N

N
N

HAL

open science

Towards a Methodology for Rule-Based Programming

Carlos Castro, Claude Kirchner

» To cite this version:

Carlos Castro, Claude Kirchner. Towards a Methodology for Rule-Based Programming. [Intern report]

A02-R-529 || castro02a, 2002, 24 p. inria-00099428

HAL Id: inria-00099428
https://inria.hal.science/inria-00099428
Submitted on 26 Sep 2006

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.


https://inria.hal.science/inria-00099428
https://hal.archives-ouvertes.fr

Towards a Methodology for Rule-Based Programming

Carlos Castro
Universidad Técnica Federico Santa Maria
Av. Espana 1680, Valparaiso, Chile

e-mail: Carlos.Castro@inf.utfsm.cl

&
Claude Kirchner
INRIA Lorraine & LORIA
615, rue du jardin botanique, BP 101, 54602 Villers-les-Nancy CEDEX, France

e-mail: Claude.Kirchner@loria.fr

January 7, 2003

Abstract

In this paper, we propose general guidelines that could be considered
to define transformation rules when programming using a rule-based ap-
proach. We apply the proposed steps for solving some typical problems
in Computer Science. Through these examples, we also show how clear
and easy it is to prove properties such as correctness, completeness and
termination following these guidelines when a rule-based paradigm is used.

1 Introduction

The notion of rules is in the essence of computer programming. This paradigm
has been used since long time ago in Computer Science to represent operations
on data structures. Transformation rules are widely used in several domains un-
der different denominations: Inference Rules in Logic, Rewrite Rules in Rewrit-
ing Logic, Transition Rules in Automata Theory, Production Rules in Artificial
Intelligence, and so on. In the last years, the development of rule-based pro-
gramming languages such as ELAN [4], Maude [9], Claire [5], ILOG RULES [15],
ASF+SDF [13], and CHR [14], has allowed the application of these concepts in
solving real-life problems.

The basic idea of a transformation rule is very natural. When a simple
operation is applied on an input producing an output an obvious way to express
that it is just to link input and output by an arrow. We say that the input
is transformated into the output and the arrow must express the direction of



this transformation. This simple idea expressing what is carried out represents
an interesting alternative with respect to traditional procedural programming
where we have to specify how the operation is carried out. However, when using
a rule-based approach to develop large-scale applications that involve many
transformations, we need a framework to support the design and programming
tasks and no such a guide is available up to now.

A lot of work has been carried out for developing methodologies in other
paradigms: structured programming [12], structured analysis [21], structured
design [22], and object-oriented programming [1] are examples of methods to
develop software using a procedural approach. The work presented in this paper
can be considered as a first attempt to see rule-based programming from a
software engineering point of view.

Providing a general methodology to deal with all aspects of rule-based pro-
gramming seems to be too ambitious. However, in order to advance in this
direction, we think that one of the first things that we should consider is the
definition of the rules themselves. That is why the main motivation of this work
is to provide a framework which could be considered to define transformation
rules when a rule-based approach is used for programming. The main contri-
bution of this work is two-folds: on one hand, we propose a general framework
for rule-based programming, on the other hand, we explain the basic concepts
behind the use of rules as a programming tool.

This paper is organized as follows: section 2 presents two simple examples
of sorting and search problems in order to informally introduce the notions
of transformation and control that can be clearly separated in rule-based pro-
gramming. Section 3 details all concepts involved in the application of a rule in
the framework of term rewriting. Section 4 strengh the role that control plays
when developing programms using a rule-based approach. Section 5 presents
the five steps defining the methodology that we propose for programming in
this paradigm. Section 6 presents the application of the methodology for solv-
ing some simple examples. Finally, in section 7, we conlude the paper and give
some perspectives for further research.

2 Transformations and Control

In this section, we present two examples introducing two fundamental concepts
in our framework. The first one mainly concerns the concept of transformation,
a key notion in rule-based programming. The second one discusses the role of
control that allows to guide the application of the transformations.

2.1 A First Example: Sorting

Sorting is a basic operation that everybody uses daily: think of sorting your
52 playing cards, of sorting by dates the file of your bank statements or to sort
by size the elements of a Russian doll. We sort tennis players, favorite songs,
football teams, etc. ...



How can we describe the sorting operation in a simple and concise way? Let
us take for example the list of numbers

12 4 34 571 23 453 5 2 54 6 87

and assume we would like to sort them in increasing order (from left to
rigth). A simple way to describe this task is the following:

— choose 2 different places in the list: These could be, for example, the
ones determined by the arrows:

4 4
12 4 34 5 7123 4535 2 54 6 87

— if the chosen elements are in increasing order, do nothing: We are exactly
in this situation, so we do nothing.

— if the chosen elements are in decreasing order, exchange them: Assuming
we selected:

i !
12 4 34 5 7123 45 3 5 2 54 6 87

we will transform this list into

{ 4
12 4 34 2 7123 4535 5 54 6 87

Now, we have to decide when to stop making these “try to exchange” in-
structions, so we give the last order:

— choose again two places and perform the previous instructions, until no
more exchange is possible.

We would like to describe these simple instructions in a formal enough way
to have a computer mechanically executing them.

The first main abstract notion needed to design a model of the sorting algo-
rithm is the one of variable. A variable is a name that allows to designate any
element of a given set. For example, when we talk about a “boy” in a classroom
“boy” designates anyone of the boys in the given classroom. It is classical to set
“let x be a variable in N the set of natural numbers” to designate one of the
natural numbers.

