an abstractor,
the left-hand-side of which determines the bound variables and some contextual
structure. Having new variables in the right-hand-side is just the ability to have free
variables in the calculus. We will come back to this later but to support the intuition
let us mention that the A-terms and standard first-order rewrite rules [DJ90, BN98§]
are clearly objects of this calculus. For example, the A-term Az.(y x) corresponds
to the p-term = — [y](z) and a rewrite rule in first-order rewriting corresponds to
the same rewrite rule in the rewriting-calculus.

We have chosen multisets as the data structure for handling the potential non-
determinism. A multiset of terms could be seen as the set of distinct results obtained
by applying a rewrite rule to a term. Other choices could be made depending on the
intended use of the calculus. For example, if we do not want to provide the identical
results of an application a set could be used. When the order of the computation
of the results is important, lists could be employed. The confluence properties are

similar in a the set and multiset approaches. It is clear that for the list approach
only a confluence modulo permutation of lists can be obtained.

Example 2.1 If we consider 7y = {a,b,c}, F1 = {f,9}, F = Fo UFi and z,y
variables in X, some p-terms from o(F, X') are:

e [a — b](a); this denotes the application of the rewrite rule a — b to the term
a. We will see that the evaluation of this application is {b}.

o [f(z,y) — g(z,y)](f(a,b)); a classical rewrite rule application leading to a
{g(a,b)}result.

o [y = [z = z+ y](b)]([r = z](a)); a p-term that corresponds to the A-term
My.((Az.z +y) b)) (Az.7) a).

e [[(z—=z+1) = (1 —2)](a—=a+1)](1); a more complicated p-term without
corresponding standard rewrite rule or A-term.

These examples show the very expressive syntax that is allowed for p-terms.

2.2 Matching and substitution application

The matching algorithm is used to bind variables to their actual values. In the case
of pr-calculus, this is in general higher-order matching. But in practical cases it
will be higher-order-pattern matching, or equational matching, or simply syntactic
matching and their combination. The matching theory is specified as a parameter
(the theory T') of the calculus and when it is clear from the context this parameter
is omitted.

Definition 2.2 For a given theory T over p-terms, a T'-match-equation is a formula
of the form ¢ < #/, where ¢ and #' are p-terms. A substitution o is a solution of the
T-match-equation t <} ¢’ if T |= o(t) = t'. A T-matching system is a conjunction
of T-match-equations. A substitution is a solution of a T-matching system P if it is
a solution of all the T-match-equations in P. We denote by F a T-matching system
without solution. A T-matching system is called trivial when all substitutions are
solution of it.

We define the function Solution on a T-matching system S as returning the set of all
T-matches of S when § is not trivial and {ID}, where ID is the identity substitution,
when S is trivial.

Notice that when the matching algorithm fails (i.e. returns F) the function So-
lution returns the empty set.

Example 2.2 If <<6 denotes a syntactic matching and <<?C a commutative matching
then we have:

1. a <} b has no solutions, and thus Solution(a < b) = 0;

2. f(z,z) <<% f(a,b) has no solution and thus Solution(f(z,z) <<g) f(a,b)) =0;

3. a <<5 a is solved by all substitutions, and thus Solution(a <<5 a) = {ID};

4. f(z,9(z,y)) <<5 f(a,g(a,b)) has as solution the substitution o = {z/a,y/b},
and Solution(f(z,g(z,y)) <<6 f(a,g(a,b))) = {o};

5.z +y <5 a+ b has the two solutions {z/a,y/b} and {z/b,y/a} and thus
Solution(z +y <% a+b) = {{z/a,y/b}, {z/b,y/a}}.

The description of the substitution application on terms is often given at the
meta-level, except for explicit substitution frameworks.

As for any calculus involving binders like the A-calculus, a-conversion should be
used in order to obtain a correct substitution calculus and the first-order substitution
(called here grafting) is not directly suitable for p-calculus. In order to obtain a
substitution that takes care of variable bindings we consider the usual notions of
a-conversion and higher-order substitution as defined for example in [DHKO00].

The burden of variable handling could be avoided by using an explicit substitu-
tion mechanism in the spirit of [CHL96]. We sketched such an approach in [CK99a)
and this will be detailed in a forthcoming paper.

