On the Number of Lines Tangent to Four Convex Polyhedra

Abstract : We prove that, under a certain general position assumption, the number of lines tangent to four bounded disjoint convex polyhedra in $\Real^3$ with a total of $n$ edges is $O(n^2)$. Under the same assumption, we show that a set of $k$ bounded disjoint convex polyhedra has at most $O(n^2k^2)$ lines, possibly occluded, that are tangent to four of these polyhedra.
Type de document :
Communication dans un congrès
14th Canadian Conference on Computational Geometry - CCCG'02, 2002, Lethbridge, Canada, 2002
Liste complète des métadonnées

https://hal.inria.fr/inria-00099449
Contributeur : Sylvain Lazard <>
Soumis le : mardi 15 décembre 2009 - 15:18:19
Dernière modification le : jeudi 11 janvier 2018 - 16:44:56
Document(s) archivé(s) le : mardi 6 avril 2010 - 01:11:52

Fichiers

Identifiants

  • HAL Id : inria-00099449, version 1

Citation

Hervé Brönnimann, Olivier Devillers, Vida Dujmovic, Hazel Everett, Marc Glisse, et al.. On the Number of Lines Tangent to Four Convex Polyhedra. 14th Canadian Conference on Computational Geometry - CCCG'02, 2002, Lethbridge, Canada, 2002. 〈inria-00099449〉

Partager

Métriques

Consultations de la notice

276

Téléchargements de fichiers

154