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Interpolation with urvature onstraints�Hafsa Deddiy Hazel Everettz Sylvain LazardzFebruary 18, 2000AbstratWe address the problem of ontrolling the urvature of a B�ezier urve interpolating a givenset of data. More preisely, given two points M and N , two diretions ~u and ~v, and a onstantk, we would like to �nd two quadrati B�ezier urves �1 and �2 joined with ontinuity G1and interpolating the two points M and N , suh that the tangent vetors at M and N havediretions ~u and ~v respetively, the urvature is everywhere upper bounded by k, and someevaluating funtion, the length of the resulting urve for example, is minimized.In order to solve this problem, we �rst need to determine the maximum urvature of quadratiB�ezier urves. This problem was solved by Sapidis and Frey in 1992. Here we present a simplerformula that has an elegant geometri interpretation in terms of distanes and areas determinedby the ontrol points. We then use this formula to solve several problems. In partiular, wesolve the variant of the urvature ontrol problem in whih �1 and �2 are joined with ontinuityC1, where the length � between the �rst two ontrol points of �1 is equal to the length betweenthe last two ontrol points of �2, and where � is the evaluating funtion to be minimized. Wealso study the variant where we require a ontinuity G2, instead of C1, at the juntion point.Finally, given two endpoints of a quadrati B�ezier urve �, we haraterize the lous of ontrolpoints suh that the maximum urvature of � is presribed.1 IntrodutionAn important problem in CAGD is the onstrution of urves interpolating given sets of data thatalso satisfy onstraints on their urvature. Suh urves are visually pleasing and are said to be\fair" [1, 2℄. Fair urves are also important in the design of highways, railways and trajetories ofmobile robots (see [10℄ and [7℄). In these appliations, urvature ontinuous urves with boundedurvature are desirable. Construting fair urves has been the subjet of reent researh; see, forexample, [4, 5, 6, 8℄ for results about onstraining the urvature at the endpoints, and [3, 9℄ forresults about monotoniity of urvature.In this paper we onsider the problem of ontrolling the urvature along the whole length ofa B�ezier urve interpolating a given set of data. More preisely, given two points M and N , twodiretions ~u and ~v, and a onstant k, we want to �nd two quadrati B�ezier urves �1 and �2 joinedwith ontinuity G1 and interpolating the two points M and N , suh that the tangent vetors at Mand N have diretions ~u and ~v respetively, the urvature is everywhere upper bounded by k, and�This work was started while the �rst two authors were at Universit�e du Qu�ebe �a Montr�eal, and the last authorwas at MGill University.yDepartment of mathematis and omputer siene, University of Lethbridge, 4401 University Drive, Lethbridge,Alberta, T1K 3M4, Canada. deddi�s.uleth.azLORIA-INRIA Lorraine, 615 rue du jardin botanique, B.P. 101, 54602 Villers-les-Nany Cedex, Frane.name�loria.fr 1



some evaluating funtion, the length of the resulting urve for example, is minimized. We all thisproblem the urvature ontrol problem.In order to solve this problem, we �rst need to determine the maximum urvature of quadratiB�ezier urves, that is, to �nd an exat formula in terms of the ontrol points. Note that, for ourproblem, it is not suÆient to ompute the maximum urvature of a partiular B�ezier urve usingnumerial methods. Note also that a quadrati B�ezier urve is a parabola and, although it presentsno speial diÆulties to ompute the maximum urvature of a parabola in terms of the oeÆientsof its impliit equation, what we require is a formula in terms of the ontrol points.In [9℄, Sapidis and Frey give a formula for �nding the maximum urvature for quadrati B�ezierurves. In Setion 2, we reall these results