N

HAL

open science

Pure Patterns Type Systems
Gilles Barthe, Horatiu Cirstea, Claude Kirchner, Luigi Liquori

» To cite this version:

Gilles Barthe, Horatiu Cirstea, Claude Kirchner, Luigi Liquori. Pure Patterns Type Systems. Pro-
ceedings of the 30th ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages,
POPL, New Orleans, LA, USA - January 15 - 17, 2003, Jan 2003, New Orleans, United States. pp.250
- 261, 10.1145/604131.604152 . inria-00099463v2

HAL Id: inria-00099463
https://inria.hal.science/inria-00099463v2
Submitted on 13 May 2015

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.

https://inria.hal.science/inria-00099463v2
https://hal.archives-ouvertes.fr

Pure Patterns Type Systems

Gilles Barthe and Horatiu Cirstea and Claude Kirchner and Luigi Liquori
LORIA, INRIA & University Nancy 1l: 54506 Vandoeuvre-lés-Nancy BP 239 Cedex France
INRIA: 06902 Sophia Antipolis BP 93 Cedex France
[Gilles.Barthe,Horatiu.Cirstea,Claude.Kirchner,Luigi.Liquori]@inria.fr

ABSTRACT

We introduce a new framework of algebraic pure type sys-
tems in which we consider rewrite rules as lambda terms
with patterns and rewrite rule application as abstraction ap-
plication with built-in matching facilities. This framework,
that we call “Pure Pattern Type Systems”, is particularly
well-suited for the foundations of programming (meta)lan-
guages and proof assistants since it provides in a fully unified
setting higher-order capabilities and pattern matching abil-
ity together with powerful type systems. We prove some
standard properties like confluence and subject reduction
for the case of a syntactic theory and under a syntactical re-
striction over the shape of patterns. We also conjecture the
strong normalization of typable terms. This work should be
seen as a contribution to a formal connection between logics
and rewriting, and a step towards new proof engines based
on the Curry-Howard isomorphism.

Categories and Subject Descriptors

D.3.1 [Formal Definitions and Theory]: [Syntax, Se-
mantics]; D.3.2 [Language Classifications|: [Applicative
(functional) languages, Constraint and logic languages];
F.4.1 [Mathematical Logic]: [Lambda calculus and re-
lated systems, Logic and constraint programming, Mechan-
ical theorem proving]

General Terms
Languages, Theory.

Keywords

Lambda-calculus, Patterns, Matching, Rewriting, Pure Type
Systems, Curry-Howard, Logics.

1. INTRODUCTION

A-calculus and term rewriting provide two fundamental
computational paradigms that had a deep influence on the

development of programming and specification languages,
and on proof environments. Starting from Klop’s ground-
breaking work on higher-order rewriting [19], and because
of their complementarity, many frameworks have been de-
signed with a view to integrate these two formalisms.

This integration has been handled either by enriching first-
order rewriting with higher-order capabilities or by adding
to A-calculus algebraic features. In the first case, we find
the works on CRS [20] and other higher-order rewriting sys-
tems [30, 23], in the second case the works on combination
of A-calculus with term rewriting [2, 7, 12, 17] to mention
only a few.

In some works, the A-calculus has been extended with pat-
tern abstractions that generalize A-abstractions by binding
structured expressions instead of variables. Such pattern ab-
stractions are commonly used to compile case-expressions in
functional programming languages [24] and to provide term
calculi for sequent calculi [18]. For example, the pattern
abstractions A0.0 and Asucc(N).N are used to compile the
predecessor function.

In other works, like those on higher-order rewriting sys-
tems, such pattern abstractions are extended to generalized
abstractions by binding arbitrary expressions instead of pat-
terns. Apart their expressive power, generalized abstrac-
tions correspond to a form of higher-order natural deduc-
tion, where (parts of) proof trees are discharged instead of
assumptions.

Although such extended abstractions are a firmly groun-
ded artifact both in logic and in programming language
design and implementation, they lack established founda-
tions. As a first step towards these foundations, we provide
a framework for studying (type systems for) extended ab-
stractions. Concretely, we start from a term calculus with
generalized abstractions, which provides a very rich compu-
tational model that goes far beyond A-calculus, and endorse
it with a parameterized type system as in Pure Type Sys-
tems.

Pure Type Systems (PTS) [4, 15] provide a concise and
unifying view of many typed A-calculi and logics that occur
in the literature, and offer a generic framework for the study
of typed A-calculi a la Church. Pure Type Systems have
a well-understood theory and enjoy good meta-theoretical
properties, and hence offer an appealing setting in which to
specify the kernel of functional programming languages, see
e.g. [1, 6, 25, 28], and proof assistants based on the Curry-
Howard isomorphism, see e.g. [4, 5].

In Pure Pattern Type Systems (P"TS), the framework pre-
sented here, the usual A-abstraction of Pure Type Systems

AX:A.B of type IIX:A.C is replaced by a generalized ab-
straction NA:A.B of type ITA:A.C, where A is an arbitrary
term (in jargon a pattern) and A is a context in which are
declared the bound variables of AA:A.B.

Adding patterns to PTSs may seem innocuous. However,
defining a conservative extension of PTSs that provides sup-
port for patterns and enjoys basic meta-theoretical prop-
erties, like confluence and subject reduction, turns out to
be a laborious task. Indeed, both properties fail, even in a
simply-typed setting, when no restrictions are imposed on
the term formation nor on the reduction strategy, see Ex-
amples 4 and 5.

For confluence, the problem was already remarked in [29],
where confluence is recovered by imposing a so-called “Rigid
Pattern Condition” on patterns. Such a condition is directly
applicable to P°T Ss, but requires patterns to be linear. Lin-
earity of patterns is an overly strong assumption in an ex-
plicitly typed language with polymorphism and dependent
types. Indeed, many polymorphic functions, e.g. the func-
tion Acons(T X nil(T)):A.X that returns the only element
of a one-element list, involve non-linear patterns. Hence
van Qostrom’s condition must be relaxed so that non-linear
patterns are allowed. This is the first major hurdle with
extending PTSs to P°T Ss.

Another problem is caused by the necessity to allow for
free variables in the pattern of an abstraction. For example,
Acons(T X nil(T)):A.X should be of type list(T) T, and
should have T as free variable. In order for reduction to be
closed under substitution, and for typing to be closed under
substitution and reduction, we must therefore allow for pat-
terns that are not in normal form and allow for reduction in
patterns. Furthermore, matching should be modified so that
the free variables of a pattern whose types are not defined
in the context are considered as free in the corresponding
abstractions and handled as constants by the matching al-
gorithm. This is the second major hurdle with extending
PTSs to P“TSs.

Therefore, the main contributions of this paper are:

e to provide adequate notions of patterns, substitutions
and matching that overcome the afore-mentioned hur-
dles. One technical tool used for this purpose is the no-
tion of delayed matching constraint, see Section 2, and
the possibility for patterns in abstractions to evolve
(by reduction or substitution) during execution;

e on the basis of these definitions, to propose a well-
behaved extension of PTSs that supports abstraction
over patterns, and that enjoys many fundamental prop-
erties of PTSs, including confluence, subject reduction,
conservativity over PTSs and consistency for normal-
izing P*T Ss.

