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Abstract

This paper presents a new approach to multi-band automatic speech recog-
nition which has the advantage to overcome many limitations of classical
muti-band systems. The principle of this new approach is to build a speech
model in the time-frequency domain using the formalism of dynamic Bayesian
networks. In contrast to classical multi-band modeling, this formalism leads
to a probabilistic speech model which allows communications between the
different sub-bands and, consequently, no recombination step is required in
recognition. We develop efficient learning and decoding algorithms both for
isolated and continuous speech recognition. We present illustrative experi-
ments on isolated and connected digit recognition tasks. These experiments
show that the this new approach is very promising in the field of noisy speech
recognition.

1. Introduction

State-of-the-art automatic speech recognition (ASR) systems are based on proba-
bilistic modeling of the speech signal using Hidden Markov Models (HMMs). These
models lead to the best recognition performances in ideal ”lab” conditions or for
easy tasks. However, in real word conditions of speech processing (noisy environ-
ment, spontaneous speech, non-native speakers...), the performance of HMM-based
ASR systems can decrease drastically and their use becomes limited. One of the ma-
jor reasons for this discrepancy is the fact that classical HMM’s parameterization
and modeling fail to capture some acoustic phenomena which are specific to speech.
For instance, while speech temporal dynamics are well captured by HMMs, the fre-
quency dynamics (which are phonetically very informative) are weakly modeled in
classical HMM-based systems.

Recently, a new approach to ASR which attempts to add a frequency ” dimension”
in speech modeling, known as multi-band speech recognition, has been proposed
[5, 14, 21]. This approach takes its origin in an extensive study done by Harvey
Fletcher [15] on how humans process and recognize speech. Basically speaking, this
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study (reviewed by Jont B. Allen in [1]) suggests that the human auditory system
processes speech locally in the time-frequency domain before recognition. The general
approach to multi-band speech recognition is to divide the time-frequency domain
into several sub-bands, then each sub-band is independently modeled by a HMM.
The recognition scores in the sub-bands are then fused with some recombination
module. This approach has also been motivated by the desire to improve robust-
ness to additive noise, particularly band-limited noise. Indeed, in classical systems
the full frequency band is globally processed in order to extract speech features,
thus the resulting acoustic vectors are all corrupted even if the noise covers only
a small frequency sub-band. Using the multi-band local frequency processing, only
the information extracted from the noisy sub-band will be corrupted, the remaining
non-corrupted information can be then exploited for recognition.

Definitely the multi-band principle (i.e. local processing in the time-frequency do-
main) is very attractive because it attempts to mimic the behavior of the human
auditory system and it can lead to noise-robust systems. However, the classical ap-
proach (described above) to exploit this principle is far from being optimal. For
instance, the sub-bands are assumed mutually independent which is an unrealistic
hypothesis. Moreover, the information contained in one sub-band is not discrimi-
native in general. In addition, the recombination step can be a very difficult task,
particularly in continuous speech recognition.

The scope of this paper is to propose a new approach to multi-band speech recog-
nition which has the advantage to overcome all the limitations (mentioned above) of
the classical multi-band (CMB) approach. In the latter, the fundamental weakness
is the fact that sub-bands modeling is independent, the basic idea behind our new
approach is to render dependent such modeling. A way to do so is to create ”commu-
nications” or ”interactions” between the different HMMs that model the different
sub-bands. For this propose, we use the formalism of Bayesian networks (BNs) which
is an appropriate framework for our goal for two reasons. First, through meaningful
graphical representations, Bayesian networks has the advantage to provide a nat-
ural tool to represent interactions and dependencies between variables of a given
system. Second, by exploiting conditional independence between system variables,
they introduce some "modularity” in large-scale problems in order to split them
up into small and tractable problems. Consequently, Bayesian networks not only
provide an attractive tool for modeling complex systems, but also lead to efficient
general-purpose algorithms.