and present a simpler formula that has an elegantgeometri interpretation in terms of distanes and areas determined by the ontrol points. We thenuse this formula to solve several problems. We �rst haraterize the lous of points p1 suh that,with two given points p0 and p2 and a positive onstant k, the quadrati B�ezier urve with ontrolpoints p0, p1 and p2 has maximum urvature k. We then solve some variants of the urvatureontrol problem. De�nitions and motivations for these variants are presented in Setion 4.1. Wesolve in Setion 4.2 the version of the urvature ontrol problem where �1 and �2 are joined withontinuity C1, where the length � between the two �rst ontrol points of �1 is equal to the lengthbetween the two last ontrol points of �2, and where � is the evaluating funtion to be minimized.In Setion 4.3, we prove that if we require in the previous variant a ontinuity G2 instead of C1at the juntion point, then there exist non-degenerate data for whih there is no solution to theurvature ontrol problem. However, if a solution exists, we show how it an be omputed.Throughout the paper, urvature refers to non-signed urvature, unless otherwise indiated.We denote by kpqk the distane between points p and q, and by \� " and \ � " the outer and innerproduts, respetively, between two vetors.2 Maximum urvature of quadrati B�ezier urvesLet � be a quadrati B�ezier urve with ontrol points p0, p1 and p2 (see Figure 1). Reall that �is de�ned for every t in [0; 1℄ by�(t) = (1� t)2p0 + 2t(1� t)p1 + t2p2:Let A be the area of the ontrol triangle p0p1p2 and m be the midpoint of the segment p0p2. Weassume that � does not degenerate into a line segment, i.e., p0, p1 and p2 are not ollinear.In this setion, we prove the following theorem:Theorem 2.1 The maximum urvature of a quadrati B�ezier urve � is either equal to kp1mk3=A2if p1 lies stritly outside the two disks of diameter p0m and mp2, or is equal to maxf�0; �1g where�0 = A=kp0p1k3 and �1 = A=kp1p2k3 are the urvature of �(t) at the endpoints �(0) and �(1).Before proving Theorem 2.1, we reall the result by Sapidis and Frey [9℄ haraterizing quadratiB�ezier urves with monotone urvature.Theorem 2.2 ([9℄) The quadrati B�ezier urve � has monotone urvature if and only if one ofthe angles \(p0p1m) and \(mp1p2) is equal to or larger than �2 . In other words, � has monotoneurvature if and only if p1 lies on or inside one of the two irles having as diameter p0m and mp2.Sapidis and Frey also present in [9℄ the following expressions for the maximum urvature ofquadrati B�ezier urves. When the urvature is not monotone along �, then its maximum urvature2
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Figure 1: The quadrati B�ezier urve has monotone urvature if and only if p1 lies on or inside oneof two irles.is 4al=kp0Bk3, where (see Figure 1), a is the distane between p0 and p2, l is the distane betweenp1 and the line joining p0 and p2, and kp0Bk is the distane between p0 and the line passing throughp2 and direted by ��!p1p0+��!p1p2. When the urvature is monotone along �, its maximum is reahedat one endpoint p0 or p2 of the urve, and is equal to al2kp0p1k3 or al2kp1p2k3 respetively.We are now ready to prove Theorem 2.1. Note that the area A of the ontrol triangle p0p1p2is equal to al=2. Thus, in order to prove Theorem 2.1, based on the results by Sapidis and Frey, itsuÆes to prove that 8A=kp0Bk3 = kp1mk3=A2 or 2A = kp1mk:kp0Bk. For ompleteness, we showhow our result is derived from Theorem 2.2.We assume �rst that p1 lies stritly outside the two disks of diameter p0m and mp2. Thus,the urvature �(t), t 2 [0; 1℄, of the quadrati B�ezier urve � is not monotone by Theorem 2.2. Itfollows that the maximum urvature of � is obtained when the derivative of �(t) is zero.The �rst and seond derivatives of the B�ezier urve � are�0(t) = 2((1� t)(p1 � p0) + t(p2 � p1))= 2(p1 � p0) + 2t(p2 � 2p1 + p0) (1)�00(t) = 2(p2 � 2p1 + p0): (2)The urvature of � at �(t) is thus, for any t 2 [0; 1℄,�(t) = j�0(t)� �00(t)jk�0(t)k3 = j4(p1 � p0)� (p2 � 2p1 + p0)jk�0(t)k3 = j4(p1 � p0)� (p2 � p1)jk�0(t)k3 ;giving �(t) = 8Ak�0(t)k3 ; (3)where A = j(p1� p0)� (p2� p1)j=2 is the area of the ontrol triangle p0p1p2. The derivative of �(t)is �0(t) = �24A(k�0(t)k)0k�0(t)k4 = �12A(k�0(t)k2)0k�0(t)k5 :Sine we assumed that the B�ezier urve � is not degenerate, p0, p1 and p2 are not ollinear andthus A 6= 0. Thus, �0(t) = 0 if and only if (k�0(t)k2)0 = 0, or alternatively, �0(t) � �00(t) = 0. Using3



Equations 1 and 2, we get�0(t) � �00(t) = 4[(p2 � 2p1 + p0)t+ (p1 � p0)℄ � [p2 � 2p1 + p0℄= 4(�t� �)where � = kp2 � 2p1 + p0k2 and � = �(p1 � p0) � (p2 � 2p1 + p0).Thus, the derivative of the urvature �(t) vanishes if and only if t = � = �=�. Note that �is in (0; 1) beause the urvature of � is not monotone by assumption. Therefore, the maximumurvature along � is obtained for t = � .Lemma 2.3 k�0(�)k = 2Akp1mk .Proof: By Equation 1, the square of the �rst derivative of �(t) at � isk�0(�)k2 = 4[(p2 � 2p1 + p0)� + (p1 � p0)℄2 = 4(��2 � 2�� + kp0p1k2)= 4(��2�2 � 2��� + kp0p1k2) = 4�(�kp0p1k2 � �2);where, as before, � = kp2 � 2p1 + p0k2 and � = �(p1 � p0) � (p2 � 2p1 + p0). Sine p2 � 2p1 + p0 =��!p1p0 +��!p1p2 = 2��!p1m, we get � = 4kp1mk2, � = �2��!p0p1 � ��!p1m, and thusk�0(�)k2 = 1kp1mk2 (4kp1mk2kp0p1k2 � 4(��!p0p1 � ��!p1m)2):It follows from the anonial equation (U � V )2+ (U � V )2 = U2V 2, for any two vetors U , V , thatk�0(�)k2 = 4(��!p0p1 ���!p1m)2kp1mk2 :Now, j��!p0p1 � ��!p1mj is equal to A, the area of the ontrol triangle p0p1p2. Indeed, ��!p1m = (��!p1p0 +��!p1p2)=2 and thus j��!p0p1 ���!p1mj = j��!p0p1 ���!p1p2j=2 = A. Thus, k�0(�)k2 = 4A2=kp1mk2 whih yieldsthe result. �The expression of �max = �(�) now follows easily. By Lemma 2.3, k�0(�)k3 = 8A3=kp1mk3.Thus, Equation 3 gives �(�) = kp1mk3A2 :That ends the proof of Theorem 2.1 when p1 lies stritly outside the two disks of diameter p0mand mp2.When p1 lies inside one of these disks, Sapidis and Frey (see Theorem 2.2) proved that theurvature of the quadrati B�ezier urve � is monotone. The maximum urvature is thus theurvature at one endpoint �(0) or �(1). Our expression of the urvature at these points omesdiretly from the result by Sapidis and Frey mentioned above. These expressions also ome diretlyfrom a straightforward omputation, whih we present here for ompleteness.Equation 1 gives �0(0) = 2(p1 � p0) and �0(1) = 2(p2 � p1). It then follows from Equation 3that �(0) = Akp0p1k3 and �(1) = Akp1p2k3 :4



3 Quadrati B�ezier urves with presribed maximum urvatureThe goal of this setion is to show how, in an interative urve design ontext, to help the userontrol the maximum urvature of quadrati B�ezier urves by moving the ontrol points.Given a positive onstant k and two points p0 and p2, we show how to ompute the lous ofpoints p1 suh that the maximum urvature of a quadrati B�ezier urve �, with ontrol points p0,p1 and p2, is equal to k. In an interative urve design ontext, the idea will then be to draw theseurves for some sample values of k (see Figure 2). The user an then (i) for a given p1, obtainimmediately an approximation of the maximum urvature of � by heking its proximity to thedisplayed urves, or, (ii) for a given k, hoose p1 so that � has maximum urvature k by draggingp1 along the orresponding urve. p0