The remaining of the paper is organized as follows: Sec-
tion 2 presents the syntax of P*T S and related notions such
as free variables and substitutions. Matching systems are
also introduced together with a (syntactic) matching algo-
rithm. The dynamic semantics of P°T S and some examples
of reductions are given in Section 3. The typing rules are
presented in Section 4 and exemplified by two type deriva-
tions. The meta-theory including some properties of the
matching algorithm, the conditions ensuring the confluence
and the preservation of types, as well as some other classi-
cal type-related properties are stated and discussed in Sec-
tion 5. Finally, we conclude by conjecturing some properties

of (possible extensions of) P?TS and give some perspectives
to this work.

2. SYNTAX

The syntax of the P’T S extends that of PTSs with struc-
tures and abstractions on patterns [10]. The contexts defin-
ing the types of the free variables of these patterns are given
explicitly as part of the abstraction.

2.1 Notations and Conventions

In this paper, we consider the meta-symbols A (function
abstraction), and IT (product, or type abstraction), and “”
(structure operator), and the (hidden) “s” (application op-
erator). We assume that the application operator “*” as-
sociates to the left, while the other operators associate to
the right. The priority of “s” is higher than that of “[<].”
which is higher than that of “Il “and “\” which are, in turn,
of higher priority than the “”.

The symbol v'ranges over the set {\ I}, while the symbol
¢ range over the set {* ,}. The symbols A, B,C,... range
over the set 7 of terms, the symbols X, Y, Z, ... range over
an infinite set V of variables, the symbols a, b, ¢, f,... range
over a set K of constants, the symbol s ranges over a set
S of sorts. The symbols «, 3, ... range over K and V. The
symbols I'; A, 3 range over the set C of contexts. The sym-
bols o, 7,6, ... range over substitutions. All symbols can be
indexed.

As usual, we work modulo the “a-conversion” and adopt
Barendregt’s “hygiene-convention” [3], i.e. free and bound
variables have different names.

2.2 Pseudo-Terms

The definition of pseudo-terms and pseudo-contexts is pa-
rametrized by the set K of constants, and S of sorts (S C K),
and V of variables, and P of patterns (V C P C T).

Cu=0|C,V:T|CK:T

T o= VI|K|APCT |OPCT|[P<eTNT|TTI|T. T

A term of the form vA:A.B is an abstraction (resp. product
abstraction) with pattern A, body B and context A. The
term [A <a C|.B is a delayed matching constraint with
pattern A, body B and argument C'. A term of the form
(A, B) is called a structure with elements A and B.

In an application (A B), the term A represents the func-
tion, while the term B represents the argument. The appli-
cation of a constant function, say f, to a term A will be usu-
ally denoted by f(A), following the algebraic “folklore”; this
convention can be “curryfied” in order to denote a function
taking multiple arguments, e.g. f(A1---Ap) £fA; - An.
If we set P =V, then we recover a syntax that is equivalent
to PTS, see Theorem 5.

In P’T'S we need to recast the definition of free variables.

DEFINITION 1 (FREE VARIABLES). The set Fv of free
variables is inductively defined on terms (and pointwise ex-
tended to contexts) as follows:

Fv(a) 290
Fv(X) 2 {x}
Fv(vA:A.B) £ (Fv(A) UFv(B) UFv(A))\ Dom(A)

Fv([A <a C].B) £ Fv((AA:A.B)C)
Fv(As3B) 2 Fv(A) UFv(B)
Fv(0) 294

Fyv(A, a:A) 2 Fv(A) UFv(4)

A term A is closed if Fv(A) = 0.

Intuitively the context A in vA:A.B (resp. [A <a C].B)
contains the type declarations of some (but not all) of the
free variables (not necessarily the type of constants) appear-
ing in the pattern A, i.e. Dom(A) C Fv(A). These vari-
ables are bound in the (pattern and body of the) abstrac-
tion and the reduction of an abstraction application strongly
depends on them, all the other variables being handled as
constants. The free variables of A not declared in A are not
bound in B but could be bound outside the scope of the
abstraction itself. As a simple example, in the abstraction
Af(X Y):(X:).9(X Y), the X variable is bound, while the
Y variable is free.

As in ordinary systems dealing with dependent types, we
suppose that in I', a: A, the o does not appear free in I', and
A. The set Bv of bound variables of a term is the comple-
mentary of the set of free variables w.r.t. the set of variables
of the respective term. Since we work modulo a-conversion,
we suppose that all the bound variables of a term have dif-
ferent names and therefore, the domains of all contexts are
distinct. The following example presents some legal pseudo-
terms and their free variables according to Definition 1.

EXAMPLE 1 (SOME PSEUDO-TERMS).

e (Cons) Let A= Acons(Xnil):A.X,
with A2 X:i. Then Fv(A) = 0.

e (PolyCons_0) Let A= Acons(TXnil(T)):A.X,
with A2 (. Then Fv(A) = {T, X}.

e (PolyCons_1) Let A= Acons(TXnil(T)):A.X,
with A2 X:T. Then Fv(A) = {T}.

e (PolyCons_2) Let A= Acons(TXnil(T)):A.X,
with A2 T:x, X:T. Then Fv(A) = ().

o (\-Pattern) Let A2 XAX:T.XY):A.Z,
with T £ X:11Z:i.4, and A2Y:i. Then Fv(A)={Z}.

2.3 Substitutions

We adapt the classical notion of simultaneous substitu-
tion application to deal with the new forms of abstraction
introduced in the P*TS.

DEFINITION 2 (SUBSTITUTIONS). A substitution o is of
a finite map {A1/X1... A /Xm}. The application Bo of a
substitution o to a term B is defined as follows:

1>

ao a

X0 a { A; if X; € Dom(o)
X; otherwise

(VA:A.B)o = VAo:Ao.Bo

(JA <a Bl.C)o £ [Ao <, Bo].Co

(AsB)o 2 Acs3Bo

Do 20

(A, a:A)o 2 Ac,a:Ac

We let

Dom(o) = {X1,..., Xm} CoDom(A)= U Fv(4))

i=1...m

A substitution o is independent from A, written oL A, if
Dom(a) N Dom(A) = @ and CoDom(c) N Dom(A) = @. By
abuse of language this notation can be used with a list of
variables instead of a context.

2.4 Matching

PT Ss feature pattern abstractions whose application re-
quires solving matching problems. For the purpose of this
paper, we focus on syntactic matching.

DEFINITION 3 (MATCHING SYSTEMS).

1. A matching system T2) /\ A; «A B; is a conjunc-

tion of match equations, where A is idempotent, asso-
ctative and commutative.

2. A matching system T is solved by the substitution o if
Dom(c) C Dom(X) \ Dom(A) and for alli =0...n
Aia = B,

8. A matching system T is in solved form when it satisfies
the following conditions:

AN
(a) T= 1=0...n j=0...m

(b) for all h,k =0...n, Xp = X, implies Cp, = Ci;

(c) foralli=0...n, X; € Dom(A;) or X; ¢ Dom(X)
mmplies X; = C;;

(d) for alli=0...n, Fv(C;) N Dom(A

= .
a’j«Aj aj;

i) # 0 implies

The domain of the context Y specifies the variables con-
cerned by the matching; all the other variables of A; are
treated as constants. The domain of the context A; speci-
fies the variables that should not be considered (i.e. handled
as constants) when solving the equation Ai«giBi. In the
matching systems that should be solved in P>T Ss the do-
mains Y. and A are disjoint since they define the types of
the bound variables of different terms.
Intuitively, the conditions can be read as follows:

(3a) imposes that a solved matching system should be a
conjunction of equations of the shape “variable-term”,
or “constant-constant”;

(3b) checks for clashes due to a variable matching different
terms;

(3c) checks that bound variables are not instantiated (o
behaves as the identity on all variables occurring in
Dom(A;)) and that only the variables explicitly spec-
ified as “matchable” (a.k.a. declared in the context of
the abstraction) lead to useful replacements;

(3d) checks that free variables are not instantiated by bound
variables. This condition is essential to guarantee that
substitution does not capture bound variables.

