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Abstract

We give conditions under which the worst-case size of
the silhouette of a polytope is sub-linear. We provide
examples with linear size silhouette if any of these
conditions is relaxed. Our bounds are the first non-
trivial bounds for the worst-case complexity of sil-
houettes.

1 Introduction

Given a viewpoint, the apparent boundary of a poly-
hedron, or silhouette, is the set of edges incident to
a visible face and an invisible one; a face whose sup-
porting plane contains the viewpoint is considered
invisible. With this definition, the silhouette is a sim-
ple closed curve on the surface of the polyhedron that
separates visible and invisible faces.

Silhouettes appear in various problems in com-
puter graphics, such as hidden surface removal [4] or
shadow computations [1, 2]. The most common ge-
ometric primitives are polyhedra, so a better under-
standing of the size of their silhouette yields direct
improvement in the theoretical complexity of algo-
rithms in computer graphics.

Practical observations, supported by an experi-
mental study by Kettner and Welzl [5], suggest that
the number of silhouette edges of a polyhedron is usu-
ally much smaller than the total number of edges.
However, only one theoretical result backs up these
observations: in the same paper, Kettner and Welzl
proved that a polyhedral approximation of a sphere
with Hausdorff distance € has ©(1) edges, and a ran-
dom orthographic silhouette has size @(%)

In this paper, we investigate the worst case size of
the silhouette of a polytope observed under ortho-
graphic projection. We prove that some classes of
regular polytopes have orthographic silhouettes with
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sub-linear complexity in the worst-case. We also give
examples with linear size silhouette when any of our
regularity conditions is relaxed, hence showing that
they are minimal. We work on polytopes to avoid
the problems induced by self-occlusion, and use or-
thographic projection because of its relative simplic-
ity.

Our approach is to consider the orthogonal projec-
tion of the polytope on a plane, since the boundary
of the projected polygon is the projection of the sil-
houette. We measure the length of the boundary of
the orthogonal projection of a silhouette, which we
call its apparent length; then we show that a trian-
gulated fat object with n edges of length ©(1) has
silhouettes with O(y/n) apparent length. Then we
derive bounds on the number of silhouette edges, us-
ing an additional condition on the repartition of the
directions of the edges.

This paper is organized as follows. First, in Sec-
tion 2, we review some examples of ill-shape poly-
topes with silhouettes of linear complexity. Next,
Section 3 studies the apparent length of the silhou-
ette, and Section 4 relates it to the number of silhou-
ette edges. Last, Section 5 discusses extensions and
applications of our results.

2 First examples

The goal of this paper is to find conditions under
which polytopes have sub-linear silhouette in the
worst-case. This section examines three examples
of ill-shaped polytopes with silhouette of linear com-
plexity, and isolates what makes them exhibit this
behavior.

Figure 1: An elongated polytope.



The example of Fig. 1 is characteristic of polytopes
much longer along one dimension than along the oth-
ers. This kind of behavior can be ruled out by consid-
ering fat polytopes, i.e. polytopes such that the ratio
of the radius of the smallest enclosing to the largest
enclosed sphere is O(1).

Figure 2: A polytope with uneven edges.

Our second example (see Fig. 2) illustrates the im-
pact of the length on the edges over the silhouette.
The ratio of the length of the longest edge to the
length of the smallest is of order n, the total number
of points. To avoid such behaviors, we require our
polytopes to have bounded edges, i.e. that all edges
are of length ©(1).

HEREERR

Figure 3: A polytope with a face of large complexity.

Our last example, in Fig. 3, exhibits a linear-size
silhouette due to faces with order n edges. We there-
fore consider polytopes with faces of bounded com-
plexity. Without loss of generality, we simply assume
that our polytopes are triangulated.

This set of conditions is minimal in some sense:
each of the previous examples satisfies all but one
condition.

In summary, in the rest of this paper we consider
triangulated fat polytopes with bounded edges.

3 Apparent length

Recall that the apparent length of the silhouette is
defined as the length of the orthogonal projection of
the silhouette on a plane. In this section, we relate
the number of edges of the silhouette to its apparent
length.

We first recall a classical result on measures of con-
vex sets. A proof can be found in [6]".

Lemma 1 Let O and @' be two convex objects in
R? (resp. R3) such that O contains O'. Then the
length (resp. area) of 80 is larger than that of 00'.

For a polytope P, let A(P) denote its surface area,
and L£(P) be the maximum apparent length of its
silhouettes. The following lemma relates those two
quantities.

Lemma 2 If P is a fat polytope, then

Proof. Let r be the radius of the biggest enclosed
sphere of P, and Ar be the radius of the smallest
enclosing sphere. Since P is fat, A is ©(1).

First, we apply Lemma 1 to P and its biggest
enclosed sphere, and to P and its smallest enclosing
sphere. This yields that A(P) = O(r?). Next,
consider an orthogonal projection of P. Each of
the two spheres projects into a circle of the same
radius. Since the projection of P is convex, we can
apply Lemma 1 to these circles and the boundary
of that projection, and obtain that the length of
that boundary is ©(r). Taking the maximum over
all possible orthogonal projections, we obtain that

L(P) = O(r). It follows that £ = O(/A).

The next lemma bounds the area of a polytope with
bounded edges.

Lemma 3 If P is a triangulated polytope with
bounded edges, then A(P) = O(n).

Proof. Since the polytope has bounded edges, the
area of any of its triangles is O(1). By Euler’s
formula, a triangulated polytope with n edges has
O(n) triangles, and the result follows.

!In fact, the proof in [6] is much more general than our
statement, and applies to any Minkowski measure, in any di-
mension.