p2Figure 2: Sample of urves, loi of p1, for whih the maximum urvature of � is onstant.We assume for the sake of simpliity that the oordinates of p0, p1 and p2 are (0; d), (x; y) and(0;�d), respetively, in an orthonormal frame (O;~{;~|).Theorem 3.1 The lous of points p1 suh that the maximum urvature of � is k is the union ofthe urves f(x;�p(kd2x2)2=3 � x2)) j � kd2 6 x < �pd~y � ~y2g;f(x;�p(kd2x2)2=3 � x2)) j +pd~y � ~y2 < x 6 +kd2g;f(x;+d�p(dx=k)2=3 � x2) j �pd~y � ~y2 6 x 6pd~y � ~y2g andf(x;�d+p(dx=k)2=3 � x2) j �pd~y � ~y2 6 x 6pd~y � ~y2g;where ~y = 1 + 2k2d2 �p1 + 4k2d22k2d .Proof: Note �rst that the midpoint of p0p2 is O. However, for onsisteny with Setion 2, wedenote by m the midpoint of p0p2. Let D0 and D2 be the two losed disks of diameter p0m andmp2, respetively, and C0 and C2 be their respetive boundaries. Let A denote the area of theontrol triangle p0p1p2.We assume �rst that p1 lies outside the two disks D0 and D2. Then, by Theorem 2.1, themaximum urvature of � is equal to k if and only if kp1mk6=A4 = k2. Sine kp1mk2 = x2 + y25
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Figure 3: Example of urves ��, �0, C0 and C2.and the area A of the triangle p0p1p2 is equal to half the length of the base, p0p2 = 2d, times theheight, jxj, that is A = jdxj, we get that the maximum urvature of � is equal to k if and only if(x2 + y2)3 = k2(dx)4 () y = �q(kd2x2)2=3 � x2:Let � be the urve of equation (x2+y2)3 = k2(dx)4. This urve is the union of the two urves �+and �� de�ned respetively as the set points (x;+p(kd2x2)2=3 � x2) and (x;�p(kd2x2)2=3 � x2)where x varies in [�kd2; kd2℄ (see Figure 3).In order to determine the range of x on whih the urve � lies outside D0[D2, we ompute theintersetion between �, of equation (x2 + y2)3 = k2(dx)4, and the irles C0 and C2 of equationsx2+y2 = �dy, � = �1. By replaing, in (x2+y2)3 = k2(dx)4, x2+y2 and x4 by �dy and (�dy�y2)2,we get (�dy)3 = k2d4(�dy � y2)2 () y2(k2d(�d� y)2 � �y) = 0() y2(k2dy2 � �(1 + 2k2d2)y + k2d3) = 0=) y 2 f0; �(1 + 2k2d2)�p1 + 4k2d22k2d g:The two solutions � (1+2k2d2)+p1+4k2d22k2d are equal to �(d + 1+p1+4k2d22k2d ) whih do not belong tothe interval [�d; d℄. It follows that these solutions do not orrespond to an intersetion between� and the irles C0 and C2. Thus, an intersetion an only our when y 2 f0; �~yg, where~y = 1+2k2d2�p1+4k2d22k2d . The intersetion points satisfy the equation x2 + y2 = �dy, therefore anyintersetion must our at one of the �ve points (0; 0) and (�pd~y � ~y2; �~y), where � = �1 spei�eson whih irle C0 or C2 the intersetion ours (see Figure 3). We now distinguish between �+and ��. Sine �+ lies on or above the x-axis, �+ and C0 [ C2 an only interset at (0; 0) and(�pd~y � ~y2; ~y). We get by omputing the derivative of y = p(kd2x2)2=3 � x2 with respet to xthat the tangent line to �+ at O = (0; 0) is vertial, and that �+ belongs to D0 in a neighborhoodof O. Thus, �+ and C0 [ C2 an properly interset only at the two points (�pd~y � ~y2; ~y). Itthen follows from the fat that the two endpoints (�kd2; 0) of �+ lie outside D0 [D2, that �+ liesoutside D0 [ D2 if and only if x is in the range [�kd2;�pd~y � ~y2) [ (pd~y � ~y2; kd2℄. A similar6



proof holds for ��, thus the parts of � that lie outside D0 and D2 are the two urvesf(x;�p(kd2x2)2=3 � x2)) j � kd2 6 x < �(d~y � ~y2)g andf(x;�p(kd2x2)2=3 � x2)) j + (d~y � ~y2) < x 6 +kd2g;where ~y = 1 + 2k2d2 �p1 + 4k2d22k2d .We now assume that p1 lies inside one of the two disks D0 and D2. By Theorem 2.1, themaximum urvature of � is max(�0; �1) where �0 = A=kp0p1k3 and �1 = A=kp1p2k3 are theurvatures of � at �(0) and �(1) respetively. Note �rst that �0 > �1 if and only if kp0p1k 6 kp1p2k,that is, if and only if, p1 lies inside D0.Suppose �rst that p1 lies inside the disk D0. Then, the maximum urvature �0 = A=kp0p1k3 of� is equal to k if and only if A2 = k2kp0p1k6, that is,(dx)2 = k2[x2 + (y � d)2℄3 () (y � d)2 = (dx=k)2=3 � x2() y � d = �p(dx=k)2=3 � x2 sine p1 2 D0() y = d�p(dx=k)2=3 � x2:Let �0 be the urve de�ned by the points (x; d � p(dx=k)2=3 � x2), x 2 [�pd=k;pd=k℄ (seeFigure 3). Similarly as before, in order to determine the range of x for whih �0 lies inside D0, weompute the intersetion between �0 and the irle C0 of equation x2 + y2 = dy. We replae, inthe equation (dx)2 = k2[x2 + (y � d)2℄3, x2 by dy � y2 and