Our matching algorithm is adapted from classical higher-
order matching (and unification) algorithms [13, 16, 21], in
order to account for the specificities of P°TSs: syntactic
matching that does not involve the reduction calculus, ab-
stractions over patterns, and free variables in patterns.

(Lbd/Prod) (VA1:A.B1)=<F (VA2:A.Bo)
~ A1=<F aA2 A BI=<T AB2
(Delay) [A1 <a C1].Bi<F[A2 <a Co].Ba
s A1-<<?AA2/\31-«?’A32/\01-«1¥02
(Appl/Struct) (A1 § B1)=<F (A2 3 Bo)

~ Al'«?A2 A Bl-«1§B2

Figure 1: Matching Algorithm Alg

DEFINITION 4 (MATCHING ALGORITHM Alg). The
relation ~> is the compatible relation induced by the rules of
Figure 1; the relation ~ is defined as the reflexive and tran-
sitive closure of ~. If T ~» T, with T' a matching system
in solved form then, we say that the matching algorithm Alg
(taking as input the system T) succeeds.

The matching algorithm is clearly terminating (since all
rules decrease the size of terms) and deterministic (no criti-
cal pairs), and of course, it works modulo a-conversion and
Barendregt’s hygiene-convention.

Starting form a given solved matching system of the form
T2 . é\ nXi«EiAij ({\ aj «ij aj, the corresponding sub-
stitution {A1/X1--- An/Xn} is exhibited. By abuse of no-
tation, if Alg succeeds on A<X B we write 3o..Alg(A<X B)
and the substitution T(A=<E B) denotes the substitution cor-

responding to the solved matching system computed by Alg
with input A<3 B. To ease the notation, ¥ and A are omit-
ted if they are not essential when verifying (the conditions
on the) the solved form of a matching system like, in par-
ticular when A is empty or ¥ contains all the free variables
of the left-hand sides of the matching equations.

ExAMPLE 2 (RuNs oF Alg). Let ' = {X:i}, and A =
{Y:i}, and © = {Z:i}, and an unspecified context X.
1 f(X) =G f(3) ~ f=4f A X =43
(solved by o = {3/X});

2. F(X)=Ef(3) ~ f=Of A X<E3

(not solvable since it does not satisfy condition 3c);

8 AX DX <FAXTY ~ X<FEX A X<TY

(not solvable since it does not satisfy condition 3c);

4. AXT.X<FA3T.3 ~ X<KEX A X<F3

(not solvable since it does not satisfy condition 3c);

5. AXTY <FAXTAZ:0.f(X Z) ~
X<FEX ANY<FNZ:0.f(X Z)

(not solvable since it does not satisfy condition 3d);
6. AX:T.f(XY)=GFAX T f(X 3) ~

X<BXNAf=EfFAXKEX AY=E3
(solved by o = {3/Y}; all equations satisfy Sc, 3d);

(p) (ANAA.B)C —p [A<ka Cl.B

(0) [A<aC]|.B —o BU(A«@A@

(5) (A,B)C =5 AC,BC

Figure 2: Top-level Rules of the P’TS

7. [f(X) <r fM].X=<GF(X) < f(3)].X ~»
J=PfAXKEXAXKEX A f=GFAY=E3
(solved by o = {3/Y});

The matching algorithm .Alg is sound and closed by substi-
tution, see Theorem 1 and Theorem 2.

3. DYNAMIC SEMANTICS
3.1 Top-level Rules

The top-level rules are presented in Figure 2. The central
idea of the (p) rule of the calculus is that the application of
a term AA:A.B to a term C, reduces to the delayed match-
ing constraint [4A <a C].B, while the application of the (o)
rule consists in solving the matching equation A«@C , and
applying the obtained substitution (if it exists) to the the
term B. One should notice that the subsequent matching
concerns only the variables bound by the corresponding con-
text. If no solution exists, then the (o) rule cannot be fired
and therefore the term [A «a C].B is not reduced. The
rule (§) deals with the distributivity of the application on
the structures built with the “” constructor.

It is important to remark that if A is a variable, then the
subsequent combination of (p) and (o) rules corresponds
exactly to the (8) rule of the A-calculus, and variable ma-
nipulations in substitutions are handled externally, using a-
conversion and Barendregt’s hygiene convention if necessary.

3.2 (One/Many)-Step, Congruence
The next definition introduces the classical notions of one-
step, many-steps, and congruence relation of — .s.

DEFINITION 5 (ONE/MANY-STEPS, CONGRUENCE).
Let Ctx[—] be any term T with a “single hole” inside, and
let Ctx[A] be the result of filling the hole with the term A;

1. the one-step evaluation —ys is defined by the following
inference rule, where —s=—, U =5 U —s:

A—)@B

(Cex[—])
Ctx[A] 35 Ctx[B]

2. the many-step evaluation —s and congruence relation
=5 are respectively defined as the reflezive-transitive
and reflexive-symmetric-transitive closure of —ys.

3.3 Two Simple (Untyped) Examples

We present the reduction of two terms using different eval-
uation strategies (outermost vs. innermost) and yielding in
the first case a “successful” result (i.e. containing no delayed
matching constraint) and in the second one an “unsuccess-
ful” one. We underline redexes to be reduced.

EXAMPLE 3 (Two SIMPLE EVALUATIONS IN P°TS).
A successful computation

o (AM(X).(A3.3)X) f(3) +p [f(X) < f(3)].((A3.3) X) o
(A3.3) X){3/X} £ (M3.3)3 =, [3<3].3 =, 3{ } =

3

o (Af(X).(A3.3)X) f(3) —p (Af(X).[3 < X].X) £(3) =
[£(X) < F3)].(3 < X].X) 0 ([3< X].X){3/X} =
[3< 33, 3{} 23

An unsuccessful computation
o (A(X)-(A3.3)X) f(4) —p [F(X) < f(A)].(A3.3) X) =0
(A3.3) X){4/X} £ (A3.3)4 —, [3< 4].3

o (AF(X).(A33)X) f(4) p (MF(X).[3 < X1.3) F(4)

[f(X) < f(#)].(3 < X].3) =0 (3 < X].3){4/X} =
3« 4].3

It is worth noticing that the term [3 <« 4].3 represents de
facto a computation failure, which can be read as follows:

“The result would be 3 but at run-time the pro-
gram tried to match 3 against 4, yielding the
(dirty) result [3 < 4].3”

The capability of P°TS to record failures is directly inher-
ited from previous versions of the rewriting-calculus, where
a special symbol Null denoted computational failures (a.k.a.
exceptions); different mechanisms dealing with exception
handling, such as e.g. try 7 catch [T < T] with 7, have
been studied in [11, 14], in an untyped framework.

4. STATIC SEMANTICS

This section presents the type system underneath P’TS;
as for PTSs, the formalism of P°TS is parameterized by a
notion of specification (S, .4, R), where S is a subset of C and
contains the sorts, A C S? is a set of azioms, and R C S
is a set of rules.

We require all specifications to be functional [4], i.e. for
every si, 82, S5, 83,85 € S, the following holds:

(s1,82) € A and (s1,s5) € A implies so = s5

(s1,82,83) € R and (s1,s2,s3) € R implies s3 = s5.