2.3 Evaluation rules of the pr-calculus

The evaluation rules describe the way the calculus operates. It is the glue between
the previous components and the simplicity and clarity of these rules are fundamen-
tal for the calculus usability.

The evaluation rules of the pr-calculus describe the application of a p-term on
another one and specify the behavior of the different operators of the calculus when
some arguments are multisets. They are defined in Figure 1.

In the rule Fire, {o1,...,0,...} represents the set of substitutions obtained
by T-matching [on p (i.e. Solution(l <} p)) and o;r represents the result of the
application of the substitution o; on the term r. When the matching yields a failure
represented by an empty set of substitutions, the result of the application of the
rule Fire is the empty set.

We should point out that, like in A-calculus an application can always be eval-
uated, but unlike in A-calculus, the set of results could be empty. More generally,
when matching modulo a theory T', the set of resulting matches may be empty, a sin-
gleton (like in the empty theory), a finite set (like for associativity-commutativity)
or infinite (like for associativity). We have thus chosen to represent the result of
a rewrite rule application to a term as a multiset. An empty set means that the
rewrite rule [— r fails to apply on ¢ in the sense of a matching failure between [
and t.

In order to push rewrite rule application deeper into terms, we introduce the two
Congruence evaluation rules. They deal with the application of a term of the form
fui,...,up) (where f € F,) to another term of a similar form. When we have the
same head symbol for the two terms of the application [u](v) the arguments of the
term u are applied on those of the term v argument-wise. If the head symbols are
not the same, an empty set is obtained.

Fire [l —7](2) ==
{owr,...,onr,...}
where o; € Solution(l <X t)
Congruence [flut, .. up)](flvi,..ahom) =
{£([ur](v1), - ., [un](vn))}
Congruence_fail [f(ui,...,up)l(g(v1,...,0m)) =
0
Distrib {ui,--.,un}](v) ==
{lw](v) - [un](v)}
Batch [v]({u1,---,un}) =
{lo](u1), .., [v](un)}
Switchyp, {ul,...,un} —v —
{ug = v,...,uy = v}
Switchpg u— {v1,..., 0} —
{u = vp,y...,u = vy}
OpOnSet flor, oo {ut, -y umby e yvn) =
{f(lula"'aula"'avn)a""f(vla"'auma a")n)}
Flat {ut,...,{vi,.-,onty ey um} =
{U1, o U1y Uny ey Uy

Figure 1: The evaluation rules of the pp-calculus

The reductions corresponding to the cases where some sub-terms are multisets
are defined by the last evaluation rules in Figure 1. These rules describe the prop-
agation of the multisets on the constructors of the p-terms: the rules Distrib and
Batch for the application, Switchy and Switchpg for the abstraction and OpOnSet
for functions. The evaluation rule that corresponds to the multiset propagation for
set symbols and that eliminates the redundant set symbols is the evaluation rule
Flat.

This design decision to use multisets to represent reduction results has another
important consequence concerning the handling of sets with respect to matching.
Indeed, sets are just used to store results and we do not wish to make them part
of the theory. We are thus assuming that the matching operation used in the Fire
evaluation rule is not performed modulo set axioms. This requires in some cases to
use a strategy that pushes set braces outside the terms whenever possible.

To summarize, we can say that every time a p-term is reduced using the rules
Fire, Congruence and Congruence_fail of the pr-calculus, a multiset is generated.
These evaluation rules are the ones that describe the application of a rewrite rule
at the top level or deeper in a term. The multiset obtained when applying one of
the above evaluation rules can trigger the application of the other evaluation rules
of the calculus. These evaluation rules deal with the (propagation of) multisets and
compute a ”set-normal form” for the p-terms by pushing out the set braces and
flattening the sets.

2.4 Evaluation strategies for the pr-calculus

The strategy guides the application of the evaluation rules. The strategy S guiding
the application of the evaluation rules of the pr-calculus could be crucial for obtain-
ing good properties for the calculus. In a first stage, the main property analyzed is
the confluence of the calculus and if the rule Fire is applied under no conditions at
any position of a p-term confluence does not hold.

The use of multisets for representing the reductions results is the main source of
non-confluence. Unlike in the standard definition of a rewrite step where the rule
application yields always a result, in p-calculus a rule application always yields a
unique result that can be a multiset with several elements, representing the non-
deterministic choice of the corresponding results from rewriting, or with no elements
(D), representing the failure. Therefore, the relation generated by the evaluation
rules of the p-calculus is finer and consequently non-confluent.