After Judea Pearl’s pioneering work [29], Bayesian networks have emerged as a
powerful formalism unifying many concepts of probabilistic modeling widely used
in statistics, artificial intelligence, signal processing and other fields. For example,
HMMs, mixture models, and Kalman filters are all particular instances of the more
general BNs formalism. BNs have then become a very popular framework for rea-
soning under uncertainty and have been widely used in expert systems design and
decision making systems. However, the use of BNs in automatic speech recognition
has gained attention only very recently [2, 3, 4, 9, 10, 12, 38, 40, 37, 39]. This paper
presents a new multi-band system which relies on a ”uniform” time-frequency speech
model. Namely, instead of considering an independent HMM for each sub-band (as
in the CMB approach), we build a more complex but unique dynamic Bayesian net-
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work on the time-frequency domain by “coupling” all the HMMs associated with
the different sub-bands. We develop the learning and decoding algorithms corre-
sponding to this new speech model and carry out illustrative experiments to show
the potential of this new multi-band approach. The paper is organized as follows.
In the next section, we give a brief introduction to Bayesian networks. In order to
make the paper self-contained, we present in section 3 the inference algorithms that
we use in learning and decoding. In section 4, we present the classical approach to
multi-band ASR. In section 5, we present the principle and the algorithmic details
of our new approach to multi-band ASR. In section 6 and 7, we show how to apply
our approach in isolated and continuous speech recognition and present illustrative
experiments on an isolated and connected digit recognition task.

2. Bayesian networks

During the last decade, Bayesian networks (and probabilistic graphical models in
general) have become very popular in artificial intelligence (and other fields) due to
many breakthroughs in several aspects of inference and learning. The literature is
now extremely rich in papers and books dealing with the theory and applications of
BNs, among which we refer to [8, 6] for a very good introduction. The formalism of
probabilistic graphical models (PGMs) is well summarized in the following quotation
by M. Jordan [23]:

"Graphical models are a marriage between probability theory and graph theory.
They provide a natural tool for dealing with two problems that occur throughout ap-
plied mathematics and engineering - uncertainty and complexity - and in particular
they are playing an increasingly important role in the design of machine learning
algorithms. Fundamental to the idea of a graphical model is the notion of modularity
- a complex system is built by combining simpler parts. Probability theory provides
the glue whereby the parts are combined, ensuring that the system as whole is con-
sistent, and providing ways to interface models to data. The graph theoretic side of
graphical models provides both an intuitively appealing interface by which humans
can model highly-interacting sets of variables as well as a data structure that lends
itself naturally to the design of efficient general-purpose algorithms.”

More precisely, given a system of random variables (r.v.), a PGM consists in asso-
ciating a graphical structure to the joint probability distribution of this system. The
nodes of this graph represent the r.v., while the edges encode the (in)dependencies
which exist between these variables. One distinguishes three types of graphs: di-
rected, undirected and those for which the edges are a mixture of both. In first case,
one talks about Bayesian networks, in the second case, one talks about Markov ran-
dom fields, and in the third case one talks about chain networks. PGMs have two
major advantages:

e They provide a natural and intuitive tool to illustrate the dependencies which
exist between variables. In particular, the graphical structure of a PGM clarifies
the conditional independencies embedded in the associated joint probability
distribution.

e By exploiting these conditional independencies, they provide a powerful setting
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to specify efficient inference algorithms. Moreover, these algorithms may be
specified automatically once the initial structure of the graph is determined.

So far, the conditional independencies semantics (or Markov properties) embedded
in a PGM are well-understood for Bayesian networks and Markov random fields.
For chain networks, these are still not well-understood. In our current research,
given the causal and dynamic aspects of speech, Bayesian networks (BNs) are of
particular interest to us. Indeed, thanks to their structure and Markov properties,
BNs are well-adapted to interpret causality between variables and to model temporal
data and dynamic systems. In addition, not only HMMs are a particular instance
of (dynamic) BNs, but also the Viterbi and Forward-Backward algorithms (which
made the success of HMMs in speech) are particular instances of generic inference
algorithms associated to BNs [31]. This shows that BNs provide a more general and
flexible framework than the HMMs paradigm which has ruled ASR for the last three
decades.

