Abstract Congruence Closure

Leo Bachmair Ashish Tiwari Laurent Vigneron 1
1 PROTHEO - Constraints, automatic deduction and software properties proofs
INRIA Lorraine, LORIA - Laboratoire Lorrain de Recherche en Informatique et ses Applications
Abstract : We describe the concept of an abstract congruence closure and provide equational inference rules for its construction. The length of any maximal derivation using these inference rules for constructing an abstract congruence closure is at most quadratic in the input size. The framework is used to describe the logical aspects of some well-known algorithms for congruence closure. It is also used to obtain an efficient implementation of congruence closure. We present experimental results that illustrate the relative differences in performance of the different algorithms. The notion is extended to handle associative and commutative function symbols, thus providing the concept of an associative-commutative congruence closure. Congruence closure (modulo associativity and commutativity) can be used to construct ground convergent rewrite systems corresponding to a set of ground equations (containing AC symbols).
Type de document :
Article dans une revue
Journal of Automated Reasoning, Springer Verlag, 2003, 31 (2), pp.129-168
Liste complète des métadonnées

https://hal.inria.fr/inria-00099511
Contributeur : Publications Loria <>
Soumis le : mardi 26 septembre 2006 - 09:37:58
Dernière modification le : jeudi 11 janvier 2018 - 06:19:58

Identifiants

  • HAL Id : inria-00099511, version 1

Collections

Citation

Leo Bachmair, Ashish Tiwari, Laurent Vigneron. Abstract Congruence Closure. Journal of Automated Reasoning, Springer Verlag, 2003, 31 (2), pp.129-168. 〈inria-00099511〉

Partager

Métriques

Consultations de la notice

117