getd2(dy � y2) = k2[(dy � y2) + (y � d)2℄3 () d2y(d� y) = k2[(d � y)(d � y + y)℄3() (d� y)[k2d(d� y)2 � y℄ = 0() (d� y)(k2dy2 � (1 + 2k2d2)y + k2d3) = 0=) y 2 fd; (1 + 2k2d2)�p1 + 4k2d22k2d g:As before, the solution (1+2k2d2)+p1+4k2d22k2d is not in [0; d℄ and thus does not orrespond to anintersetion between �0 and C0. As before, �0 and C0 an only interset at (0; d) and (�pd~y � ~y2; ~y)where ~y = 1+2k2d2�p1+4k2d22k2d . We also get by omputing the derivative of y = d�p(dx=k)2=3 � x2with respet to x that the tangent line to �0 at (0; d) is vertial and that �0 belongs to D0 in aneighborhood of (0; d). It follows that �0 belongs to D0 in the range x 2 [�pd~y � ~y2;+pd~y � ~y2℄.We get that �0 does not belong to D0 when x is not in that range beause the two endpoints(�pd=k; d) of �0 learly do not belong to D0. Thus, �0 lies inside D0 if and only if x is inthe range [�pd~y � ~y2;+pd~y � ~y2℄. In other words, the lous of points p1 2 D0 for whih themaximum urvature of � is k is the urvef(x; d �q(dx=k)2=3 � x2 j �pd~y � ~y2 6 x 6pd~y � ~y2g:A similar proof holds when p1 lies inside D2 whih yields the result. �4 Controlling the urvature of a pieewise quadrati B�ezier urve4.1 PreliminariesLet �1 and �2 denote two quadrati B�ezier urves with ontrol points (p0; p1; p2) and (q0; q1; q2)respetively, and let � denote the onatenation of �1 and �2.7



The general urvature ontrol problem we address is: Given two points M and N , two unitvetors ~u and ~v, and a onstant k, we would like to �nd two quadrati B�ezier urves �1 and�2 joined with ontinuity G1 (at p2 = q0), interpolating the two points M and N (at p0 and q2respetively), suh that the tangent vetors at M and N have diretions ~u and ~v respetively, theurvature is everywhere upper bounded by k, and some evaluating funtion is minimized.In the sequel, we onsider without loss of generality k = 1; for any k 6= 0, we an obtain anequivalent problem where k = 1 by saling the plane.The urves �1 and �2 are onneted (at p2 = q0) with ontinuity G1 if and only if there exists� 2 (0; 1) suh that p2 = q0 = �p1 + (1 � �)q1. The urve � interpolates M and N , suh that thetangent vetors at M and N have diretions ~u and ~v, respetively, if and only if p0 = M , q2 = Nand there exists � and � positive real numbers suh that p1 � p0 = �~u and q2 � q1 = �~v (seeFigure 4).One way to solve the general urvature ontrol problem is to1. �nd the set of (�; �; �) 2 (0;+1)2 � (0; 1) on whih the urvature of � is everywhere smalleror equal to 1, and then,2. �nd a value (�; �; �) in that set for whih the evaluating funtion is minimized.In general, this is a non-linear optimization problem with non-linear onstraints, and thus, an-not neessarily be solved quikly and aurately. Clearly, the diÆulty depends on the omplexityof the set of feasible solutions and on the evaluating funtion that is to be minimized. Here weonsider simplifying assumptions. First, we require a ontinuity C1 at the juntion point betweenthe two urves �1 and �2. This �xes � to 1=2 and redues the number of variables to two. To bringthe number of variables down to one, we arbitrarily onsider � = �. We then hoose as evaluatingfuntion the length �. By minimizing �, we ensure that all the ontrol points p1; p2 = q0 and q1remain lose to the the points M and N we want to interpolate; in other words, by minimizing �,we expet that the length of the resulting urve � will not be too far from its minimum. With thesefurther assumptions, we solve (in Setion 4.2) the given interpolation and minimization problem,exept for the degenerate ase when ~u and ~v are parallel, for whih we prove that a solution doesnot neessarily exist.In Setion 4.3, we also onsider � = �, but we require a ontinuity G2 (instead of C1) at thejuntion point between the two urves �1 and �2. In other words, we require the signed urvature tobe ontinuous on �. The variables