The confluence can be recovered if the evaluation rules of p-calculus are guided
by an appropriate strategy. This strategy should first handle properly the problems
related to the propagation of failure over the operators of the calculus. It should
also take care of the correct handling of multisets with more than one element in
non-linear contexts and details on this strategy are given in [CK99b].

2.5 Using the pr-calculus

The aim of this section is to make concrete the concepts we have just introduced by
giving a few examples of p-terms and p-reductions. Many other examples could be
found on the ELAN web page [Pro00].

Let us start with the functional part of the calculus and give the p-terms rep-
resenting some A-terms. For example, the A-abstraction Az.(y x), where y is a
variable, is represented as the p-rule z — [y](z). The application of the above term
to a constant a, (Az.(y z) a) is represented in the pg-calculus by the application
[z — [y](z)](a). This application reduces in the A-calculus to the term (y a) while
in the pg-calculus the result of the reduction is the singleton {[y]|(a)}. When a func-
tional representation f(x) is chosen, the A-term Az.f(z) is represented by the p-term
z — f(z) and a similar result is obtained. One should notice that for p-terms of this
form (i.e. that have a variable as a left-hand side) the syntactic matching performed
in the py-calculus is trivial, it never fails and gives only one result.

There is no difficulty to represent more elaborated A-terms in the py-calculus.
Let us consider the term A\z.f(x) (Ay.y a) with the S-derivation: A\z.f(z) (Ay.y a)
— g Az.f(z) a —p f(a). The same derivation can be recovered in the py-calculus
for the corresponding p-term: [z — f(z)|([y = y](a)) — Fire [z — f(z)]({a})
—Bateh {[z = f(@)](a)} —Fire {{f(a)}} —Fiae {f(a)}. Of course, several
reduction strategies can be used in the A-calculus and reproduced accordingly in
the pg-calculus.

Now, if we introduce contextual information in the left-hand sides of the rewrite
rules we obtain classical rewrite rules like f(a) — f(b) or f(z) — g(z). When we
apply such a rewrite rule the matching can fail and consequently the application of
the rewrite rule can fail. As we have already insisted in the previous sections, the

failure of a rewrite rule is not a meta-property in the pp-calculus but is represented
by an empty set (of results). For example, in standard term rewriting we say that
the application of the rule f(a) — f(b) to the term f(c) fails while in the py-calculus
the term [f(a) — f(b)](f(c)) evaluates to .

When the matching is done modulo an equational theory we obtain interesting
behaviors. Take, for example, the list operator o that appends two lists with ele-
ments of sort Elem. Any object of sort Elem represents a list consisting of this
only object.

If we define the operator o as right-associative, the rewrite rule taking the first
part of a list can be written in the associative p4-calculus [ol’ — [and when applied
to the list a o bo cod gives as result the p-term {a,a 0 b,a o bo c}. If the operator
o had not been defined as associative we would have obtained as result of the same
rule application one of the singletons {a} or {a o b} or {ao (boc)} or {(aob)oc},
depending of the way the term a o bo ¢ o d is parenthesized.

Let consider now a commutative operator @& and the rewrite rule z @ y — z that
selects one of the elements of the tuple z @ y. In the commutative pco-calculus the
application [z @ y — z](a @ b) evaluates to the set {a,b} that represents the set
of non-deterministic choices between the two results. The rewrite rule x ®y — =
applies as well on the term a @ a and the result is the multiset {a,a} representing
the non-deterministic choice between the two elements that in this case represents
two possible reductions with the same result. In a set approach the result of this
latter reduction is {a}.

We can also use an associative-commutative theory like, for example, when an
operator describes multiset formation. Let us go back to the o operator but this time
let us define it as associative-commutative and use the rewrite rule zoxo L — L that
eliminates doubletons from lists of sort Elem. Since the matching is done modulo
associativity-commutativity this rule eliminates the doubletons no matter what is
their position in the multiset. For instance, in the pac-calculus the application
[zozoL — Ll(aobocoaod) evaluates to {bocod}: the search for the two equal
elements is done thanks to associativity and commutativity.