Furthermore, we let ST denote the set of topsorts, i.e.
ST ={seS|VseS. (s,5)¢ A}

and define a variant of delayed matching constraint as fol-
lows:

B ifBeST

T _
[A <A C] .B = { [A <A C].B otherwise

4.1 A “Guided Tour” of Type Rules

The notion of type derivation in P°T S involves a judgment
of the shape:

'-A:B

The type system is defined by the rules of Figure 3. Some
rules are inherited from PTSs but other deserve a brief ex-
planation, notably on how they differ from their PTS coun-
terpart:

e The (Conwv) rule is relaxed w.r.t. the usual one can find
in usual PTS (where normally we have I' - C' : s);

(81,82) cA

(Azioms)
0"81182
'HA:C THFB:C
(Struct)
'AB:C
'A:s a¢ Dom(T')
(Start)
IaArFa: A
I'HFA:B TFC:s «a¢Dom(l)
(Weak)
INaaCHA:B
'A:B TFC:D B=xC
(Conv)
'HA:C
I'AFB:C I'FIIA:A.C : s
(Abs)
I'FMA:A.B:TTA:A.C
THC: s (81782,83)€R
T'AFA:C T,AFB:ss
(Prod)

I'ITIA:A.B : s3

r-A:11C:A.D T,AFC:E TFB:E

(Appl)
I'AB:[C<a B].D

I"AFA:E T,AFC:D TFB:D

(Subst)
I'[C <«a BJ.A:[C <a B]".E

Figure 3: The Type Rules for P’TS

e The (Struct) rule says that a structure A, B, where
A : C and B : C can be typed with type C, hence
forcing all subterms to be of the same type;

e The (Abs) rule, which deals A-abstractions in which
we bind over (non trivial) patterns, requires in partic-
ular that the pattern and body of the abstraction are
typable in the extended context ', A;

e Likewise the (Prod) rule, which deals with product
types, requires that the pattern and codomain of the
product is typable in the extended context I', A;

e The (Appl) rule, which deals with applications, im-
poses that the resulting type in the conclusion features
delayed matching. In case the delayed matching can
be successfully solved by a run of the matching algo-
rithm Alg(C«(fB), one can recover the expected type
by applying the conversion rule;

e The (Subst) rule deals with terms in which a delayed
matching constraint occurs hard-coded into the term
(and its type); this rule is crucial to ensure the Subject
Reduction property for the top-level reduction rule (p).
Observe that we require, as for the (Abs) rule, that the
pattern and body of the delayed matching abstraction

(x,%,%) ER
: TH[Z <s X]i:x
L, A (A3:0.3) : 113:0.4 [6] T,AF[3<pX]i:x

T,AF(A3:0.3) X : [3<p X]i DHILF(X)A3 < X]i:*
T Af(X):A.(A3:0.3)X : TIf(X):A[3 <g X].i
T Af(X):A.(A3:0.3)X) £(3) : [f(X) <a F(3)].[3 <g X].i

IF(Af(X):A.(A3:0.3)X) £(3) i

where [1]2 [f(X) <a f(3)].[3 <o X].i=usi, and [2]2T F i : *, and [3]20,A F f(X) : [Z <z X]4, and [4]2T F f(3) :
[Z <5 3].i, and [5]20,AF X 14, and [6]2T, A+ 3 4.

Figure 4: A Typing Derivation

F,Z,A.I—i:* (%, %,%) € R

IS AFX:q Y FIIPAT : %

[,XF AP:A.X : TIP:A.T

I+ (AT:SAP:AX) : IT:S.1P:AT [6]

I AT:S.(AP:AX)) i [T<xi] IP:AT

T'H (AT:S.(AP:A.X)) i TIP;:A i T,A; b P : list(i) T+ P’ list(i)

I'F (AT:E.(AP:A.X))i P’ : [Pi<a, Pl [9]

T'F (AT:S.(AP:A.X))i P :i

where denotes T', X, A + P : list(T), which can be derived as follows: (we omit some simple derivations and we disregard
simple applications of (Conv) rule after every application of an (Appl) rule).

T\, A F OT:%.T v list(T) » list(T) : *

T, %, At cons : IT:S.Tv list(T) v list(T) I, %, A b OT:S.0ist(T) : %
I,5, A F cons(T) : Twlist(T) » list(T) IS, AFX:T DS ARl : IT:Elist(T)
I, 2, Ak cons(T) X : list(T) > list(T) T, 2, AFnil(T) : list(T)

IS, AF P list(T)

and [2]2T, Sk list(T) : %, and [3]2 0,2, A F T2 %, and [4|2T F IT:S.0IP:AT : %, and [5]2T, S F T : +, and [6]2T i : %,
and [7]ET F 1P A : %, and [8]2 [T < JIP:A.T=s11P;: A0, [9]2T i : %, and [10]2 [P < a, P'] i=usi.

Figure 5: Another Typing Derivation

are typable in the extended context I'; A. Note how first derivation (in Figure 4) allows us to derive the term
the variant of delayed matching is used in the type of

the conclusion, as plain delayed matching would lead D Af(X):A.(N3:0.3)X) f(3) : 4

to a failure of Subject Reduction (indeed one would

have F [X «a Y]x : [X <a Y].O but not F * : where I' £ i:x, f:11Z:3.4, 34, 41, and A2 X+, and £ 2 Z:.
(X <a Y].0O). The second derivation (in Figure 5) was directly inspired

by one of the referees; it allows to type some basic polymor-
. . . phic list operators, like car/cdr/head typable using higher-
4.2 Two Typing Derivations order constructor types, like list(T")/cons(T)/null(T), i.e.
To better help the reader in the comprehension of P°TS,
this subsection shows in extenso two typing derivations: the ' (T2 (AP:AX))i P i

where we let A BETIX:A.B when X ¢ Fv(B), and

A 2 X:T and A; 2 X4 and X 2 T:x

I 2 i3, list: % b, nil: 11T 3. list(T),
cons:IIT 3. T v list(T) v list(T)

P £ cons(T)Xnil(T) and P, 2 cons(i) X nil(i)

P 2 cons(i) 3nil(i)

denotes an applications of the polymorphic function (head)
which takes as argument first the type ¢ to instantiate into
a list of integers, and then the singleton integer list °(3)
(denoted by the term P) and produce as result the integer
value 3. Therefore, the polymorphic pattern P denotes the
shape of a singleton polymorphic list. It easy to verify that
(AT:Z.(AP:A.X)) i P’ s 3, and that ¥ (AP:A.X)) P’ (i.e.
the polymorphism need to be instantiated first).

S. METATHEORY

This section collects all the meta-theory of P°TS: more
precisely, we prove Confluence, Subject Reduction, Conser-
vativity over PTSs, and Consistency of normalizing P*T Ss.

5.1 Properties of the Matching Algorithm

The matching algorithm Alg presented in Section 2.4 is
sound, that is, the substitution corresponding to the match-
ing system in solved form computed by .Alg solves (according
to Definition 3) the initial matching system.

THEOREM 1 (SOUNDNESS OF Alg). If 30.Alg(A<3 B),
then Dom(o) C Dom(X) \ Dom(A) and Ao = B.