Formally, a (static) Bayesian network has two components: a directed acyclic
graph S and a numerical parameterization ©. Given a set of random variables
X = {Xy,..,Xn} and P(X) its joint probability distribution (JPD), the graph
S encodes the conditional independencies which (are supposed to) exist in the JPD.
The parameterization © is given in term of conditional probabilities of variables
given their parents. Once S and © are specified, the JPD can be expressed in a

factored way as*
N

P(x) = [ [ P(xilpa(z:)) (1)
i=1
where pa(z;) denotes an outcome of the parents of X;. The conditional independence
semantics (or Markov properties) of a BN imply that, conditioned on its parents, a
variable is independent of all the other variables except its descendants.

Dynamic Bayesian networks (DBNs) extend the BN representation to dynamic
processes. This representation encodes the beliefs about possible trajectories of the
process. Consider a time evolving set X[t] = {Xi[t],..., Xn[t]} of variables. A DBN
encodes the joint probability distribution of these variables in a finite time interval
[0, T]. In general, this JPD can be encoded in a huge static BN with 7" x N variables
with (possibly) different structure and parameters for each time slice. If the un-
derlying process is stationary, then the independence assertions and the associated
conditional probabilities are identical for each time slice . In this case, the repeating
structure and parameters can be encoded with a static BN in a single time slice.
From this point of view, it is obvious that a HMM is a particular DBN as shown
in Figure 1. Contrarily to the usual state transition diagram, in the DBN represen-
tation each node H; (resp. O) is a random variable whose outcome indicates the
state occupied (resp. the observation vector) at time t. Time is thus made explicit
and arrows linking the H; must be understood as “causal influences” (not as state
transitions). It is this representation of HMMs that we shall use in the rest of the
paper.

In the next section we present the algorithms we use to infer our acoustic models.

*In the whole paper, upper-case (resp. lower-case) letters are used for random variables (resp.
outcomes).
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This section is introduced to make the paper self-contained. Thus, it can be skipped
by readers who are not interested in the algorithmic details. On the other hand,
those who are interested in these aspects may find the description too short. We
advise them the very nice tutorials on Bayesian networks [16, 31] and also the very

interesting thesis [28].

Figure 1: a HMM represented as a dynamic Bayesian network

3. Inference algorithms for Bayesian networks

Once a Bayesian network is specified, i.e., its graph and numerical parameterization
are given, the most common problem is inference. Namely, one is interested in the
calculation of marginal or conditional probabilities of subsets of variables, such as
the likelihood of observed evidence or the probability of some variables given ev-
idence, or one is interested in identifying the most likely outcome of unobserved
(hidden) variables given observed evidence. In the last decade, major progress has
been accomplished in the theory of BNs. In particular, fast and exact inference al-
gorithms has been developed when all the variables are discrete, all Gaussian or
mixed discrete-Gaussian [8]. In this section, we present the JLO algorithm [22] as
well as the David algorithm [11] which are the most popular algorithms for exact
inference of discrete BNs. We recall here that the JLO and Dawid algorithms corre-
spond respectively to the Forward-Backward and Viterbi algorithms when applied
to the particular case of HMMs [31].

The JLO and Dawid algorithms proceeds in two steps. The first one consists in
using graph-theoretic tools to transform the initial graphical structure of the BN into
a specific graphical entity called the junction tree. In the second step, the junction
tree is used as a channel to transmit and propagate the effect of observations (or
evidence).

3.1. Construction of the junction tree

The first operation in the construction of the junction tree for BNs is the moraliza-
tion. It consists in adding an extra undirected edge between any two nodes with a
common child and subsequently removing directions. The undirected graph obtained
this way is called the moral graph. The second operation consists in adding sufficient
edges to the moral graph to make it triangulated. An undirected graph is triangu-
lated (or chordal) if all cycles containing four or more nodes have a chord, i.e., an
undirected edge between two non-consecutive nodes in the cycle. There are several