In our sorting example, we can introduce 3 variables, L;, Lo, and L3, ranging
on lists and 2 variables, Ey and Es, ranging on natural numbers.

Now we can express the fact that we have chosen 2 different elements in a
list in the following way:

L1 E, Lo E> L3
—— N o ~ A~ N
124 34 5 71 23 45 3 5 2546 87



and the transformation above can be expressed as

for all lists Ly, Lo, L3 and elements Ey, Fs,
transform any list of the form Ly Ey Ly E5 L3 into the list Ly Ey Ly Ey Ls,
provided Fy > FEs.

Now instead of using this verbose description of the transformation, we use
an horizontal arrow to denote the fact that we transform a list into another one,
ie.:

Ly By Ly Ey L3 — 14 Es Ly B4 L3
if E; > Es

We have just written a so called rewrite rule. In this example, the rewrite
rule transforms a list into another list, its left-hand side is L; Ey Ly E5 Ls, its
right-hand side is Ly F» Ly Ey L3 and, its firing condition is Fy > Es. Carrying
out a transformation is what we call the application of a rewrite rule.

When defining rewrite rules we are just expressing the transformations that
are carried out, we do not specify the way they are applied. In the next section
we discuss the notion of control.

2.2 How to search?

Sliding-tile puzzles have been widely used by the Artificial Intelligence commu-
nity as examples to show different search heuristics. This kind of puzzle consists
of a n x n frame holding n? — 1 distinct movable tiles, and a blank space, as
presented in figure 1.

Figure 1: A sliding-tile puzzle.

Any tile that is horizontally or vertically adjacent to the blank may move
into the blank position. An operator is any such legal move. Given an initial
state, for example, the one in figure 1, the goal is to find the sequence of moves
that transforms the initial state into some given final state, for example, the
one presented in figure 2.

Considering the general rules of this game, the four valid operators available
to solve this puzzle can be graphically defined as presented in figure 3 where X
is a variable that can take any integer value in [1,...,8].

These operators define the transformations that can be applied on a given
frame: the right move represents a tile moving to the blank position on its right,
the left move represents a tile moving on the blank position on its left, and so



Figure 2: A final state for the sliding-tile puzzle.

x[ ] — [IX] [ Ix] —— [x]

Right move Left move
— —
L]
Down move Up move

Figure 3: The four valid operators for the sliding-tile puzzle.

on. It is important to note that the four rules express general transformations,
we are note defining specific operations. This is in the essence of rule-based pro-
gramming, we are interested in what are the operations, we are not representing
how the operations are carried out.

States that can be reached by the application of all available transformations
are called neighborg states. Applying left, up, down, and right moves on the
initial state of figure 1 we obtain the four neighborg states in the second level
of the search tree presented in figure 4.

3| 7|6

4 1

2|58
3| 7|6 37|86 3 6 3|/7|6
1 4151 4/ 7|1 4|1
2|58 2 8 2|58 2|58

Figure 4: All neighborgs of the initial state.

Search heuristics are defined based on the criteria used to choose the neigh-
borg state that will be considered as the next current state to be analysed. Once
a new current state is determined the process is repeatedly applied until a final
state, if any, is reached. Search heuristics express the order in which the search
tree is explored. In other words, search heuristics express the order in which
transformation rules are applied to explore the search tree. This is the notion
of control, the second fundamental concept in rule-based programming.

For example, if we were interested in visiting all possible neighborg states
that can be reached in one step from all states in the second level of the search



tree in figure 4 we should apply all transformations on every state to obtain the
search tree presented in figure 5.

3/ 7|6
4 1
2| 5|8
3|76 3/ 7|6 3 6 3/ 7|6
1 4|51 4| 7|1 4] 1
2|58 2 8 2| 5|8 2|58
3| 7|6 3|7 3| 7|6 3| 7|6 3| 6 3| 6 3| 7|6 7| 6
1|8 40 1|6 4| 5|1 45|11 40 7)1 4|7 2] 4|1 3 4|1
2|5 2| 5|8 2 2| 8 2|58 2| 5|8 5|8 2| 5|8

Figure 5: Breadth-First Search tree for the sliding tile puzzle.

In this way we are following the Breadth-First Search (BFS) heuristics that
visits all states in a level before going down to states in the next level.As usual
in this kind of heuristics, we do not show neighborg states that have already
been visited in previous levels of the search tree. It is easy to note that strictly
speaking each state of the second level should have three neighborgs in the
third level: if the state in the second level was created using a left move on the
initial state, the same initial state could be reached applying the right move
on the state in the second level, and so on. This shows a common situation in
programming: non termination. In order to avoid this behaviour a memory is
generally used to record the states that have already been visited and that have
no interest in being visited again.

When we are interested in obtaining just the first neighborg that can be
reached from the current state using all possible transformations we are talking
about the Depth-First Search (DFS) strategy. The first three levels of the search
tree following this heuristics is presented in figure 6.