Another facility is due to the use of multisets for handling non-determinism. This
allows us to easily express the non-deterministic application of a multiset of rewrite
rules on a term. Let us consider, for example, the operator ® as a syntactic operator.
If we want the same behavior as before for the selection of each element of the couple
T ®1y, two rewrite rules should be non-deterministically applied like in the reduction:
{z®y = z,2Qy = y}(a®b) — pistriv {[t @y = z](a®D),[z@y — yl(a®b)}
— rire 1{a},{b}} — Fiat {a,b}.

As we have seen, the p-calculus can be used for representing some simpler calculi
like A-calculus and rewriting. This can be proved formally by restricting the syntax
and the evaluation rules of the p-calculus in order to represent the terms of the
two calculi. Thus, for any reduction in the A-calculus or conditional rewriting a
corresponding natural reduction in the p-calculus can be found. We can extend the
encoding of conditional rewriting in the p-calculus to more complicated rules like
the conditional rewrite rules with local assignments from the ELAN language.

3 Specifications in the ELAN language

3.1 ELAN’s rewrite rules

ELAN is an environment for specifying and prototyping deduction systems in a
language based on labeled conditional rewrite rules and strategies to control rule
application. The ELAN system offers a compiler and an interpreter of the language.
The ELAN language allows us to describe in a natural and elegant way various
deduction systems [BKK*96]. It has been experimented on several non-trivial ap-
plications ranging from decision procedures, constraint solvers, logic programming
and automated theorem proving but also specification and exhaustive verification of
authentication protocols [Pro00]. ELAN’s rewrite rules are conditional rewrite rules
with local assignments. The local assignments are let-like constructions that allow
applications of strategies on some terms. The general syntax of an ELAN rule is:

(] =7 [if cond | where y:=(S)u|* end

We should notice that the square brackets ([]) in ELAN are used to indicate the label
of the rule and should be distinguished from the square brackets of the p-calculus
that represent the application of a rewrite rule (p-term).

The application of the labeled rewrite rules is controlled by user-defined strate-
gies while the unlabeled rules are applied according to a default normalization strat-
egy. The normalization strategy consists in applying unlabeled rules at any position
of a term until the normal form is reached, this strategy being applied after each
reduction produced by a labeled rewrite rule.

The application of a rewrite rule in ELAN can yield several results due to the
equational (associative-commutative) matching and to the where clauses that can
return as well several results.

Example 3.1 An example of an ELAN rule describing a possible naive way to search
the minimal element of a list by sorting the list and taking the first element is the
following;:

[min-rule] min(1) = m
if 1 !'= nil
where sl := (sort) 1
where m := () head(sl) end

The strategy sort can be any sorting strategy. The operator head is supposed to
be described by a confluent and terminating set of unlabeled rewrite rules.

The evaluation strategy used for evaluating the conditions is a leftmost innermost
standard rewriting strategy.

The non-determinism is handled mainly by two basic strategy operators: dont
care choose (denoted dc(si,...,sp)) that returns the results of at most one
non-deterministicly chosen unfailing strategy from its arguments and dont know
choose(denoted dk(si,...,sy,)) that returns all the possible results. A variant of
the dont care choose strategy operator is the first choose operator (denoted

first(si,...,Sy)) that returns the results of the first unfailing strategy from its
arguments.

Several strategy operators implemented in ELAN allow us a simple and concise
description of user defined strategies. For example, the concatenation operator
denoted ; builds the sequential composition of two strategies s1 and so. The strategy
s1; o fails if s; fails, otherwise it returns all results (maybe none) of so applied to the
results of s;. Using the operator repeat* we can describe the repeated application
of a given strategy. Thus, repeat*(s) iterates the strategy s until it fails and then
returns the last obtained result.

Any rule in ELAN is considered as a basic strategy and several other strategy
operators are available for describing the computations. Here is a simple example
illustrating the way the first and dk strategies work.

Example 3.2 If the strategy dk(x => x+1,x => x+2) is applied on the term a,
ELAN provides two results: a4+ 1 and a 4+ 2. When the strategy first(x => x+1,x
=> x+2) is applied on the same term only the a + 1 result is obtained. The strategy
first(b => b+1l,a => a+2) applied to the term a yields the result a + 2.

Using non-deterministic strategies we can explore exhaustively the search space
of a given problem and find paths described by some specific properties.

A partial semantics could be given to an ELAN program using the rewriting
logic [Mes92], but more conveniently ELAN’s rules can be expressed using the
p-calculus and thus an ELAN program is just a set of p-terms.