are then redued to (�; �) but the onstraint that the ontinuityis G2 links these two variables, and thus the problem is atually one-dimensional. We prove inSetion 4.3 that this set of additional onstraints is too restritive in the sense that there existsnon-degenerate data (M;N; ~u;~v) that annot be interpolated. However, if a solution exists, weshow how it an be omputed.4.2 Curvature ontrol problem with C1 ontinuityWe onsider here the following variant of the urvature ontrol problem: Given two points M andN , and two unit vetors ~u and ~v, we want to �nd two quadrati B�ezier urves �1 and �2 joined withontinuity C1 (at p2 = q0), interpolating the two points M and N (at p0 and q2 respetively), suhthat the tangent vetors at M and N have diretions ~u and ~v respetively, the maximum urvatureof the two urves is smaller or equal to 1, the distanes � = kp0p1k and � = kq1q2k are equal, andsuh that � is minimized. See Figure 4.We show in this setion how to solve this problem for non-degenerate data, that is when ~u and~v are not ollinear. When ~u and ~v are ollinear, we show that there is not neessarily a solution.8



p0 =M q2 = N~v~u �
� = �
q1

p2 = q0
p1�1 �2m 0

Figure 4: Curvature ontrol problem with ontinuity C1 and � = �.As we said in Setion 4.1, this problem is equivalent to �nding the smallest � 2 (0;+1) suhthat the urvature of �1 and �2 is everywhere smaller or equal to 1, wherep0 =M; q2 = N; p1 = p0 + �~u; q1 = q2 � �~v and p2 = q0 = (p1 + q1)=2:We show how we ompute the smallest � 2 (0;+1) suh that the urvature of �1 is everywheresmaller or equal to 1. Computing the smallest � 2 (0;+1), for �2 an be done similarly. We thenreturn the urve � de�ned by the biggest of those two �.First, for any value � 2 (0;+1), we need to determine an expression for the maximum urvatureof �1. By Theorem 2.1, it remains to determine whether the maximum urvature of �1 is givenby the maximum urvature �max(�1) of the parabola supporting �1, or by �0(�1) or �1(�1), theurvature of �1 at its endpoints �1(0) or �1(1), respetively. Thus, for any value � 2 (0;+1), wewant to deide whether p1 belongs to one of the disks of diameter p0m and mp2 where m is themidpoint of p0p2 (see Figure 4). Let  and 0 be the respetive enters of these disks and R be theirradius. In order to determine whether p1 belongs to one of these disks, we ompute and ompareR2 with the distanes kp1k2 and kp10k2.Sine p1 and q1 are linear in �, and p2 = (p1 + q1)=2, m = (p0 + p2)=2,  = (p0 +m)=2, and0 = (m + p2)=2, we have that ( � p0)2, ( � p1)2 and (0 � p1)2 are of degree 2 in �. Thus,R2 < kp1k2 and R2 < kp10k2 are inequalities of degree at most 2 in � (namely � > 16~u���!p0q2(7~u+~v)2�(~u�~v)2and �2[(5~u+3~v)2� (~u�~v)2℄� 2�(16~u+8~v) � ��!p0q2+8kp0q2k2 > 0). By solving these equations, weget a partition of (0;+1) into two sets of intervals I and I 0 suh that the maximum urvature of�1 is given by �max(�1) for any � 2 I, and by max(�0(�1); �1(�1)) for any � 2 I 0.With A(p0p1p2) denoting the area of the ontrol triangle p0p1p2, we get by Theorem 2.1, whenp0; p1 and p2, are not ollinear,�max(�1)2 = kp1mk6A(p0p1p2)4 ; �0(�1)2 = A(p0p1p2)2kp0p1k6 and �1(�1)2 = A(p0p1p2)2kp1p2k6 :A straightforward omputation gives��!p1m = ��!p0q2 + �(�3~u� ~v)4 ; ��!p0p1 = �~u and ��!p1p2 = ��!p0q2 � �(~u+ ~v)2 :9