PROOF. The first property is obtained immediately by con-
struction. For the equivalence, the proof is done by induction
on the structure of the term A. [

The classical syntactic matching algorithms are obviously
closed by substitutions containing no variables involved in
the matching. In P°T'S some of the variables of the pattern
can be free and consequently, the corresponding matching
should handle them as constants. Thus, we should ensure
that the replacement of these variables by other terms does
not affect the success of the matching algorithm. Never-
theless, the substitutions that we consider should not lead
to “variable capture” and we impose the appropriate condi-
tions that are satisfied when dealing with matching systems
generated from well-formed P°TS terms.

THEOREM 2 (\Alg IS CLOSED BY SUBSTITUTION).
If 30. Alg(A<F B) and the substitution T is such that T4 %,
and T£Bv(A), and T#¢Dom(T") then, 30.Alg(AT<E1BT)

and O-AT’«IX:‘;—BT = (O—A«EB)T‘

PROOF. By induction on the structure of A. [

5.2 Confluence - The Rigid Pattern Condition

When no restrictions are imposed either on the term for-
mation or on the reduction strategy, confluence fails. There-
fore, a suitable condition Cond on P should be used in order
to ensure that P’TS are well-behaved extensions of plain
PTS.

The shape of patterns in P°TS abstractions is essential
in order to avoid bizarre non-confluent reductions and thus,
in order to recover the good properties, Cond should ensure

that these patterns satisfy certain properties. For the scope
of this paper we use a condition inspired from the Rigid
Pattern Condition (RPC) that was first formalized in [29].

The Rigid Pattern Condition is sufficient for obtaining the
“diamond property” of the (parallel) reduction and hence
the confluence of the reduction in P°TS. As explained in
[29], this kind of rigid pattern condition does not character-
ize the shape of patterns, but syntactic characterizations of
the terms satisfying this condition can be given.

We introduce the RPC which turns out to be sufficient to
prove that the parallel reduction =5 (defined below) satisfies
the diamond property. The condition we present differs from
the original one of [29], since it has been customized to better
fit for our P°TS and, in particular, the possibility to reduce
the patters that can possibly contain free variables.

Let us first define the notion of parallel reduction for our
P*TS.

DEFINITION 6 (PARALLEL REDUCTION). The parallel
reduction, denoted by=ys, is inductively defined as follows:

(Par1) a=wma

(Parg) Ai§Bi=mA2$ B2
if Av=ps A2, Bi=ws B2, §€{*,}
(Pa’f’;:,) \/A1:A1.Blz>m§\/A2:A2.BQ
ifA1:>msA2, B, :>msBQ, A1:>@A2, ve {)\ H}

(Pam) ()\A12A1.B1)Cl) [AQ <A, 02}~B2
if A1 =5 A2, B1=s B2, C1=mCa, A= Ao

(Pars) (A1, B1) Ci =5 Az Co, B2 Cs

if A1 = A2, B1=us B2, C1=15C2
(Pa?"a) [Al <A, B1].Cl =5 [AQ <A, BQ].CQ

if Al = A2, B1=ws B2, C1=05Co, A= A2
(Par7) [A1 €a, B1].Ci=mw C20(A2'«0A232)

Zf A = Az, By) Bs, C;) Cs, Ay = Ao,

30 (4, <22,

The rules (Pari), ..., (Pars) indicate that the relation =.»s
includes the identity on X-terms, i.e. A =5 A holds for
all A € 7. Rules (Pary),...,(Pary) deal with reductions.
Intuitively, A=y B means that B is obtained from A, by si-
multaneous contractions of some (gd)-redexes possibly over-
lapping one each other.

DEFINITION 7. Define the mapping ¢ by induction:

<

a® & a
(A,B)* 2 A° B°
(VA:A.B)® £ VA®:A°.B°
(AB)° £ A°B°
if A is not abstraction or structure
(M:A.B)C)® 2 [A° «ae C°).B°
(A,B)C) 2 (4°C7),(B°C?)
([A <a B].C)* £ [A° <ao B°L.C°
if (A0« o Bo) does not exist
([A<a Bl.O) = C°(aoc 0B

The rules describing the parallel reduction and the map-
pings for contexts and substitutions are not presented since
they are completely syntax dependent and naturally follow
from the other rules. Using these two latter definitions we
introduce the RPC and its extension ERPC.

Intuitively, the RPC ensures that the form of a pattern is
preserved by reduction even when some of its variables are
instantiated. This means that the only redexes introduced
when instantiating the variables of a pattern by a term are
the ones already present in the term.

DEFINITION 8 (RIGID PATTERN CONDITION (RPC)).
The term P satisfies RPC if for all A, B, 01 =5 02:

1. Po1 =5 B implies B = Poa,
2. A=ys Pos implies A° = Po?.

The RPC ensures not only that the form of patterns is pre-
served but also that if a term is reduced to the instantiation
of a pattern then, its o-mapping is also an instantiation of
the same pattern.

The RPC can be seen as a coherence condition between
the reduction and the matching, i.e. if a given matching
system involving “rigid” patterns has a solution then the
system obtained by reducing the terms of the initial one has
a (corresponding) solution as well. Worthy to notice that V
obviously satisfies RPC, but 7 do not.

Since in P°TS the variables that are not bound in a pat-
tern by the corresponding domain are treated as constants
(in the matching algorithm), the conditions imposed by RPC
should not be enforced on these variables. Therefore, we re-
lax this condition and introduce the Extended Rigid Pattern
Condition (ERPC) that is defined w.r.t. a given context.

DEFINITION 9 (EXTENDED RPC, ERPC(A)). The term
E satisfies ERPC(A) if there exist P satisfying RPC and
oZ A such that E = Po.

The pattern A of P°T S abstractions of the form vA:A.B and
P?T S delayed matching constraints of the form [A <A C|.B
should satisfy ERPC(A). In the examples and properties pre-
sented in this section we sometimes consider that all vari-
ables of a pattern are bound in the corresponding abstrac-
tions since free variables are considered as constants in the
matching algorithm.

At this point of the paper, the RPC condition appears
somewhat obscure, since it involves the definition of the
parallel reduction. Nevertheless, to help the reader, we can
(syntactically) characterize an “honest” subset P of 7 which
properly contains V and satisfies RPC.

DEFINITION 10 (CHARACTERIZATION OF Pgrpc).
Let Nf () be the set of terms that cannot be reduced by one
of the rules of P°TS. Define

Prec 2 {A € Nf(ad) | A contains no subterms of the form
(X B) s.t. X € Fv(A) and no subterms of the form
[B <a C].D, with Fv(A) N (Fv(B) U Fv(C)) # 0}

This characterization imposes that a pattern from the set
P contains no so-called “active” variables that are free and
that all patterns and arguments of its delayed matching con-
straints are closed.

Starting from this characterization for RPC, we can also
characterize a set of terms

PE{Po | P € Prec and o A}

satisfying ERPC(A).

One can notice that this latter characterization is closed
by substitution (with a (co)domain containing no variables
from the domain of A) and thus, is preserved by reduction
in the patterns of P°TS abstractions.

The following examples show that when considering pat-
terns that do not satisfy the above characterization, the con-
fluence is lost.

EXAMPLE 4. (All type annotations are omitted).

1. Patterns containing free “active” variables like X in
the term (AM(XY).X)((AZ.Z)a) lead to a non-confluent
reductions:

XY < (AZ.Z)a].X

| &

(\Z.Z)

2. When a pattern containing free variables in the argu-
ment of a delayed matching constraint is used, non-
confluent derivations can be obtained:

(MJa < Y].b).Y)([a < a].b)

| =

[a<Y]b<akalbY (Aa<Y].b).Y)(D)

@ﬂ &

[[a <Y].b< .Y

Worthy noticing that the original characterization of RPC of
[29] forbids patterns that are “non-linear”, i.e. with multiple
occurrences of free variables inside, (e.g. in f(X X)). The
above characterization does not enforce this condition and
this is suitable especially when dealing with terms typable
with polymorphic and dependent types.