3.2 Representing multisets in ELAN

Using non-deterministic strategies we can explore exhaustively the set of states of a
given problem and find paths described by some specific properties. For example, for
proving the correctness of the Needham-Schroeder authentication protocol [NS78]
we look for possible attacks among all the behaviors during a session.

In the this section we briefly present some of the rules of the protocol and we
give the strategy looking for all the possible attacks, a more detailed description of
the implementation is given in [Cir99].

3.2.1 The Needham-Schroeder public-key protocol

The Needham-Schroeder public-key protocol [NS78] aims to establish a mutual au-
thentication between an initiator and a responder that communicate via an insecure
network. Each agent A possesses a public key denoted K(A) that can be obtained
by any other agent from a key server and a (private) secret key that is the inverse
of K(A). A message m encrypted with the public key of the agent A is denoted by
{m} K(A) and can be decrypted only by the owner of the corresponding secret key,
i.e. by A.

The protocol uses nonces that are fresh random numbers to be used in a single
run of the protocol. We denote the nonce generated by the agent A by Ny4.

The simplified description of the protocol presented in [Low95] is:

The initiator A seeks to establish a session with the agent B. For this A sends
a message to B containing a newly generated nonce N4 and its identity, message
encrypted with its key K(B). When such a message is received by the agent B,
he can decrypt it and extract the nonce N4 and the identity of the sender. The
agent B generates a new nonce Np and he sends it to A together with N4 in a
message encrypted with the public key of A. When A receives this response he can
decrypt it and assumes that he has established a session with B. The agent A sends
the nonce Np back to B and when receiving this last message B assumes that he
has established a session with A since only A could have decrypted the message
containing Np.

The main property expected for an authentication protocol like the Needham-
Schroeder public-key protocol is to prevent an intruder from impersonating one of
the two agents.

The intruder is an user of the communication network and so, he can initiate
standard sessions with the other agents and he can respond to messages sent by
the other agents. The intruder can intercept any message from the network and
can decrypt the messages encrypted with its key. The nonces obtained from the
decrypted messages can be used by the intruder for generating new (fake) messages.
The intercepted messages that can not be decrypted by the intruder can be replayed
as they are.

3.2.2 Encoding the Needham-Schroeder public-key protocol in ELAN

We present now a description of the protocol in ELAN. The ELAN rewrite rules
correspond to transitions of agents from one state to another after sending and/or
receiving messages.

Data structures The initiators and the responders are agents described by their
identity, their state and a nonce they have created. An agent can be defined in
ELAN using a mixfix operator:

@+ @+ @ : (AgentId SWC Nonce) Agent;

The symbol @ is a placeholder for terms of types AgentId, SWC and Nonce respec-
tively representing the identity, the state and the current nonce of a given agent.

There are three possible values of SWC states. An agent is in the state SLEEP if
he has not sent nor received a request for a new session. In the state WAIT the agent
has already sent or received a request and when reaching the state COMMIT the agent
has established a session.

A nonce created by an agent A in order to communicate with an agent B is
represented by N(A,B). Memorizing the nonce allows the agent to know at each mo-
ment who is the agent with whom he is establishing a session and the two identities

from the nonce are used when verifying the invariants of the protocol. A dummy
nonce is represented by N(di,di).

The nonces generated in the ELAN implementation are not random numbers but
store some information indicating the agents using the nonce. If the uniqueness of
nonces is important like, for example, in an implementation describing sequential
runs of the protocol, an additional (random number) information can be easily added
to the structure of nonces.

The agents exchange messages defined by:

@-->0:0[@,0,0] : (AgentId AgentId Key Nonce Nonce Address) message;

A message of the form A-->B:K[N1,N2,Add] is a message sent from A to B and
contains the two nonces N1 and N2 together with the explicit address of the sender,
Add. The address contains in fact the identity of the sender but we give it a different
type in order to have a clear distinction between the identity of the sender in the
encrypted part of the message and in the header of the message. The header of the
message contains the source and destination address of the message but since they
are not encrypted they can be faked by the intruder. The body of the message is
encrypted with the key K and can be decrypted only by the owner of the private
key.

The communication network is described by a possibly empty multiset of mes-
sages:

Q : (message) network;
@ & @ : (network network) network (AC);
nill : network;

with nill representing the network with no messages.

