On the Number of Lines Tangent to Four Convex Polyhedra - Archive ouverte HAL Access content directly
Conference Papers Year : 2002

On the Number of Lines Tangent to Four Convex Polyhedra

, (1) , (2) , (3) , , (3) , (3) , , (2)
1
2
3

Abstract

We prove that, under a certain general position assumption, the number of lines tangent to four bounded disjoint convex polyhedra in $\Real^3$ with a total of $n$ edges is $O(n^2)$. Under the same assumption, we show that a set of $k$ bounded disjoint convex polyhedra has at most $O(n^2k^2)$ lines, possibly occluded, that are tangent to four of these polyhedra.
Fichier principal
Vignette du fichier
A02-R-268.pdf (198.16 Ko) Télécharger le fichier

Dates and versions

inria-00099449 , version 1 (15-12-2009)

Identifiers

  • HAL Id : inria-00099449 , version 1

Cite

Hervé Brönnimann, Olivier Devillers, Vida Dujmovic, Hazel Everett, Marc Glisse, et al.. On the Number of Lines Tangent to Four Convex Polyhedra. 14th Canadian Conference on Computational Geometry - CCCG'02, 2002, Lethbridge, Canada. ⟨inria-00099449⟩
202 View
290 Download

Share

Gmail Facebook Twitter LinkedIn More