Thus, A(p0p1p2) = j��!p0p1 ���!p1p2j=2 = j�~u���!p0q2 � �2~u� ~vj=4 and�max(�1)2 = (�2(3~u+ ~v)2 � 2�(3~u + ~v) � ��!p0q2 + k��!p0q2k2)316(�2~u� ~v � �~u���!p0q2)4 ;�0(�1)2 = (�2~u� ~v � �~u���!p0q2)216�6 and �1(�1)2 = 4(�2~u� ~v � �~u���!p0q2)2(�(~u + ~v)���!p0q2)6 :Thus, �max(�1)2 6 1, �0(�1)2 6 1 and �1(�1)2 6 1 redue to inequalities in � of degree at most 8,6 and 6 respetively. Finding the intervals of I and I 0 on whih those inequalities are satis�ed antherefore simply be done by omputing the roots of the orresponding equations. More preisely,the smallest of (i) the smallest root of �max(�1)2 = 1 in I, and (ii) the smallest root of �0(�1)2 = 1and �1(�1)2 = 1 in I 0, is the smallest � for whih the maximum urvature of �1 is smaller or equalto 1. Suh a solution exists when ~u� ~v 6= 0 beause the maximum urvature of �1 goes from +1to 0 sine �max(�1)2, �0(�1)2 and �1(�1)2 tend to +1 when � tends to 0, and tend to 0 when �tends to +1.We have shown that, when ~u�~v 6= 0, the smallest � 2 (0;+1) suh that the urvature of �1 iseverywhere smaller or equal to 1, and suh that the ontrol points p0; p1 and p2 are not ollinear,exists and we an ompute it. Suppose now that there exists ~� 2 (0;+1) suh that p0; p1 and p2are ollinear (see Figure 5). Assume furthermore that p1 lies in between p0 and p2; otherwise, �1 isnot smooth and does not satisfy the onstraint on the urvature. Sine p2 is the midpoint of p1q1,it follows that p0, p1, p2 and q1 are, in this order, on the line L passing through p0 and direted by~u (the line is neessarily direted by ~u beause p1 6= p0 belongs to that line). With ~u � ~v 6= 0, q2does not belong to L. Thus, for � < ~�, the triangle p0p1p2 is not at but tends to a at triangle,with at vertex at p1, as � tends to ~�. Therefore, when � tends from below to ~�, �1 tends to astraight line segment, and the maximum urvature of �1 tends to 0. Thus, there exists � < ~� suhthat the maximum urvature of �1 is smaller than 1. It follows that ~� is bigger than the smallestsolution � we found previously. Therefore, when ~u � ~v 6= 0, there is always an optimal solutionwith p0; p1 and p2 not all ollinear.
~�~�~u ~vp0 q2p1p2 = q0 q1�1 �2 L

Figure 5: Case where p0; p1 and p2 are ollinear and onseutive.We now show that, when ~u � ~v = 0, there may not exist a solution. Assume for examplethat ��!p0q2 is not parallel to ~u and ~v, and that ~u + ~v = 0 (a similar proof an be obtained when~u = ~v). Then, when � tends to 0, �0(�1), �1(�1) and �max(�1) tend respetively to +1, 0 and+1. Similarly, when � tends to +1, they tend respetively to 0, +1 and +1. It follows thatmax(�0(�1); �1(�1)) and �max(�1) tend to +1 when � tends to 0 and +1. In addition, �0(�1),�1(�1) and �max(�1) are never equal to 0 beause then kp1mk = 0 or A(p0p1p2) = 0 whih would10



imply that p0; p1 and p2 are ollinear, whih is impossible sine the two rays starting at p0 andq2 with diretion ~u and �~v do not interset. Thus, max(�0(�1); �1(�1)) and �max(�1) are stritlygreater than a positive onstant for any � 2 (0;+1), and, by saling the plane, this onstant anbe saled to a value greater than 1.4.3 Curvature ontrol problem with G2 ontinuityWe onsider here the following variant of the urvature ontrol problem: Given two points M andN , and two unit vetors ~u and ~v, we want to �nd two quadrati B�ezier urves �1 and �2 joined withontinuity G2 (at p2 = q0), interpolating the two points M and N (at p0 and q2 respetively), suhthat the tangent vetors at M and N have diretions ~u and ~v respetively, the maximum urvatureof the two urves is smaller or equal to 1, the distanes � = kp0p1k and � = kq1q2k are equal, andsuh that � is minimized.As we said in Setion 4.1, the problem is equivalent to �nding the smallest � 2 (0;+1) suhthat �1 and �2 are onneted G2 and their urvature is everywhere smaller or equal to 1, wherep0 =M; q2 = N; p1 = p0 + �~u; q1 = q2 � �~v and 9� 2 (0; 1) j p2 = q0 = �p1 + (1� �)q1:The urves �1 and �2 are onneted G2 if and only if the two signed urvatures of �1 and �2at p2 are equal, that is, by Theorem 2.1,��!p0p1 ���!p1p22kp1p2k3 = ��!q0q1 ���!q1q22kq0q1k3 ;when the triplets of points (p0; p1; p2) and (q0; q1; q2) are not ollinear. We easily get that ��!p1p2 =(1 � �)��!p1q1, ��!q0q1 = ���!p1q1, ��!p1q1 = ��!p0q2 � �(~u + ~v), ��!p0p1 = �~u and ��!q1q2 = �~v. Thus, we get that �is G2 if and only if�~u� (1� �)(��!p0q2 � �(~u + ~v))(1� �)3kp1q1k3 = �(��!p0q2 � �(~u+ ~v))� �~v�3kp1q1k3 ()~u���!p0q2 � �~u� ~v(1� �)2 = ��!p0q2 � ~v � �~u� ~v�2 ()�2 � 2�	+	 = 0 where 	 = ��!p0q2 � ~v � �~u� ~v��!p0q2 � (~u+ ~v) (if ��!p0q2 � (~u+ ~v) 6= 0).Standard alulations yield that the equation �2 � 2�	+	 = 0 admits a root in (0; 1) if andonly if 	 2 (�1=3; 0). We an easily hoose p0; q2; ~u and ~v suh that 	 62 (�1=3; 0). Indeed (seeFigure 6), 	 > 0 for any ~u; ~v that are on the same side of ��!p0q2 (i.e., ��!p0q2� ~u and ��!p0q2�~v have thesame sign) and suh that ~v lies in the small wedge de�ned by ��!p0q2 and ~u (i.e., ~u� ~v and ��!p0q2 � ~vhave opposite signs). We thus proved that there is no solution to our urvature ontrol problemfor a set of non-degenerate hoies of the parameters M; N; ~u and ~v.However, when a solution exists, it an be omputed as in the previous setion. Indeed, theurvature �max(�i), i = 1; 2, an be expressed as a ratio of a polynomial of degree 6 in � and � overa polynomial of degree 8 in � and 4 in �. As before, we need to �nd the smallest value of � > 0,in the range where the maximum urvature of �i is �max(�i), for whih the ratio of polynomialsis equal to 1. By multiplying by the denominator, the equation redues to a polynomial equation11



~u ~vp0 q2Figure 6: Example where 	 > 0 for any � > 0 (��!p0q2 � ~u > 0, ��!p0q2 � ~v > 0 and ~u� ~v < 0).of degree 8 in � and 6 in �. Sine � = �	+p	2 �	 (the other root is negative), a polynomialof degree 6 in � an be seen as a polynomial of degree 6 in the variables f	;p	2 �	g. Theprevious equation an thus be transformed into another one where p	2 �	 is equal to a ratio ofpolynomials where the numerator is of degree 8 in � and 6 in 	 and where the denominator is ofdegree 8 in � and 5 in 	. By squaring the equation, we get a polynomial equation of degree 16in � and 12 in 	, that is an equation of degree 28 in � sine 	 is linear in �. As we said before,we annot ensure that there exists a positive root of that equation in �. The same method an beapplied to �0(�i) and �1(�i) and for determining the intervals on whih the maximum urvatureof �i is equal �max(�i) or max(�0(�i); �1(�i)).5 Conluding remarksIt remains open to solve the urvature ontrol problem when the length of the urve is to beminimized. Another interesting approah would be to determine how muh longer than optimalour urves are. Also, we would like to onsider the ase when the data onsist of more than twoontrol points. Note also that, beause of the high degree of the equations, it is not lear that thesolutions presented in Setions 4.2 and 4.3 are usable in an interative urve design ontext. Thisshould be tested with an implementation.Referenes[1℄ G. Farin. Curves and Surfaes for Computer Aided Geometri Design: A Pratial Guide. 4th ed.Aademi Press, San Diego, 1997.[2℄ G. Farin and N. S. Sapidis. Curvature and the fairness of urves and surfaes. IEEE Comp. Graph.Appl. 9 (1989), 52{57.[3℄ T. N. T. Goodman. Curvature of rational quadratis spline. Curves and Surfaes in Geometri Design,P.-J. Laurent, A. Le M�ehaut�e, and L. L. Shumaker (eds.), A. K. Peters, Wellesley MA, 1994, 201{208.[4℄ T. N. T. Goodman and K. Unsworth. Shape preserving interpolation by urvature ontinuous parametriurves. Comput. Aided Geom. Design 5 (1988), 323{340.[5℄ I. Juh�asz. Cubi parametri urves of given tangent and urvature. Computer-Aided Design 30 (1998),1{9.[6℄ P. D. Kaklis and N. S. Sapidis. Curvature-sign-type boundary onditions in parametri ubi-splineinterpolation. Comput. Aided Geom. Design 11 (1994), 425{450.[7℄ J.-C. Latombe. Robot Motion Planning. Kluwer Aademi Publishers, Boston, 1991.[8℄ M. Paluszny, F. Tovar and R. R. Patterson. G2 omposite ubi B�ezier urves. J. Comput. Appl.Math. 102 (1999) 49{71.[9℄ N. S. Sapidis and W. H. Frey. Controlling the urvature of a quadrati B�ezier urve. Comput. AidedGeom. Design 9 (1992), 85{91. 12
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