The intruder does not only participate to normal communications but can as
well intercept and create (fake) messages. Therefore a new data structure is used
for intruders:

Q# @ # Q@ : (AgentId setNonce network) intruder;

where the first field represents the identity of the intruder, the second one is the set
of nonces he knows and the third one the set of messages he has intercepted. In our
specification we only use one intruder and thus, the first field can be replaced by a
constant identifying the intruder.

As for the messages, a set of nonces (setNonce) is defined using the associative-
commutative operator | and a set of agents is defined using the associative-commuta-
tive operator | |.

The ELAN rewrite rules are used to describe the modifications of the global state
that consists of the states of all the agents involved in the communication and the
state of the network. The global state is defined by:

Q@ <>Q@<>@<>@ : (setAgent setAgent intruder network) state;

where the first two fields represent the set of initiators and responders, the third
one represents the intruder and the last one the network.

Rewrite rules The rewrite rules describe the behavior of the honest agents in-
volved in a session and the behavior of the intruder that tries to impersonate one of
the agents. We will see that the invariants of the protocol are expressed by rewrite
rules as well.

Each modification of the state of one of the participants to a session is described
by a rewrite rule. At the beginning all the agents are in the state SLEEP waiting
either to initiate a session or to receive a request for a new session.

When an initiator is in the state SLEEP, he initiates a session with one of the
responders by sending the appropriate message as defined by the first step of the
protocol. The following rewrite rule is used:

[initiator-1]

x+SLEEP+resp || IN <> RE <> I <> 1Im =>
X+WAIT+N(x,y) || IN <> RE <> I <> x——>y:K(y) [N(x,y),N(di,di) ,A(x)]&lm
where (Agent)y+std+init :=(extAgent) elemIA(RE) end

In the above rewrite rule x and y are variables of type AgentId representing the
identity of the initiator and the identity of the responder respectively. The initiator
sends a nonce N(x,y) and his address (identity) encrypted with the public key of
the responder and goes in the state WAIT where he waits for a response. Since only
one nonce is necessary in this message, a dummy nonce N(di,di) is used in the
second field of the message. The message is sent by including it in the multiset of
messages available on the network.

Since the operator || is associative-commutative, when applying the rewrite
rule initiator-1 the initiator x is selected non-deterministicly from the set of
initiators. The identity of the responder y is selected non-deterministicly from the
set of responders or from the set of intruders; in our case only one intruder. The non-
deterministic selection of the responder is implemented by the strategy extAgent
that selects at each application a new agent from the set given as argument.

If the destination of the previously sent message is a responder in the state
SLEEP, then this agent gets the message and decrypts it if it is encrypted with his
key. Afterwards, he sends the second message from the protocol to the initiator and
goes in the state WAIT where he waits for the final acknowledgement:

[responder-1]
IN<> y+SLEEP+init || RE <>I<> w-->y:K(y) [N(n1,n3),N(n2,n4),A(z)]&Im
=> IN<> y+WAIT+N(y,z) || RE <>I<> y-->z:K(z) [N(n1,n3),N(y,z),A(y)]1&lm

One should notice that due to the associative-commutative definition of the
operator & the position of the message in the network is not important. A non-
associative-commutative definition would have implied several rewrite rules for de-
scribing the same behavior.

The condition that the message is encrypted with the public key of the respon-
der is implicitly tested due to the matching that instantiates the variable y from
y+SLEEP+init and K(y) with the same agent identity. Therefore, we do not have
to add an explicit condition to the rewrite rule that remains simple and efficient.

Two other rewrite rules describe the other message exchanges from a session.
When an initiator x and a responder y have reached the state COMMIT at the end of

a correct session the nonce N(y,x) can be used as a symmetric encryption key for
further communications between the two agents.

The intruder can be viewed as a normal agent that can not only participate to
normal sessions but that tries also to break the security of the protocol by obtain-
ing information that are supposed to be confidential. The network that serves as
communication support is common to all the agents and therefore all the messages
can be observed or intercepted and new messages can be inserted in it. There is no
difficulty to implement the rules for the intruder in ELAN but for reasons of space
they are omitted in this presentation.

The invariants of the protocol are easily represented by two rewrite rules de-
scribing the negation of the conditions that should be verified by the participants
to the protocol session. If one of these two rewrite rules can be applied during the
execution of the specification then the authenticity of the protocol is not ensured
and an attack can be described from the trace of the execution.