In order to control the application of the transformations we need tools that
allow to express the desired search heuristics. In the context of rewriting, the
tools that control the application of a set of rewrite rules are called strategy
languages, a notion that was introduced in the rewriting systems giving origin
to the Computational Systems [17, 18]. In the last ten years, a lot of research
has been done on the definition of strategy languages. The ELAN system, the
first one implementing these ideas, provides operators for rule selection, non-
determinism, iteration, and cooperation of several rewrite systems [3, 2]. The
notion of strategy is also used in others systems based on rewriting logic. Strate-
gies of Maude are based on reflexivity aspects of rewriting logic [8, 10]. The sys-
tem ASF+SDF offers several built-in term-traversal strategies with a recursion
operator that allow to define strategies used in various program transformation



Figure 6: Depth-First Search for the sliding-tile puzzle.

techniques [20, 19].

The very simple example presented in this section about search heuristics
in Artificial Intelligence shows the relation between two fundamental concepts
that are always used in Computer Science: transformation and control. In
this example, transformations are represented by the four rules presented in
figure 3 and the notion of control refers to the order of the application of these
rules. Depending on the paradigm used to program computers these notions
are implemented by different data structures and sentences available in the host
language. However, the difference between transformation and control is not
always explicit in all these frameworks.

The need for a clear distinction between transformation and control has been
well recognized in the last years. The rule-based paradigm seems to be a good
framework in order to make this difference. Because of their simplicity and
clarity to express transformations, they provide strong advantages over proce-
dural approaches. Specifically, when we are interested in proving properties,
such as completeness, correctness and termination of a program, they appear as
an unavoidable tool to be considered. These advantages are mainly due to the
explicit separation between transformations and control that is inherent to the
rule-based approach.

3 Transformations by Term Rewriting

An elementary term rewriting step can be seen as involving three basic ideas:
selection of the rule to be applied, verification of the applicability of the selected
rule, and actions derived by the application of the rule. In this section, we will
first introduce the basic ideas of term rewriting through an example and then
we will formally define these concepts.



Let us consider the well-known factorial function:
nl=1x...xn

This function can be formally described by the following set of rules:

fac(0) — 1
fac(n) — fac(n—1)xn
if n>=1

Now, suppose we are interested in computing 3!, so we should specify the
following query:

fac(3)
Trying to apply the set of rules we verify:

e The first rule fac(0) cannot be applied on the input fac(3) because the
parameters of the symbol fac are different integer numbers.

e The second rule fac(n) could be applied because fac(3) can be equated
to fac(n) for n = 3 and the condition 3 > 1 is true.

In this very simple example, we can identify the three fundamental concepts:

Rule selection When the set of available rules contains more than one element
a strategy has to be specified to select the rules that will be tried and,
eventually, applied. In this example, we just tried them in the order in
which they are specified, but of curse we could be interested in tools to
control their application for specifying other orders.

Matching Once a rule has been selected, we have to verify its applicability
with respect to the input. This second basic idea of term rewriting is
called matching. Verify the applicability of the rule fac(0) on the input
fac(3) is quite easy because both ground formulas, i.e., formulas without
variables, are different. Verifying the applicability of the rule fac(n) on
the input fac(3) is a little bit more complicated. Due to the fact that
fac(n) contains the variable symbol n, we have to verify if this variable
can be instantiated to the appropiate value. In this case, it is possible
to instantiate n to 3 and so we say that there exists a substitution that
solves the matching problem. We also say that the query matches the
second rule. So, the fact that the second rule can be applied is due to the
substitution.

Replacement Once a substitution is found, and the matching between a rule
and the input is possible, we can go ahead and proceed to replace the
input by the right-hand side of the second rule where n is replaced by 3:

3 x fac(3 —1)



This third basic idea, where the query is replaced by the right-hand side
of a rule, is the action expressed by the rewrite rule. After simplifications
we obtain the following reduced expresion :

3 x fac(2)

This is the application of a rule, this is also called a rewrite step or a one
step rewriting. Of course, we can continue reducing the query because we can
also apply rewrite rules in sub expresions.

fac(3) = 3 x fac(3 —1)

4
3% fac(2) — 3x2x fac(2—-1)
4
6 x fac(1) — 6x1x fac(l—1)
4
6 x fac(0) — 6x1

6

This very simple example also shows the role that control play concerning
efficiency: if we always try first the rule fac(0) we will fail three times, each one
after applying the rule fac(n).

In the following, we formalize the notions of term, rewrite rule, substitution,
matching, and rewrite step.

Terms First-order terms are built on a vocabulary of function symbols and
variable symbols. Let F = U,>0F, be a set of symbols called function symbols,
each symbol f in F,, has an arity which is the index of the set F,, it belongs
to, it is denoted arity(f). Elements of arity zero are called constants, and it
is always assumed that there is at least one constant. Given a denumerable
set X of variable symbols, the first-order terms 7 (F,X) is the smallest set
containing X and such that f(¢1,...,t,) is in T(F,X) whenever arity(f) =n
and t; € T(F,X) forie[l...n].

Rewrite Rule A rewrite rule is an ordered pair of terms denoted by

I = r

The terms [ and r are called the left-hand side and the right-hand side of
the rule, respectively. The direction of the arrow express the fact that the term
on the left-hand side is transformed into the term on the right-hand side when
the rule is applied. Rewrite rules can also be applied under satisfiability of
conditions. The rule

I —- r
if ¢

1'We could also specify rules to simplify arithmetics expressions such as 3 — 1 = 2.



transforms the term on the left-hand side into the term on the right-hand side
if the condition c is satisfied. When one needs to refer rules a label can be
associated to each one. The labelled rule

g 1 - r

represents a rewrite rule with label £. Of course, in general, we can talk about
labelled conditional rewrite rules:

g 1t - r
if ¢

Finally, a rewrite system is a set of such rewrite rules.