K. Daoudi, D. Fohr, C. Antoine: DBNs for multi-band ASR 6

ways to add a chord in a cycle with length greater than four. Hence, the triangu-
lation process is not unique. In general, it is desired to obtain a triangulation with
a minimum number of additional edges. Unfortunately, the problem of automati-
cally obtaining a minimal triangulation is NP-complete [36]. However, there exists
some heuristic algorithms which work well in practice. For instance, the Maximum
Cardinality Search Fill-In algorithm [32] can be used to obtain a triangulation of a
given undirected graph. This algorithm can be implemented in linear time O (N +1),
where N is the number of nodes and [ is the number of links in the graph. In the
final operation, one identifies the set C of cliques’ in the triangulated graph and
forms a tree with these cliques in such way that resulting tree, the junction tree,
satisfies the running intersection property. This property states that each variable
which appears in two different cliques has to appear in all the cliques on the path
between these two cliques. Figure 2 shows an example illustrating these different
steps in the junction tree construction.

Attached with each edge linking two cliques C; and Cy in the junction tree is a

separator S 2 C1NC5. We denote the set of separators by §. The main advantage of
the junction tree representation is the fact that, as shown in [29], the joint probability
distribution P(X) can be factored as the product of clique marginals over separator

marginals:
I1 P(xc)
Pr) =< 2
PG )
Ses
where P(x¢) and P(xg) are the marginal distributions over the variables in C' and
S respectively. Thus, probability calculations on X can be carried out locally and
efficiently if the cliques are relatively small. The next subsection presents the message
passing scheme of the JLLO and Dawid algorithms leading to such local factorization
of the JPD, in the light of observed evidence.

3.2. Propagation of evidence in the junction tree

Given the junction tree, the JPD P(X) can be factored as

cl;[c Polzc)
Ple)= [T ¢s(zs) ®)

Ses

where ¢c(xzc) (resp. ¢s(xs)) is a non-negative potential function on the clique C
(resp. the separator S). The collection of potentials ® = {{¢¢, C € C},{¢s,S € S}}
is termed a representation of P(X). A factorizable distribution P(X) may have many
different representations, i.e., many collections of potentials which satisfy (3). For
BNs, an initial representation is obtained from (1) in the following way. First, assign
each X; to just one clique. Second, for each clique C', define the potential ¢ to be
either the product of P(X;|pa(X;)) over all X; assigned to C, or 1 if no variable

tA clique is a subset of nodes which are fully connected and maximal, i.e, if a node is added to
the subset, the latter does not remain fully connected.
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Figure 2: Illustration of the junction tree construction algorithm. (a) A directed acyclic graph. (b)
Corresponding moral graph. (¢) A triangulation of the moral graph. (d) A junction tree associated
with the triangulated graph.
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is assigned to C. Then, if ¢g is set to be 1 for each separator S, one obtains a
representation of P(X).

To propagate the effect of an observed evidence e, the JLO algorithm operates by
transforming one representation to another, starting from the initial one modified by
the incorporation of the evidence. The algorithm finishes with the marginal repre-
sentation in which, for each clique C (resp. separator S), the potential ¢¢ (resp. @)
is equal to the marginal (joint) probability distribution for the variables in C' (resp.
S) and the evidence. The incorporation of evidence in the initial representation is
done simply by setting ¢c(z¢) to 0 for any clique C' containing an observed variable
and for any configuration z. involving a different state of the one observed. After
this incorporation, the algorithm proceeds by passing a sequence of flows along the
edges of the junction tree. Each flow from clique C; to (s updates the potentials of
C5 and the separator S = C; N (s in the following manner. Suppose that, prior to
this flow, we have a representation ®. Then, the activation of the flow yields a new
representation ®* where the new potentials of C' and S aret

qs*
$5=> do, i b, =0, (4)

o s

and all the other potentials being unchanged. A schedule of such flows consists in
updating all the cliques using the available information. This is done by choosing a
clique C, to be the root clique and, then, operating a recursive two-phase propagation
scheme: collecting evidence and distributing evidence. In the collection phase, flows
are activated along all the edges of the junction tree toward C.. In the distribution
phase, flows are activated out from C). in the reverse direction. Once a schedule is
complete, one obtains a new (final) representation ®/ in which the potentials ¢é
and qﬁé of each clique C and separator S equal P(z%,e) and P(z", e) respectively,
where zl (resp. z%) is a configuration of the hidden variables in C (resp. S):

[T P(x,e)
P T PeEa g

Ses

Therefore, by marginalizing over the unobserved variables in any clique or separator,
on gets the likelihood of observations P(e). Also, by normalizing the potential at
a clique C' to sum 1, one get the posterior conditional probability P(x%|e) of the
hidden variables in C' given the evidence e. At this point, it is easy to note that the
complexity of the JLO algorithm scales as the sum of the clique state-spaces?.