Some additional properties on the multisets (of messages) can be expressed using
unlabeled rewrite rules. For example the elimination of duplicates from a multiset
of messages is represented by the rule

Im&mé&l=>mgl

that is applied implicitly after each application of any labeled rule.

Strategies The rewrite rules used to specify the behavior of the protocol and the
invariants should be guided by a strategy describing their application. Basically,
we want to apply repeatedly all the above rewrite rules in any order and in all the
possible ways until one of the attack rules can be applied.

The strategy is easy to define in ELAN by using the non-deterministic choice op-
erator dk, the repeat* operator representing the repeated application of a strategy
and the ; operator representing the sequential application of two strategies:

[JattStrat =>
repeat*(dk(attack-1, attack-2,
intruder-1, intruder-2, intruder-3, intruder-4,
initiator-1, initiator-2, responder-1, responder-2
)); attackFound

The strategy tries to apply one of the rewrite rules given as argument to the dk
operator starting with the rules for attacks and intruders and ending with the rules
for the honest agents. If the application succeeds the state is modified accordingly
and the repeat* strategy tries to apply a new rewrite rule on the result of the
rewriting. When none of the rules is applicable, the repeat* operator returns the
result of the last successful application. Since the repeat* strategy is sequentially
composed with the attackFound strategy, this latter strategy is applied on the result
of the repeatx* strategy.

The strategy attackFound is nothing else but the rewrite rule:

[attackFound] ATTACK => ATTACK end

If an attack has not been found and therefore the strategy attackFound cannot
be applied a backtrack is performed to the last rule applied successfully and another
application of the respective rule is tried. If this is not possible the next rewrite
rule is tried and if none of the rules can be applied a backtrack is performed to the
previous successful application.

If the result of the strategy repeat* reveals an attack, then the attackFound
strategy can be applied and the overall strategy succeeds. The trace of the attack
can be recovered in the ELAN environment.

The trace obtained when executing the ELAN specification describes exactly the
attack presented in [Low95] where the intruder impersonates an agent in order to
establish a session with another agent.

The ELAN specification can be easily modified in order to reflect the correction
shown sound in [Low96] and as expected, when the specification is executed with
the modified rules no attacks are detected.

4 Conclusion

We have presented the pr-calculus and we have seen that by making explicit the
notion of rule, rule application and application result, the pr-calculus allows us to
describe in a simple yet very powerful manner the combination of algebraic and
higher-order frameworks.

In the pp-calculus the non-determinism is handled by using multisets of results
and the rule application failure is represented by the empty set. Handling multisets
is a delicate problem and the raw pr-calculus, where the evaluation rules are not
guided by a strategy, is not confluent but when an appropriate evaluation strategy
is used the confluence is recovered.

The pr-calculus is both conceptually simple as well as very expressive. This
allows us to represent the terms and reductions from A-calculus and conditional
rewriting. Starting from this representation we showed how the pr-calculus can be
used to give a semantics to ELAN rules. This could be applied to many other frame-
works, including rewrite based languages like ASF+SDF, ML, Maude or CafeOBJ
but also production systems and non-deterministic transition systems.

We have shown how the ELAN language can be used as a logical framework
for representing the Needham-Schroeder public-key protocol. This approach can
be easily extended to other authentication protocols and an implementation of the
TMN protocol has been already developed. The rules describing the protocol are
naturally represented by conditional rewrite rules. The mixfix operators declared as
associative-commutative allow us to express and handle easily the random selection
of agents from a set of agents or of a message from a set of messages.

Among the topics of further research, let us mention the deepening of the re-
lationship between the pr-calculus and the rewriting logic [Mes92], the study of
the models of the pr-calculus, and also a better understanding of the relationship
between the rewriting relation and the rewriting calculus.

References

[BKK™*96]

[BNYS]

[CHL96]

[Chu40]

[Cir99]

[CK99a]

[CK99b]

[Der85]

[DHK00]

[DJ90]

[GKK+87]

P. Borovansky, C. Kirchner, H. Kirchner, P.-E. Moreau, and M. Vit-
tek. ELAN: A logical framework based on computational systems. In
J. Meseguer, editor, Proceedings of the first international workshop
on rewriting logic, volume 4 of Electronic Notes in TCS, Asilomar
(California), September 1996.