LEMMA 1. If P € Prpc then P satisfies RPC.

PrOOF. We show that if P € Prpc then, for all B, 01 =pus
02

1. Poy =5 B tmplies B = Poa,
2. B=ys Pos implies B® = Po?.

For the first point we should notice that a pattern should be
in normal form and thus, the only rederes are introduced
by the substitution. On the other hand, redezes that do not
exist in o can be created only by instantiating free “active”
variables by a structure or an abstraction or by instantiating
the variables of a delayed matching constraint and making
solvable a matching equation. None of these cases is possi-
ble since P contains no free “active” variables and no free

variables in the pattern and argument of a delayed matching
constraint and thus, the property holds.

For the second point, we proceed by induction on the def-
inition of B =ys Poa. The case of (Pari) is trivial and all
the other cases except for (Parz) follow easily by IH. For
(Par7) we have [A1 €a, B1].Ch = CQU(A2«§2BQ) with

Ay, B1,C1 € Prec. It can be shown easily that if A1 =ps Az,
and B1 =5 B2, and A1 = Ao, and Elog.Alg(Az«QA2BQ),

then 305 . Alg(f«gf BY) and 02 =5 05. Then, the property
follows by IH and Lemma 4. [

In order to prove the confluence of the s relation it is
enough to prove the diamond property of the s relation.
We can prove this latter property directly or we can pro-
pose a relation whose transitive closure is the s relation
and that satisfies the diamond property and obtain as an
immediate consequence the diamond property for the s
relation. In what follows we use the latter approach and
chose as target relation the parallel reduction introduced in
Definition 6.

LEMMA 2 (RELATIONS). 0 C=55C s

Since the transitive closure of the parallel reduction is the
e relation, we should show that =5 satisfies the diamond
property. For this, we state some auxiliary lemmas used for
showing that =5 satisfies a “strong” diamond property and
we obtain as a consequence the diamond property for =s.

LEMMA 3 (PERMUTATION). 1. If X & Fv(C), then
A{B/XHC/Y} = A{C/YHB{C/Y}/X};

2. If A= B, then A{C/X }=nsB{C/X}.

PROOF. By induction on the definition of substitution and
= respectively. [

For the parallel reduction, the following lemma holds.

LEMMA 4 (PARALLEL). If A=ys B and C =us D, then
Aoy = Boa, with o1 = {C/X}, and 02 = {D/X}, and
O’1,0’27{ BV(A)

PROOF. By induction on the definition of = [

LEMMA 5 (DIAMOND PROPERTY FOR =y3). If A =35 B
and A =5 C, then there exists D, such that B =xs D, and
C=D.

Indeed, we can adapt, as below, the stronger statement from
[27] to our P*TS and the diamond property for =5 follows
immediately.

LEMMA 6 (STRONG CHURCH-ROSSER FOR =3).
If A=ys B, then B=35 A°.

PROOF. By induction on the definition of A=s B:
(Pary). Trivial.

(Parz) and (Pars) and (Pars). We consider first case, the

others being similar. We have A1 § B1 = A2 § By with

Aq = Az, and By = B2, and (A1§B1)O = A?SB? By

IH, A2 =5 AS, and Bz =ps BY, and thus, Az § Bs =
1387

(Pars) and (Pars). We consider the first case, the other
being similar. We have therefore, (AA1:A1.B1)C1 =ps
[AQ <A, CQ].BQ, with A =) As and B =5 B2 and
Ch = C2 and Ay =ps Az, and (MA1:A1.B1)Ch1)° =
[AS <ag CF).BS. By IH, Az = A3, and By = BY,
and Cz =ps CT, and Ag =55 A, and thus, we obtain
[A2 <, Ca].Ba =30 [AT <ag CT].BY.

(Parz). We have [A1 <a, B1].C1 = CQU(AZ_«AQBQ) with
0

A1 = A2 and B, = B> and Cl = 02 and Al =
As. Since Ay satisfies ERPC(A) then Ay = Poy with P
satisfying RPC and o1 € A. Therefore, Ay = Poa with
01 = 02 and since 32 Alg(Az «32 By), without loss
of generality, we can consider that By = Poy{D/X}
with X C Dom(As). Since 0171)?, by RPC, we ob-
tain BY = Po{D°/X} and since A = Po® then,
370 Alg(AS < BS). Thus, ([A1 <a, Bi].C1)° =
C$7°. On the other hand, 7o = {D/ X} =5 {D°/ X} =
7° and, by IH, C2=5» CY. Therefore, by Lemma /4, we
can conclude that Cato =5 CYT°.

O

THEOREM 3
fluent.

(CONFLUENCE). The relation s is con-

PrROOF. By Lemmas 2 and 5. [

COROLLARY 1 (KEY LEMMA). If ITA1:A1.B1 =
HA2:A2.BQ, then A1:m§A2, and AlzpasAQ, and Blzmng.

ProOOF. Immediate from confluence. [

5.3 Subject Reduction

Subject Reduction is a standard property of PTSs that
states that typing is preserved under reduction. As for con-
fluence, Subject Reduction for P*T S fails if we do not impose
any condition on patterns in applications. The following
simply-typed example exhibits a typable term whose reduct
is not typable.

EXAMPLE 5 (SPOOFER). Let

VAN
A = a1 a2:%,bix ek, X1:a10 b, Y1:a1

I' 2 Xy:asebYs:as, Ziaive
and consider the judgment:
' (AX1 Y1):A (ZY1)) (X2 Y2):c

The above judgment is derivable since T, A+ (Z Y1) : ¢ and
AR (X1 Y1) : b, hence by the abstraction rule (Abst) we
get I'H (AM(X1 Y1):A. (Z Y1)) : boc. On the other hand T' F
(X2 Y2) : b so we conclude by the application rule (Appl).
Then (AM(X1 Y1):A. (Z Y1)) (X2 Y2) reduces to Z Ya which
is not derivable in .

Interestingly, the above counter-example has the same origin
as the counter-example to Confluence, namely the presence
of free active variables in a pattern. In particular, the pat-
tern X7 Y1 does not satisfy RPC w.r.t. A. Nevertheless, RPC
does not immediately ensure that Subject Reduction holds
for P’TSs, and we need to impose a suitable condition on
P so that the solution of a well-typed matching problem

is a well-typed substitution. This requirement is captured
by the Subject Reduction Condition (SRC) below. Together
with ERPC which is required for the Key Lemma, SRC guar-
antees that Subject Reduction holds.

DEFINITION 11 (SUBJECT REDUCTION CONDITION).
Let A = X1:A1 ... Xn:A,. The term P satisfies SRC(A) if:

1. If H{Ci /Xy =" Alg(P<3C), and T,A + P : E,
and '+ C : E, then, fori=1...n,

IFCiAA{C/ Xy, ... ,Cim1/Xia}

2. If T,A + P : B then for every P’ € P such that
P=4P" and T+ P': B', we have B=yB'.

The pattern of an abstraction in P*TS should satisfy the
SRC condition w.r.t. the domain of this abstraction. At this
point of the paper, the SRC condition appears somewhat
puzzling. Nevertheless, we shall later prove that the subset
P of T of Definition 10 satisfies SRC. For now, we focus on
the proof of Subject Reduction. The proof proceeds as with
for PTSs and relies upon the following preliminary results.