The Dawid algorithm [11] is a slightly modified version of the JLO algorithm
and allows the identification, with the same time complexity, of the most likely
sequence of hidden states given observations [11]. There are only two modifications
to operate (w.r.t. the JLO algorithm) and both are in the propagation scheme phase.
The first one is to replace the sum-marginalization by a max-marginalization in the

!The summation 2_cy\s is over the state-space of variables that are in C1 but not in S.

A clique state-space is the product over each variable in the clique of the number of states of
each variable
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definition of a flow, i.e., to replace the summation by a maximization in (4). The
second modification is in the distribution phase: once the potential of a clique is
computed, one finds a configuration of its variables that maximizes the potential,
this configuration is then considered as a new evidence when flows are activated.
The running intersection property guarantees that when a variable outcome is fixed
in one clique, that variable has the same outcome in all other cliques.

4. Multi-band speech recognition: the classical approach

The multi-band principle was originally motivated by an extensive research on the
way humans process and recognize speech. This research, conducted by Harvey
Fletcher [15] during the first half of the 20th century, suggests that the human audi-
tory system recognizes speech using partial information across frequency, probably
in the form of speech features that are localized in the frequency domain. However,
Fletcher’s work has been little known until 1994 when Jont B. Allen published a
paper [1] in which he reviewed the work of Fletcher and also proposed to adapt a
multi-band paradigm to automatic speech recognition. Many researchers have then
studied this principle to build multi-band ASR systems [5, 14, 21, 27, 7].

When applied to automatic speech recognition, the multi-band principle can be
viewed as a new architecture for ASR systems. In general, this architecture consists in
dividing the frequency domain of the speech signal into several frequency sub-bands,
then independent processing is applied in each sub-band. The application of such
a principle generally leads to a multi-band ASR system which has the architecture
represented in Figure 3.

/ 1' sub-band recognizer|
P

" i sub-band recognizer Recombination

- — Answer
" ‘m_‘ - module

! '”’”‘Wé‘\.‘”\\‘-fw‘i " ’H\y‘w,!.“w '

Speech signal " =
Spectrogram Filter bank

Figure 3: Classical multi-band architecture

In such a system, the speech signal is first passed to a filter-bank which splits it
into several frequency bands. The signal in each band is then encoded into a stream
of acoustic vectors, which are passed to a modeling or recognition stage. This stage is
usually composed of Hidden Markov Models (HMM). During recognition, the HMMs
scores are given to a recombination module, whose role is to deliver a unique answer
to the recognition task. The inputs of the recombination module may either be the
likelihoods that each HMM has generated the speech segment, or the label of the
winning model in each band, or an ordered list of the concurrent HMMs.

Besides the motivation to mimic the human auditory system, this multi-band
architecture has been also motivated by the following aspects. First, speech is char-
acterized by asynchrony between frequency sub-bands, in the sense that stationary
segments transition may occur at different times in the time-frequency domain.
Thus, asynchrony may be taken into account by local frequency processing, this in
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turn could lead to higher fidelity speech modeling than traditional HMM modeling.
Indeed, in the latter, speech segments are implicitly assumed to contain phoneme-
synchronous information given that features extraction uses the whole frequency
band. Second, the information contained in some sub-bands may be more relevant
than in the other sub-bands. Thus, an ”appropriate” weighting of each sub-band
could improve recognition accuracy. Finally, this multi-band architecture could im-
prove the recognition robustness to band-limited noise w.r.t. standard HMM-based
systems. Indeed, even when the noise covers only one frequency sub-band, the lat-
ter would yield bad performances since the acoustic features (MFCC coefficients in
general) are calculated on the whole spectrum and are then all corrupted. Using
this architecture, only the acoustic features corresponding to the noisy sub-band
would be corrupted. One can then exploit the non-corrupted information in the
other sub-bands for recognition.