F. Baader and T. Nipkow. Term Rewriting and all That. Cambridge
University Press, 1998.

P.-L. Curien, T. Hardin, and J.-J. Lévy. Confluence properties of
weak and strong calculi of explicit substitutions. Journal of the ACM,
43(2):362-397, 1996.

A. Church. A formulation of the simple theory of types. Journal of
Symbolic Logic, 5:56—68, 1940.

H. Cirstea. Specifying authentication protocols using ELAN. In
Workshop on Modelling and Verification, Besancon, France, Decem-
ber 1999.

H. Cirstea and C. Kirchner. Combining higher-order and first-order
computation using p-calculus: Towards a semantics of ELAN. In
D. Gabbay and M. de Rijke, editors, Frontiers of Combining Systems
2, Research Studies, ISBN 0863802524, pages 95-120. Wiley, 1999.

H. Cirstea and C. Kirchner. An introduction to the rewriting calcu-
lus. Research Report RR-3818, INRIA, December 1999.

N. Dershowitz. Computing with rewrite systems. Information and
Control, 65(2/3):122-157, 1985.

G. Dowek, T. Hardin, and C. Kirchner. Higher-order unification via
explicit substitutions. Information and Computation, 157(1/2):183—
235, 2000.

N. Dershowitz and J.-P. Jouannaud. Rewrite Systems. In J. van
Leeuwen, editor, Handbook of Theoretical Computer Science, chap-
ter 6, pages 244-320. Elsevier Science Publishers B. V. (North-
Holland), 1990.

J. A. Goguen, C. Kirchner, H. Kirchner, A. Mégrelis, J. Meseguer,
and T. Winkler. An introduction to OBJ-3. In J.-P. Jouannaud
and S. Kaplan, editors, Proceedings 1st International Workshop on
Conditional Term Rewriting Systems, Orsay (France), volume 308 of
Lecture Notes in Computer Science, pages 258-263. Springer-Verlag,
July 1987. Also as internal report CRIN: 88-R-001.

[GLT8Y]

[TKS6]

[TK91]

[Low95]

[Low96]

[Mes92]

[NST78]

[Pro00]

[vdBvDK™96]

[Wol99]

J.-Y. Girard, Y. Lafont, and P. Taylor. Proofs and Types, volume 7
of Cambridge Tracts in Theoretical Computer Science. Cambridge
University Press, 1989.

J.-P. Jouannaud and H. Kirchner. Completion of a set of rules modulo
a set of equations. SIAM Journal of Computing, 15(4):1155-1194,
1986. Preliminary version in Proceedings 11th ACM Symposium on
Principles of Programming Languages, Salt Lake City (USA), 1984.

J.-P. Jouannaud and C. Kirchner. Solving equations in abstract
algebras: a rule-based survey of unification. In J.-L. Lassez and
G. Plotkin, editors, Computational Logic. Essays in honor of Alan
Robinson, chapter 8, pages 257-321. The MIT press, Cambridge
(MA, USA), 1991.

G. Lowe. An attack on the Needham-Schroeder public key authenti-
cation protocol. Information Processing Letters, 56:131-133, 1995.

G. Lowe. Breaking and fixing the Needham-Schroeder public key
protocol using CSP and FDR. In Proceedings of 2nd TACAS Conf.,
volume 1055 of Lecture Notes in Computer Science, pages 147-166,
Passau (Germany), 1996. Springer-Verlag.

J. Meseguer. Conditional rewriting logic as a unified model of con-
currency. Theoretical Computer Science, 96:73-155, 1992.

R. Needham and M. Schroeder. Using encryption for authentica-
tion in large networks of computers. Communications of the ACM,
21(12):993-999, 1978.

Protheo Team. The ELAN home page. WWW Page, 2000.
http://www.loria.fr/ELAN.

M. van den Brand, A. van Deursen, P. Klint, S. Klusener, and E. A.
van der Meulen. Industrial applications of asf+sdf. In M. Wirsing
and M. Nivat, editors, AMAST ’96, volume 1101 of Lecture Notes in
Computer Science, pages 9-18. Springer-Verlag, 1996.

S. Wolfram. The Mathematica Book, chapter Patterns, Transforma-
tion Rules and Definitions. Cambridge University Press, 1999. ISBN
0-521-64314-7.