Figure 4: A triangulated fat polytope with bounded edges and a linear-size silhouette (the front and back

faces were not triangulated for clarity).

We can conclude with the following corollary, di-
rectly deduced from Lemmas 2 and 3.

Corollary 4 IfP is a triangulated fat polytope with
n bounded edges, then L(P) = O(y/n).

4 Complexity of the silhouette

This section uses Corollary 4 to measure the com-
plexity of the silhouette.

To exploit the upper bound on the apparent length
of the silhouette, we simply bound from below the
contribution of silhouette edges to the apparent
length. However, the contribution of an edge can
be arbitrarily small, as it can be parallel to the di-
rection of projection, and a triangulated fat polytope
with bounded edges can have a linear number of such
silhouette edges, as shown in Fig. 4. Thus, we need
to bound from above the number of silhouette edges
that can be close to the direction of projection.

We give two distinct additional conditions that en-
sure a sub-linear size for the silhouette. The first one
is a local condition.

Theorem 5 Let € be some positive real number and
P be a triangulated fat polytope with n bounded
edges such that any two incident edges make an angle
in the interval [e,m — €]. Then, any silhouette of P
has O(y/n) edges.

Proof. Let us choose a viewing direction §. Since
any two incident edges make an angle in the interval
[e, ™ — €], two consecutive silhouette edges contribute
Q(€) to the apparent length of the silhouette. Since
L(P) = O(y/n), by Corollary 4, it follows that the
number of silhouette edges is O(y/n). Note that the
constant in the O depends on e.

The second condition is global and corresponds to
a regular repartition of the directions of the edges of
the polytope.

Theorem 6 Let P be a triangulated fat polytop4e
with n bounded edges such that for any direction 6,
the number of edges of P making an angle smaller
than ©(n~/8) with § is O(n/®). Then any silhouette
of P has O(n?/3) edges.

Proof. Let us fix a direction 5: and let a be a real
number. We count separately the silhouette edges
that make an angle greater than o with §, and the
others, and find the value of « yielding the best trade-
off.

If we represent the set of directions by a unit
sphere, the directions that make an angle smaller
than a with & form a spherical cap of area ©(a?).
Given that the sphere can be covered by ©(1/a?)
such spherical caps, and that the directions of the
n edges are distributed over the sphere, one of the
caps has to contain Q(a?n) edge directions. It means
that, for some viewing direction, there are (a?n)
edges that make an angle less than «. Thus, the best
we can ask is that the number of silhouette edges hav-
ing a negligible contribution to the apparent length
is O(a?n).

Let k denote the number of silhouette edges that
make an angle greater than « with 6. The contri-
bution of these k edges to the apparent length of the
silhouette is Q(ka). Thus, k = O(L/a), and applying
Corollary 4, we get that k = O(y/n/a).

If we ask that at most O(a’n) edges of the polytope
make an angle less than a with any given direction,
then the complexity of the silhouette is bounded from

above by
(0] (g + azn) .



The best trade-off we can achieve is to choose

Y% _ o(a?n),
a
which means & = O(n~/%). In that case, the

number of silhouette edges is O(n?/?), and the
regular distribution assumption is the one mentioned
in the statement of the theorem.

Note that the proof of Theorem 6 establishes a
more general result: a weaker condition on the repar-
tition of the directions of the edges still yields a
sub-linear bound on the complexity of the silhouette,
which is in between O(n?/3) and O(n).

5 Discussion

This section discusses our results, giving extensions
as well as possible applications.

To begin with, notice that, for all the results of Sec-
tions 3 and 4, the fatness assumption can be weak-
ened. In fact, Lemma 2 holds for any polytope P
with bounded edges that satisfies

d(P)* = O(A(P))

where d(P) is its diameter. This is equivalent to hav-
ing a fat orthogonal projection with the same diam-
eter, or, intuitively, to be fat along at least two di-
mensions.

Next, to extend our approach to the perspective
case, one has to deal with two distinct issues. First,
the distance from the object to the viewpoint has to
be taken into account. When the viewpoint is far
from the polytope, the perspective case should be-
have as the orthographic case. But when the view-
point is close to the polytope, the perspective pro-
jection introduces a lot of distortion: the length of
the projection of a silhouette edge greatly depends
on its distance to the center of the view, so the ap-
parent length and the number of silhouette edges are
no longer directly related. Second, since the apparent
length of an edge does not depend only on its direc-
tion, the global hypothesis on the distribution of the
directions of the edges has to be adjusted accordingly.

The results of this paper are only a first step toward
the understanding of the complexity of silhouettes,
but they still have promising applications.

A first application is the computation of shadow
boundaries. Drettakis and Duguet [1, 2] propose a so-
lution based on a wisibility skeleton restricted to the
visual events generated by a punctual light source.
In their detailed report [2], they show that their al-
gorithm has complexity O(ns,), where n is the size

of the polyhedron that casts a shadow, and s, the
size of its silhouette. Even the orthographic case is
of interest, since it corresponds to a light source at
infinity, a simple sun model for instance.

A second application is hidden surface removal,
which has a long history as a problem difficult to
address practically [3]. A solution proposed by Efrat
et al. [4] is to render separately the silhouettes of
the objects, and the single-object regions. They es-
timate the number of combinatorial changes to the
rendered silhouettes of polytopes when the viewpoint
moves along a line or an algebraic curve. Depend-
ing on the motion, this number depends either lin-
early or quadratically on the silhouette complexity,
which they bound from above by the complexity of
the polytope. Extension of our work to the perspec-
tive case would thus yield a direct improvement of
their bounds.
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