While the ideas leading to multi-band speech recognition are attractive, the clas-
sical architecture described above has many drawbacks however. For instance, the
sub-bands are assumed mutually independent which is an unrealistic hypothesis.
Moreover, the information contained in one sub-band is not discriminative in gen-
eral. In addition, it is not easy to deal with asynchrony, particularly in continuous
speech recognition. As a consequence, the recombination step can be a very difficult
task.

In the next section, we present a new approach for multi-band speech recognition
which has the advantage to overcome all the limitations (mentioned above) of the
classical multi-band systems.

5. Multi-band speech recognition: the DBNs perspective

Let us assume that we are given a vocabulary V" of |V'| words. The basic idea behind
our approach is the following: for each word v € V, instead of considering an inde-
pendent HMM for each sub-band (as in the classical multi-band approach), we build
a more complex but uniform DBN on the time-frequency domain by “coupling” all
the HMMs associated with the different sub-bands. By coupling we mean adding
(directed) links between the variables in order to capture the dependency between
sub-bands. A natural question is: what are the “appropriate” links to add? Probably
the best answer is to learn the graphical structure (i.e., the dependencies between
variables) from data. However this strategy, known as structural learning [19], which
is extremely interesting and which we are currently investigating [12, 13] is beyond
the scope of this paper. Instead, our philosophy in this paper is to (first) impose a
"reasonable” graphical structure (for all words) and then see whether the principle
of our new multi-band approach is promising. If yes, this "reasonable” structure
could be used as prior knowledge [20] in a structural learning procedure.

5.1. Model definition

We build such ”reasonable” structure using the following computational and physical
criteria. We want a model where no continuous variable has discrete children in
order to apply an exact inference algorithm. Indeed, only approximate inference
is possible in networks where continuous variables have discrete children[30]. We
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also want a model with a relatively small number of parameters and for which the
(exact) inference algorithms are tractable. Finally, we want to have links between
the hidden variables along the frequency axis in order to capture the asynchrony
between sub-bands. A simple model which satisfies these criteria is shown in Figure
4. In this BN, the hidden variables of sub-band n are linked to those of sub-band
n + 1 in such way that the state of a hidden variable in sub-band n 4+ 1 at time
t is conditioned by the state of two hidden variables: at time ¢ — 1 in the same

sub-band and at time t in sub-band n. Each Ht(n) (: Ht(n) (v)) is a discrete variable

i i M@‘

S H)

Figure 4: B-band dynamic Bayesian network

taking its values in the set of ordered labels I, = {1,,...,m,}, |I,| is the number

of hidden states. Each Ot (: O,E")(v)) is a continuous varlable with a Gaussian-

mixture distribution (given an outcome of the corresponding hidden variable H™)
representing the observation vector at time ¢ in sub-band n (n = 1,...,B), B is

the number of sub-bands. Each G,En) (: Gin)(v)) is a discrete variable taking its

values in the set J = {1, ..., M}, M is the number of Gaussian components in each
mixtureY. We impose a left-to-right topology on each sub-band and assume that
the model parameters are stationary. Therefore, given a word v € V' (and for each
(4,4, k,p) € I3 x J) , the numerical parameterization ©, of its B-band DBN model
is:

aixv)éP(HF’(v): [H, (v) = i)

ugyg(v)é P(H{ (v):k|H" V() =i, H (v) = j) for n=2,..,B »
w”(v) £ PG (v) = plHM (v) = i) for n=1,..., B

bgjg(v,-)_P(o( v) = |H™(v) =i, (v) =p) for n=1,..,B

TThe use of the variables ng) is not necessary to define the model. We use them only to have
a consistency with the fact that exact inference is possible in mixed discrete-continuous BNs only
if the continuous variables are Gaussian [8].
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(n) (n) (n)
i,p ©,p i,p
chrony between sub-bands is taken into account by allowing all the ugl,z (v) to be
non-zero, except when k£ < j or k£ > j + 1 because of the left-to-right topology.