Matching and Substitution A substitution is an application on T (F,X)
uniquely determined by its image of variables. It is thus written out as {z; —
t1,...,Tn — t,} when there are only finitely many variables not mapped to
themselves. The application of a substitution o = {z; = t1,...,2, 2> t,} to a
term is recursively defined as follows:

1. if ¢ is a variable z; for some ¢ = 1,...,n then o(t) = t;,
2. if t is a variable x # z; for all 4 = 1,...,n then o(t) = t,

3. if tis a term f(uq,...,ux) wWith uy,...,ux € T(F,X) and f € F, then
o(t) = flo(ur),...,o(ug))-

Finding a substitution o such that o(l) = ¢ is called the matching problem
from [ to t.

Rewrite Step A rewrite step consists in finding a subterm of the input term
that matches the left-hand side of the rule and replace that subterm by the
right-hand side of the rule instantiated by the match. Formally, given a rewrite
system R and an input term ¢, if there exists

e agrule/ —»rin R,
e 3 position w in ¢, and
e a substitution o satisfying t|,, = o(l)

we say that t rewrites to ¢’ where t' = t{w + o(r)]. This is called a rewrite
step and it is denoted by t — g t'. When either the rule, the substitution or the
position need to be specified, a rewrite step is denoted by

w,o,l—r

t =5 t

When considering conditional rules of the form

10



I —- r
if ¢

the rule is applicable on a term ¢ provided there exists a matching substitution
o of [ on t|, such that
o(c) —* true

In the example:

fac(S) _>{ac(n) — nXfac(n—1) 3 x fac(3 _ 1)

4 The Notion of Control

Let us consider the problem of finding the minimum value in a list of different
integer numbers. Four cases have to be taken into account:

e The list is empty.
e The list contains only one element.
e The head is less than the second element of the list.

e The head is greater than the second element of the list.

In order to detect these four cases we could define, respectively, the following
rules:

min(nil) — mnil
min(zl.nil) — =l
min(zl.z2.1) — min(zl.l)
if z1 <22
min(zl.z2.1) — min(z2.0)
if 21> 22

Applying the min operator on a given list of integers 3.2.7.nil, the basic
mechanism of recursive programming carries out all the work using the fourth,
then the third, and finally the second rule as follows:

min(3.2.7.nil) — min(2.7.nil) — min(2.nil) — 2

When using unlabelled rules we are just computing applying all rules as much
as possible. The user has not control on the application of the rules. It is a fixed
strategy, expressed in the implementation, that guides the computation. We can
see that recursive programming is a concept widely used in this paradigm.

However, if we want to be able to control the application of the transforma-
tions we should make use of labelled rules:

11



[MinNil] min(nil) — nil
[MinSingleton] min(zl.nil) — 1
[MinHead] min(z1.22.1) — min(z1.)
if 21 <22
[MinSecond] min(zl.22.l) — min(z2.1)
if 21> 22

In this case, given a list we need to specify the order in which we want to ap-
ply this set of rules. To carry out this specification we need a set of strategy oper-
ators, that is what is called a strategy language. In the domain of term rewriting,
a very well-known environment is the ELAN system whose strategy language in-
volves operators to deal with rule selection, non-determinism, and iteration [4].
Among these operators we can mention the operators: first(Sy,...,S,) that
returns all results of the application of the first strategy S; that can be applied,
and repeat(S) that applies repeatedly the strategy S until it cannot be ap-
plied anymore. Using these strategy operators we could specify an algorithm
for searching the minimum value in a list in the following way:

repeat(first(MinNil, MinSingleton, MinHead, MinSecond))

As in this example, we do not always know a priori the best strategy to solve
a given problem. However, some times specific knowledge is available about the
problem. Considering again the factorial function presented at the begining of
section 3, we could also define labelled rules as follows:

[Factorial0] fac(0) — 1
[FactorialN| fac(n) — nx fac(n—1)
if n>=1

Using the fact that the rule FactorialO is applied just once, when n = 0,
and in all other cases we must apply the rule FactorialN, we could specify the
following strategy in order to be more efficient:

repeat(first(FactorialN, Factorial0))

When using labelled rules we have the possibility of controling the applica-
tion of the rules. However, even if this flexibility seems to be interesting, we are
not always interested in specifying all transformations. Applying two times the
rule FactorialN on fac(3) we will obtain the following derivation:

fac(3) = 3 x fac(3—1)

i)
3% fac(2) — 3x2x fac(2-1)
1
6 x fac(1)

12



It seems obvious that the simplification of arithmetics expressions such as
3—1=2,3x2=26,and 2—1 = 1, are not interesting at all in the context
of this problem. Transformation rules for treating these expressions could be
defined but the application of these rules could be carried out without control
by the programmer. This exemplifies the notion of deduction that consists in
the application of a rewrite step under the control of the programmer, and the
notion of computing that consists in the application of a set of rules without
control by the programmer until a fixed point is achieved. The concepts of
rewriting for deduction and rewriting for computing are implemented in the
ELAN system through the distinction of labelled rules that have to be controled
by the programmer and unlabelled rules that are applied by the system following
a predefined strategy left-most inner-most.

In this section, we have shown that the approach of rule-based programming
plus strategies allows the user to specify different strategies in order to carry
out testing, prototyping, proving, and deduction. The definition of strategy
languages, control languages, and coordination languages, is currently an active
research topic in several domains of Computer Science.