LEMMA 7 (THINNING). IfTFA: B andT' C A and A
legal, then A+ A: B.

LEMMA 8 (SUBSTITUTION). If I, X:D, A+ A: B, and
I'HC:D, then T,A{C/X}+ A{C/X}: B{C/X}.

LEMMA 9 (GENERATION).
A=p552 and s1: s2 € A;

1. IfT'Fs1: A, then

2. IfTFa: A, thenT =A,a:B, %, and A=x5B;

3. IfT'F NM:AB : D, then T, A+ B :C, and T
IMA:A.C : s, and D=IIA:A.C;

4. IfTFTMA:A.B: D, thenT,AFA:C, andT F C : s1,
and ', A+ B : s3, and (s1,52,83) € R, and D=xss3;

5. IfTHFAB:F, thenT - A:TIC:A.D, and T+ B : E,
and T, A+ C : E, and F=55[C <a B|.D;

6. IfT F [C <a BJ.A: F, then T, A+ C : D and
IP'FB:DandT,AF A: E and F=,[C <a B|".FE;

7. IfT-AB:C,thenT'HFA:Dand T+ B: D and
C=xD;

LEMMA 10 (CORRECTNESS OF TYPES). If ' - A : B
thenTHB:C or BES'.

The last result needed for proving Subject Reduction is the
Context Conversion Lemma, which states that convertible
contexts type the same judgments.

LEMMA 11 (CONTEXT CONVERSION). IfT'F A: B and
A is legal and I'=s A then A+ A: B.

PROOF. One first prove by induction on the structure of
derivations the following: if TF A: B and A+ X : A for
every (X:A) € T', then A+ A : B. Then one proceeds by
induction on the length of T'. [

THEOREM 4 (SUBJECT REDUCTION). IfT'+ A: B, and
Arys C, thenTHC @ B.

PROOF. By induction on the structure of A. We only
treat the cases where A is a p-redex or o-redex; all other
cases follow easily.

(p) Assume that (MA:A.B)C —, [A <a C].B and that
' (MA:A.B)C : D.

By successive applications of Generation, I') A" - A" : F’,
andTHC: F', and T,A+ B:E, and T, A+ A:F, and T" -
F:s, and D=x[A’ <ar C|.E', and HA:A.E=,511A": A" E'.
By the Key Lemma, we have A=sA’, and A=xA’, and
E=xE'. By Context Conversion, we have T, A+ A":F’, and
by SRC(2), we have F=xF'. By (Conv), we have I' - C:F.
By (Subst), I' F [A <a C].B:[A €a C]".E. Furthermore
E ¢ ST, hence [A <a C]T.E = [A <a C|.E, and by Cor-
rectness of Types, we have I'y A + E:G. Hence by (Subst),
I'F[A <a C).EJA <a C]".G, and hence by (Conv), we
have T' - [A <A C].B:D as desired.

(0) Assume that [A <a C].B =, Bo with 30.Alg(A<5C),
and that T = [A <A C].B: D.

By Generation, we have T, A+ A : E, and T - C : E,
and T,A+ B: F, and D=s[A <a C]".F. By SRC(1), we
have I' = Bo : Fo. By Correctness of Types, I' = F : G
or F € ST. In the first case, we apply (Subst) to get
I'F[A <a OLF : [A <a C]".G and we conclude by
(Conv). In the second case, we get D=xs5F, hence D5 F
by Confluence; therefore, F is a subterm of D. By a simple
analysis of the typing rules, it follows that D = F and we
are done. []

We now turn to the characterization of SRC. We start with
a preliminary result.

LeMMA 12 (Unicity oF TYPING). IfT'+ A: B and
I'HA:C, then B=xC.

PROOF. By induction on the structure of derivations, us-
ing the functionality of specifications. [

LEMMA 13 (CHARACTERIZATION OF SRC(A)).
If P € P and o£ A then Po satisfies SRC(A).

PROOF. By induction on P. []

5.4 P°Ts as Logics

Many type systems and logics, including the systems of
Barendregt’s A-cube [4], can be cast in the framework of
PTSs. In perfect symmetry, the framework of P*T Ss allows
us to formulate a matching-based version of many type sys-
tems. In the case of the A-cube, its matching-based coun-
terpart, which we call X-cube with matching ()\<<—cube for
short), is depicted in Figure 6, where S = {%,0}, and
A = {(%,0)}; note that we use (s1,s2) to denote rules of
the form (s1, s2,82).

PTSs, and in particular the systems of the A-cube, have
a well-understood logical theory via the Curry-Howard Iso-
morphism and the (impredicative) encoding of data-types
in type systems, and are used as the foundations of proof-
assistants. A detailed analysis of the logical status of P*T Ss,
including an extension of the Curry-Howard Isomorphism,
is left for future work, but we provide two elementary results
that establish that P°T Ss are logically sound.

First, we show that P°T Ss are a conservative extension
of PTSs. Indeed, it is possible to embed every PTS into its

K

[System | Rules

Pw

*

*

A=

A2

*

*

()

Aw

*

*

(G,0)

]

Aw

*
*

AP

*
m]

*

AP2

*

*

(8,%)

*

A Pw

*
O

*

A,_\A,_\A/_\/_\A

*

PP NP2 NP NP2 NG NP NGP%) NS
— == = =

A Pw

*

(8, %)

Figure 6: The X-cube

corresponding P*T S using the (trivial) translation

af £ (vX:A.B) £ vX:(X:A").Bt
xtex (AB)Y 2 Af Bf
THEOREM 5 (CONSERVATIVITY). P*TSs are a conser-

vative extension of PTSs in the semse that for every PTS
pseudo-context I' and PTS pseudo-terms A and B

Ihprs A: B <= TThpg AT : BT

PRrROOF. The direct implication is trivial. For the reverse
implication, we prove by induction on the structure of deriva-
tions that T Fp2rs A" 2 C implies T Fprs A: B for some B
such that BT=sC. [

Second, we show that normalizing P°TSs are consistent.
The proof relies upon the following observation.

LEMMA 14 (CHAINING). If A, B, A are in normal form
and T+ ([A <a B].C) D : E, then 30.Alg(A=<§ B).

O

THEOREM 6 (CONSISTENCY IN P°TS). Any norma-
lizing P*T S is logically consistent, i.e. for every sort s € S,
XisFA:X.

PROOF. The proof follows [4]: assume without loss of gen-
erality that A is in normal form, and proceed by analysis on
the shape of normal forms, using the Chaining Lemma to
rule out the case A = ([A1 <a A2].A3) Ay ... Ay, O

6. CONCLUSION

PT Ss provide a conservative extension of PTSs with ma-
tching, and enjoy all elementary properties of PTSs. The
next question on our agenda is to determine whether P*T Ss
also enjoy non-elementary properties of PTSs:

PrROOF. Apply Generation twice.

e w.r.t. strong normalization, we conjecture that stan-
dard model construction techniques can be used to

prove strong normalization of the >\<<—cube;

e w.r.t. type checking/inference, we conjecture that ex-
isting algorithms for PTSs adapt readily to P*T Ss.