5 Five Steps for Defining Transformation Rules

Based on the approach first proposed by Jouannaud and Kirchner for solving
unification problems [16], the general idea of problem solving using a rule-based
approach is to apply a set of transformation rules until no rule can be applied
anymore. In order to understand how to define a set of transformation rules we
first need to introduce some concepts:

e A basic form represents the syntax of all terms that we will transform.

A normal form is a basic form that cannot be reduced by a set of trans-
formation rules.

A property is a predicate that has to be satisfied by a basic form.

A solved form is a basic form satisfying a given property.

A set of solutions to a given problem corresponds to the set of all solved
form for the problem.

Now, we can say that solving a problem using a rule-based approach consists
in transforming an initial basic form by the repeated application of a set of
transformation rules until a normal form is obtained. The results so obtained
are said to be normal with respect to the set of rules under consideration and
they have to correspond to the solved form, the set of solutions, we are looking
for.

In the following, we detail the five steps for defining transformation rules.

13



1. We first define a basic form for the problem. Considering all terms that
can be built from the given signature, we specify those we are interested
in and that will be treated by the set of transformations. This basic form
represents the syntactical structure of the terms.

2. Then, we define a solved form that represents the result that we want to
obtain. This solved form corresponds to a particular instance of the basic
form plus the semantical characteristics that represent a solution. The
solved form represents the set of terms that correspond to the solutions
to the problem.

3. Once we have defined the input and output of the problem solving process,
we start defining the transformations to be done on the set of terms. These
transformations must be defined in such a way that, when applied to an
initial term in basic form, they will allow us to obtain the desired result,
a solved form, as shown in figure 7.

Basicform Tranformation Solved form
Rules

Figure 7: Input/Output.

In order to obtain such a set of transformation rules, for each term that
is not in solved form we define a rule that transforms a term into another
equivalent. The notion of equivalence has, on one hand, a syntactical
meaning and, on the other hand, a semantical meaning. From the syn-
tactical point of view, all rules have to maintain the term in basic form,
i.e., they do not have to modify the syntactical form of the terms. From
the semantical point of view, all rules have to maintain the set of solved
forms, i.e., they do not have to modify the set of terms that is consid-
ered as solution to the problem. In this way, each rule that transforms a
problem P into a problem P’ has to comply with the following properties:

(a) Preserve the set of terms in basic form.

This proof is carried out just comparing the resulting term with re-
spect to the defined basic form in order to verify that the sort of the
resulting term is equivalent to the sort of the basic form.

(b) Preserve the set of solutions to the problem
Sol(P'") = Sol(P)

This proof can be carried out verifying the correctness and complete-
ness properties for each rule:

14



i. A rule transforming a problem P into a problem P’ verifies the
correctness property if

Sol(P") C Sol(P)

ii. A rule transforming a problem P into a problem P’ verifies the
completeness property if

Sol(P) C Sol(P")

A rule complying with the correctness and completeness properties
means that it preserves the set of solutions to the problem.

4. After a set of correct and complete rules is defined, we verify that the re-
peated application of the set of rules will always terminate. This proof is
carried out using either a particular sequence of application of the rules or
a class of sequences. In other words, we prove that the application of the
set of rules following a given sequence will always terminate. In order to
verify this termination property, some ad-hoc complexity measurements
have to be defined. If the application of the set of rules, following a given
sequence, strictly reduces these measurements, the computation process
will terminate each time the same sequence or class of sequences is fol-
lowed.

5. Finally, we have to prove that the normal forms obtained with respect to
the set of terms correspond to the solved forms. In other words, we have to
prove that the output produced by the computation process semanticaly
corresponds to the expected results. This proof can be carried out in two
steps:

(a) We prove that every solved form is a normal form with respect to the
set of terms, i.e., none of the rules can be applied. This proof can be
easily verified because the rules had to be defined in such a way that
they transform every set of terms that is not in solved form.

(b) We prove that every set of terms that is not in solved form can be
reduced by some rule. This proof is a little more complicated because
rules are defined in order to transform the whole set of terms that is
not in solved form into another equivalent. In case this property is
not satisfied, the solution is obvious: we have to define a new rule
that has to take in charge the transformation of the set of terms that
is not in solved form.

The five steps that we have described can be graphically represented by the
diagram in figure 8:

This diagram explicitly shows the nature of the transformation rule defi-
nition process. The approach described in this section was first developed by
Jouannaud and Kirchner for solving unification problems [16], and, later on

15



Definition of
basic form
Definition of
solved form

—{ Definition of

transformation rules

defined

E’ransformati on rules

Figure 8: Transformation rule definition process.

it was also used for modeling constraint solving by Comon, Dincbas, Jouan-
naud, and Kirchner [11]. Based on these works, Castro proposed rewrite rules
and strategies for solving Constraint Satisfaction Problems [6, 7]. All these
works deal with modeling complex problems. In the next section, we apply this
methodology step by step for solving some typical problems in mathematics and
computer science that should be easier to understand.

6 Applications

In this section, we exemplify the use of the proposed methodology by its appli-
cation on solving instances of three kinds of problems occuring in mathematics
and computer science: computation, searching, and sorting.

Computation This kind of application involves the determination of values
for mathematical expressions. Interest calculation, in the domain of finances,
and square root computation, when solving second degree equations, are some
basic examples where mathematical algorithms are expressed by simple sums

16



or recursive definitions. A typical example of such algorithms is the Fibonacci
function defined as follows:

fibonacci(n) =1, 1, 2, 3, 5, 8,..., (n—1)+ (n —2)

In general, for a natural number n, the value of fibonacci(n) is determined
by adding fibonacci(n — 1) and fibonacci(n — 2), and assuming that both
fibonacci(0) = 1 and fibonacci(l) = 1.

Let us start defining the operator fib : N — N that takes an integer
parameter and returns an integer value. A basic form for a term ¢ is defined by

tu=t+t| fib(t) | n

wheren € N and n > 1.

For n > 1, and assuming that fib(0) = 1 and fib(1) = 1, computing fib(n)
means that we look for a value z that satisfies the following property P(z):

P(z) : x = fib(n)
The set of solutions is so defined by
Sol ={x € N |z = fib(n)}

A solved form is a basic form without fib operators and satisfying the prop-
erty P.
We define the following set of labelled rules to compute this function:

[Fib0] fib(0) — 1

[Fib1] fib(1) — 1

[FibN] fib(n) — fib(n —1) + fib(n — 2)
if n>1

The first two rules just express the definition of the function for n = 0 and
n = 1, and the third one expreses the recursive definition for n > 1 based on
n—1andn— 2.

Now, we prove preservation of basic form, correctness and completeness
properties, termination, and equivalence between normal forms and solved forms.

e The first two rules preserve the basic form because they replace a fib
operator by an integer value, both of them corresponding to basic forms.
The third rule replaces a fib operator by the addition of two fib operators
and so the basic form is preserved too.

e We can easily verify that these rules are correct and complete: by defi-
nition Sol(fib(0)) = {1} and Sol(fib(1)) = {1}, and these two cases are
expressed by the first two rules, respectively. The third rule directly im-
plements the recursive definition of the Fibonacci function, and so it does
not eliminate any solution neither it add any solution.

17



e In order to prove termination we could define as complexity criterion the
size of the parameter of the fib operators: the first two rules simply
eliminate the fib operator, and the third rule replaces a fib operator by
the addition of two fib operators, each one involving a parameter that is
less than the input parameter, so the application of this set of rules will
terminate.

e As a solved form is just an integer value and all rules are applied on a fib
operator, no rule can be applied on a term in solved form. As the basic
form involves fib operators with an integer parameter n, we easily realize
that for n =0, n = 1, and n > 1, the first, the second, and the third rules
will be applied, respectively, and so the set of normal forms is equivalent
to the set of solved forms.

Search The problem of finding the maximum value in a list of integer numbers
is similar to the one presented in section 4 where we were interested in finding
the minimum value in a list of integer numbers.

We define the operator max : list — N that takes a list as parameter and
returns an integer value. A basic form for a term ¢ is defined by

t =ttt | max(t) | n
where n € N.

When computing maz(l) for a list [ we look for a value z that satisfies the
following property P(z):

Px):Yy (yel—z>y)
The set of solutions is so defined by

Sol={z€l|Vy(yel—-z>y)}

A solved form is a basic form that only contains an integer value satisfying
the property P.

As we explain in section 4, four cases have to be taken into account when
searching a minimum or a maximum value in a list:

e The list is empty.
e The list contains only one element.
e The head is less than the second element of the list.

e The head is greater than the second element of the list.

18



In order to detect these four cases we could define, respectively, the following
labelled rules:

[MaxNil maz(nil) — mnil
[MaxSingleton] maz(zl.nil) — z1
[MaxHead] maz(zl.22.l) — maz(zl.l)
if 21 > 22
[MaxSecond] maz(zl.22.1) — maz(z2.])
if 21 <22

In the following, we present proofs for preservation of basic form, correct-
ness and completeness properties, termination, and equivalence between normal
forms and solved forms.

e Preservation of the basic form is verified by the second rule because it
replaces a max operator by an integer value. The third and the fourth
rules also preserve the basic form because they replace the max operator
on the entry by another maz operator.

e The rule MaxNil just considers an empty list where a maximum value
does not exist. The rule MaxSingleton obviously verifies the com-
pleteness and correctness properties because Sol(max(zl.nil)) = {z1}
as zl is the only element of the list. The rule MaxHead eliminates
the second element of the list when this element is less than the first
one, so this rule is complete because it does not eliminate any solution
(Sol(max(x1.22.1)) C Sol(maz(x1.l))) and, of course, it is also correct
because it does not add any one (Sol(maz(x1.l)) C Sol(maz(xl.22.0))).
Following the same reasoning we can prove correctnes and completness
of the rule MaxSecond because it considers the opposite case when the
first element is less than the second one and the elimination of the first
one preserves the set of solutions.

e In order to prove termination we define as complexity criterion the num-
ber of elements in the list. This measurement is not modified by the
rules MaxNil and MaxSingleton, and is strictly decreased by the rules
MaxHead and MaxSecond because they eliminate one element each
time they are applied. So the repeated application of these rules will
terminate.

e In order to prove that the set of solved forms is equivalent to the set of
solutions we can first note that a solved form is just an integer value and
so no rule can be applied because all rules are applied on a maz operator.
On the other hand, the basic forms that are not in solved form correspond
to a max operator with a list / as parameter. If the list is empty the rule
MaxNil will be applied and if the list contains just one element the rule
MaxSingleton will be applied. If the list contains two or more elements
the rules MaxHead or MaxSecond will be applied depending on which
of the first two elements is greater than the other. So, assuming that

19



the list contains different integer values, every term in basic form will be
treated by this set of rules.