Besides, we would like to enhance the expressive and com-
putational power of P*T Ss, so as to provide support for:

e handling failures/exceptions by introducing a uniform
notion of failure Null, which records failures but dis-
cards their explanation, and its corresponding condi-
tional rewrite rule A Cond B implies [A <A B].C s
Null for some suitable condition Cond;

e matching modulo an equational theory, as in the re-
writing calculus [8, 9], upon which P°T Ss are built,
and which takes as a parameter an equational theory
modulo which matching is performed. In a similar
vein, it would be interesting to study P°TSs with a
limited form of decidable higher-order unification, in
the style of A\-Prolog [21, 22, 26];

encoding dependent case analysis, pattern-matching &
la Coquand and algebraic type systems. In view of the
Chaining Lemma, P°T Ss cannot code dependent case
analysis, and hence cannot provide a foundation for
pattern matching in dependent type theory. It would
be interesting to investigate whether endorsing more
powerful rules for structures and a subtyping calculus
derived from matching would suffice to encode depen-
dent case analysis;

explicit substitutions. The extension is not trivial, be-
cause of delayed matching constraints, but the result-
ing formalism could serve as the core engine of a little
type-checker underneath of a powerful proof assistant.

We conclude with a challenge for future work: FEzxtending
the Curry-Howard Isomorphism. The extension can be con-
sidered from the point of view of sequent calculi, deduc-
tion modulo, and natural deduction respectively. From the
point of view of sequent calculi, it remains to investigate how
P>T Ss can be used to extend previous results on term calculi
for sequent calculi, and how their extension with matching
theories can be used to provide suitable term calculi for de-
duction modulo. From the point of view of natural deduc-
tion, P°T Ss correspond to an extension of natural deduction
where parts of proof trees are discharged instead of assump-
tions. To our best knowledge, such an extended form of
natural deduction has not been considered previously, but
it seems interesting to investigate whether such an extended
natural deduction could find some applications in proof as-
sistants, e.g. for transforming and optimizing proofs.

Acknowledgments. The authors are sincerely grateful to
all anonymous referees for their extremely useful comments,
and to one particular referee for pointing out some subtleties
in the interaction of patterns, dependent types and poly-
morphism. They also wish to thank Vincent van Oostrom,
Pierre Courtieu, Jéelle Despeyroux, Philippe de Groote for
fruitful discussions and comments. Finally, Luigi would like
to thank Simonetta Ronchi della Rocca and Furio Honsell,
for the time spent to teach to him the fundamentals and the
insight of the “cubes-stuff”.

7.
1]

2]

7]

8]

[14]

[15]

REFERENCES

L. Augustsson. Cayenne: A Language with Dependent
Types. In Proc. of ICFP, pages 239-250. ACM Press,
1998.

F. Barbanera, M. Fernandez, and H. Geuvers.
Modularity of Strong Normalisation and Confluence in
the Algebraic A-Cube. Journal of Functional
Programming, 7(6):613-660, 1997.

H. Barendregt. Lambda Calculus: its Syntaz and
Semantics. North Holland, 1984.

H. Barendregt. Lambda Calculi with Types. In
Handbook of Logic in Computer Science, volume II,
pages 118-310. Oxford University Press, 1992.

H. Barendregt and H. Geuvers. Proof Assistants Using
Dependent Type Systems. In Handbook of Automated
Reasoning, volume 11, chapter 18, pages 1149-1238.
Elsevier Publishing, 2001.

G. Barthe and T. Coquand. An Introduction to
Dependent Type Theory. In Proc. of Applied
Semantics Summer School, volume 2395 of LNCS.
Springer-Verlag, 2002.

F. Blanqui. Type Theory and Rewriting. PhD thesis,
Université de Paris-Sud, 2001.

H. Cirstea and C. Kirchner. The Rewriting Calculus
— Part I and I1. Logic Journal of the Interest Group
in Pure and Applied Logics, 9(3):427-498, 2001.

H. Cirstea, C. Kirchner, and L. Liquori. Matching
Power. In Proc. of RTA, volume 2051 of LNCS, pages
77-92. Springer-Verlag, 2001.

H. Cirstea, C. Kirchner, and L. Liquori. The Rho
Cube. In Proc. of FOSSACS, volume 2030 of LNCS,
pages 166—180, 2001.

H. Cirstea, C. Kirchner, and L. Liquori. Rewriting
Calculus with(out) Types. In Proc. of WRLA,
volume 71 of ENTCS, 2002.

T. Coquand. Pattern Matching with Dependent
Types. In Proc. of Logical Frameworks, pages 66-79,
1992.

G. Dowek, T. Hardin, C. Kirchner, and F. Pfenning.
Unification via Explicit Substitutions: The Case of
Higher-Order Patterns. In Proc. of JICSLP. MIT
Press, 1996.

G. Faure and C. Kirchner. Exceptions in the
Rewriting Calculus. In Proc. of RTA, volume 2378 of
LNCS, pages 66—82. Springer-Verlag, 2002.

H. Geuvers and M.J. Nederhof. A Modular Proof of
Strong Normalisation for the Calculus of
Constructions. Journal of Functional Programming,
1(2):155-189, 1991.

(16]

(17]

(18]

(19]

20]

(22]

23]

G. Huet. Résolution d’Equations dans les Langages
d’Ordre 1,2, ...,w. These de Doctorat d’Etat,
Université de Paris 7, 1976.

J.P. Jouannaud and M. Okada. Abstract Data Type
Systems. Theoretical Computer Science,
173(2):349-391, 1997.

D. Kesner, L. Puel, and V. Tannen. A Typed Pattern
Calculus. Information and Computation, 124(1):32-61,
1996.

J.W. Klop. Combinatory Reduction Systems, volume
127 of Mathematical Centre Tracts. CWI, 1980. PhD
Thesis.

J.W. Klop, V. van Oostrom, and F. van Raamsdonk.
Combinatory Reduction Systems: Introduction and
Survey. Theoretical Computer Science,
121(1&2):279-308, 1993.

D. Miller. A Logic Programming Language with
Lambda-abstraction, Function Variables, and Simple
Unification. In Proc. of ELP, volume 475 of LNCS,
pages 253-281. Springer-Verlag, 1991.

D. Miller, G. Nadathur, F. Pfenning, and A. Shedrov.
Uniform Proofs as a Foundation for Logic
Programming. Annals of Pure and Applied Logics,
51(1-2):125-157, 1991.

T. Nipkow and C. Prehofer. Higher-order Rewriting
and Equational Reasoning. In Automated Deduction
— A Basis for Applications. Volume I: Foundations.
Kluwer, 1998.

S. Peyton Jones. The Implementation of Functional
Programming Languages. Prentice Hall, 1987.

S.L. Peyton Jones and E. Meijer. Henk: a Typed
Intermediate Language. In Types in Compilation
Workshop, 1997.

C. Schiirmann. Automating the Meta-Theory of
Deductive Systems. Phd thesis, Carnegie-Mellon
University, 2000.

M. Takahashi. Parallel Reductions in A-calculus.
Journal of Symbolic Computation, 7(2):113-123, 1989.
S. van Bakel, L. Liquori, S. Ronchi della Rocca, and
P. Urzyczyn. Comparing Cubes of Typed and Type
Assignment System. Annals of Pure and Applied
Logics, 86(3):267-303, 1997.

V. van Oostrom. Lambda Calculus with Patterns.
Technical Report IR-228, Faculteit der Wiskunde en
Informatica, Vrije Universiteit Amsterdam, 1990.

D. A. Wolfram. The Clausal Theory of Types,

volume 21 of Cambridge Tracts in Theoretical
Computer Science. Cambridge University Press, 1993.