Sorting The last example we present in this paper concerns the problem of
sorting a list of integer numbers. As an alternative to the very naive algorithm
we use in section 2.1, we will implement a selection sort algorithm. When a list
of n integer values has to be sorted in increasing order, this simple approach first
visits the list looking for the maximum value and place it in the first position.
Then, the same idea is applied on the list of the remaining n — 1 elements, and
SO on.

As, in the previous example, we have already formally defined a set of rules
for searching the maximum value in a list, we will assume that a max operator
is available. Let us also assume that an operator deletemax : list — N is
defined by the following set of rules:

deletemax(nil) = mnil

deletemax(zxl.nil) — nil

deletemax(zl.22.l) — x2.deletemazx(xl.l)
if 21> 22

deletemax(zl.22.l) — zl.deletemax(x2.1)
if z1 <22

For sake of space, we will not prove all properties for this set of rules. How-
ever, following the definition of the set of rules for the max operator, these
proofs are obvious. It is interesting to note that in this case transformations
are carried out without control by the user because we only use unlabelled rules
that are applied following a built-in strategy (for example, left-most inner-most
in the case of the ELAN language).

Now we define the operator sort : list — list that takes a list as parameter
and returns a list. So, the basic form in this case is just a list of integer values.

When computing sort(l) for a list I we look for lists (a1, as,a3,--.,0,_1,05)
that satisfy the property a; > as,as > ag,...,a,_1 > ay.

The set of solutions is so defined by

Sol ={(ai,...,an) €Il |Vi,j(i€l...n,j€i+1...n = a; > a;)}
where II | denotes the set of all permutations of the elements of [.

A solved form is a basic form (a3, as,as, - - .,an_1,a,) that satisfies the prop-
erty a; > ag,a2 > as,...,0np_1 > Qp.

Now, using the operators maz and deletemazx, we can easily define the
following rules to sort a list I:

[SortList] sort(nil) — mnil
[SortList] sort(ll.nil) — max(I1).12
where [2 := [SortList] sort(deletemax(l1))

20



The first rule is defined to treat an empty list and, of course, it would be
applied just once. The second one considers lists with at least one element and
it would also be applied just once, but its recursive definition will do all the
work. This second rule places the maximum value in the input list in the first
position of the output list and then it appends the rest of the elements of the
list, but these elements are first sorted before the append operation is carried
out. All this is done thanks to the where sentence.

Finally, we prove properties for this set of rules.

e Preservation of the basic form is verified by these rules because they re-
place the list on the entry by another list.

e The set of solutions to sort(l) are lists of the form (ay,as,as,. .., an,,an)
where a1 > aa,a2 > as,...,an, > ay. The first rule, considering an empty
list, does not modify the set of solutions. The first time that the second
rule is applied on [1 it will change the order of /1 assigning the maximum
value in [1 to the head. This assignment will be fixed and the rest of
the list will be treated again by the recursive application of the same rule
and so this recursive application of the second rule will not eliminate any
solution.

e In order to prove the termination of this set of rules we can use as com-
plexity measurement the number of elements in the list used as parameter
of the sort operator. The first rule eliminates the sort operator, and the
second rule call itself recursively with the sort operator involving the same
list with all elements but one which has been eliminated, so the recursive
application of this rule will terminate.

e A solved form corresponds to a list and so no rule can be applied on a
solved form because both rules are applied on a sort operator. The basic
forms that are not in solved form correspond to a sort operator with a list
[ as parameter. If the list is empty the first rule will be applied, and if the
list contains at least one element the second rule will be applied. So, the
set of solved forms is equivalent to the set of normal forms.

7 Conclusions

In this paper, we have proposed a general framework for defining transformation
rules when a rule-based approach is used for computer programming. This work
can be seen as a contribution to the development of a general methodology to
guide the development of software using a rule-based approach.

As a further work, a wider domain of applications should be considered in
order to validate the applicability of these ideas. Problems related to modular-
ity that arrive when developing large-scale software should also be taken into
account. Also, the definition of operators available in current strategy languages
should be standard. Indeed, a lot of research has to be done in order to study
the complexity of the application of a transformation rule.

21



Although rule-based programming provides several advantages over proce-
dural programming, its use in practice is not yet wide enough. We strongly
think that expanding the use of this technology depends on the effort that the
scientific community carries out to develop theoretical and practical tools al-
lowing programmers learn and apply it efficiently. This task involves changes in
the way that most of people develop programms nowadays.

Aknowledgements. This work has been partially supported by a grant
INRIA-CONICYT from the cooperation program between the French and Chilean
governments. The first author has also been supported by grants from the
French Ministery of Education and Research and the Chilean National Science
Fund through the project FONDECYT 1010121.

References

[1] Grady Booch. Object Oriented Analysis and Design with Applications. The
Benjamin/Cummnings Publishing Company, 2 edition, 1994.

[2] Peter Borovansky. Le contréle de la réécriture: étude et implantation d’un
formalisme de stratégies. These de Doctorat d’Université, Université Henri
Poincaré - Nancy 1, Nancy, France, October 1998. Also available as Tech-
nical Report 98-T-326 of the Laboratoire Lorrain de Recherche en Infor-
matique et ses Applications, LORIA.

[3] Peter Borovansky and Carlos Castro. Cooperation of Constraint Solvers:
Using the New Process Control Facilities of ELAN. In Claude Kirchner and
Héléne Kirchner, editors, Proceedings of The Second International Work-
shop on Rewriting Logic and its Applications, WRLA’98, volume 15, pages
379-398, Pont-a-Mousson, France, September 1998. Electronic Notes in
Theoretical Computer Science. Also available as Technical Report 98-R-
305 of the Laboratoire Lorrain de Recherche en Informatique et ses Appli-
cations, LORIA.

[4] Peter Borovansky, Claude Kirchner, and Héleéne Kirchner. A functional
view of rewriting and strategies for a semantics of ELAN. In Masahiko Sato
and Yoshihito Toyama, editors, The Third Fuji International Symposium
on Functional and Logic Programming, pages 143-167, Kyoto, Japan, April
1998. World Scientific.

[5] Yves Caseau and Frangois Laburthe. Introduction to the CLAIRE Pro-
gramming Language. Département Mathématiques et Informatique, Ecole
Normale Supérieure, Paris, France, September 1996.

[6] Carlos Castro. Building Constraint Satisfaction Problem Solvers Using
Rewrite Rules and Strategies. Fundamenta Informaticae, 34(3):263-293,
June 1998. Also available as Technical Report 98-R-308 of the Laboratoire
Lorrain de Recherche en Informatique et ses Applications, LORIA.

22



[7]

[10]

[11]

[12]

[13]

[14]

[15]
[16]

[17]

Carlos Castro. Une approche déductive de la résolution de problémes de sat-
isfaction de contraintes. Thése de Doctorat d’Université, Université Henri
Poincaré - Nancy 1, Nancy, France, December 1998. Also available as
Technical Report 98-T-315 of the Laboratoire Lorrain de Recherche en In-
formatique et ses Applications, LORIA.

M. Clavel. Reflection in general logics, rewriting logic, and Maude. PhD
thesis, University of Navarre, Spain, 1998.

M. Clavel, F. Duran, S. Eker, P. Lincoln, and J. Meseguer. An Introduction

to Maude (Beta Version). Technical report, SRI International, Menlo Park,
USA, March 1998.

M. Clavel, F. Durén, S. Eker, P. Lincoln, and J. Meseguer. Metalevel Com-
putation in Maude. In C.Kirchner and H.Kirchner, editors, Proceedings of
The Second International Workshop on Rewriting Logic and its Applica-
tions, WRLA’98, volume 15, pages 3 — 24. Electronic Notes in Theoretical
Computer Science, September 1998.

Hubert Comon, Mehmet Dincbas, Jean-Pierre Jouannaud, and Claude
Kirchner. A Methodological View of Constraint Solving. Constraints,
4(4):337-361, December 1999. Also available as Technical Report 99-R-306
of the Laboratoire Lorrain de Recherche en Informatique et ses Applica-
tions, LORIA.

0. J. Dahl, E. W. Dijkstra, and C. A. R. Hoare. Structured Programming.
Academic Press, 1972.

A. Deursen, J. Heering, and P. Klint. Language Prototyping. World Scien-
tific, 1996. ISBN 981-02-2732-9.

Thom Friithwirth. Constraint Handling Rules. In Andreas Podelski, editor,
Constraint Programming: Basic and Trends. Selected Papers of the 22nd
Spring School in Theoretical Computer Sciences, volume 910 of Lecture
Notes in Computer Science, pages 90-107. Springer-Verlag, Chéatillon-sur-
Seine, France, May 1994.

Tlog. Business Rules: ILOG Rules White Paper, October 2002.

J.-P. Jouannaud and Claude Kirchner. Solving Equations in Abstract Alge-
bras: A Rule-Based Survey of Unification. In J.-L. Lassez and G. Plotkin,
editors, Computational Logic. Essays in honor of Alan Robinson, chapter 8,
pages 257-321. The MIT press, Cambridge, MA, USA, 1991.

Claude Kirchner, Héléne Kirchner, and Marian Vittek. Implementing
Computational Systems with Constraints. In Paris Kanellakis, Jean-Louis
Lassez, and Vijay Saraswat, editors, Proceedings of The First Workshop
on Principles and Practice of Constraint Programming, Providence, R.IL.,
USA, pages 166-175, 1993.

23



[18]

[19]

[20]

[21]
[22]

Claude Kirchner, Héleéne Kirchner, and Marian Vittek. Designing Con-
straint Logic Programming Languages using Computational Systems. In
Pascal Van Hentenryck and Vijay Saraswat, editors, Principles and Prac-
tice of Constraint Programming. The Newport Papers, chapter 8, pages
131-158. The MIT press, 1995.

E. Visser and Z. Benaissa. A Core Language for Rewriting. In C.Kirchner
and H.Kirchner, editors, Proceedings of The Second International Work-
shop on Rewriting Logic and its Applications, WRLA’98, volume 15, pages
25 —44. Electronic Notes in Theoretical Computer Science, September 1998.

E. Visser and B. Luttik. Specification of Rewriting Strategies. In Proceed-
ings of The Second International Workshop on the Theory and Practice of
Algebraic Specifications, ASF+SDF’97, September 1997.

Edward Yourdon. Modern Structured Analysis. Prentice-Hall, 1989.

Edward Yourdon and Larry L. Constantine. Structured Design. Computing
Series. Yourdon Press, 1979.

24