Note that our model is a mixed discrete-Gaussian BN. Therefore, in principle,
inference should be done using the Lauritzen algorithm [30]. However, in our setting,
inference will always involve a complete observations set of the continuous variables.
In other words, all the OE") are observed when our model is infered. Thus, even
tough the B-band DBN is mixed discrete-Gaussian, the JLO and Dawid algorithms
(which apply to discrete networks) are enough to perform inference in this setting.
Note also that our model is a special case of the so called tree structured HMM:s
[16]. However, we do not use the variational approach described in [16] to infer this
model because we are interested in exact inference.

We now stretch the advantages of such approach to multi-band ASR, and describe
briefly some related work. Unlike HMMs, our multi-band DBN provides a modeling
of the frequency dynamics of speech. Unlike to the classical multi-band approach,
our DBN allows interaction between sub-bands and the possible asynchrony be-
tween them easily handeled. Moreover, our model uses the information contained in
all sub-bands and no recombination step is needed. A related work has been pro-
posed in [18, 17] where a multi-band Markov random field is analyzed by mean of
Gibbs distributions. This approach (unlike ours) does not lead however to exact nor
fast inference algorithms and assumes a linear model for asynchrony between sub-
bands. In our approach, the asynchrony is learned from data. In term of introducing
frequency dynamics in the modeling process, a related work has been proposed in
(35, 34, 33]. In this work, the authors propose a new model, called HMM?2, which
is an HMM ”mixture” consisting in a primary (classical) HMM, modeling the tem-
poral properties of the speech signal, and a secondary HMM modeling its frequency
properties. This secondary HMM is inserted at the level of each state of the primary
HMM, estimating local emission probabilities of acoustic feature vectors (consisting
in spectral features). Consequently, the components of an acoustic vector are as-
sumed to be generated by the secondary HMM, the goal being to perform a (state
dependent) dynamical spectral warping to complement the (classical) time warping
done by the primary HMM. This HMM2 has then been used as a decoder as well as
feature extractor and tested in various conditions. In the case of clean speech, per-
formances were showed to be comparable to classical MFCC-based HMM systems.
However, in the case of noisy speech, the performances are so far still limited by the
choice of the spectral features, which are less robust to noise than MFCCs. Besides
the introduction of some modeling of the frequency dynamics of speech, HMM?2 is
different from our model in all aspects: topology and parameterization. Indeed, our
model is a "pure” multi-band model in the sense that the frequency axis is divided
in a static way, we use MFCCs in the parameterization and obtain some good per-
formances in the presence of noise as compared to classical HMM systems (as we
will see later).

where b,/ (v, ) is a Gaussian with mean p, . (v) and covariance X, (v). The asyn-
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5.2. Construction of the junction tree

Now that the graphical structure and the numerical parametrization of our multi-
band DBN are specified, inference can be performed using the JLO or/and the Dawid
algorithms. The only step remaining is to associate a "minimal” junction tree to our
network, in the sense that no other junction tree can lead to faster inference. This
is of particular importance given that the decoding efficiency requires a junction
tree with ”small” clique state-spaces. As explained in section 3, the first step in this
construction is the moral graph. Figure 5 displays the moral graph of our multi-band
BN. In the one-band (i.e. HMMs) or two-band cases, finding a minimal junction tree
is obvious [9] because the moral graph is triangulated as it is (consider B = 1 or
B = 2 in Figure 5). This is not true any more when B > 2. Since the problem of
automatically finding minimal junction trees for arbitrary BNs is NP-complete [36],
we need to find an appropriate (analytical) technique to derive a minimal junction
tree for our particular B-band BN. We do so as follows:

First, it is clear from the moral graph that the only cliques which contain the
variables O and G\™ are of the form HGO!™. For the remaining cliques
(which all contain only the hidden variables Ht(n)), we proceed by induction. If B = 1,
it is obvious that the clique which has to be linked to HF’G?’OS’ is Ht(l)Hﬁ)l. If
B = 2 it is easy to check from the moral graph (which is triangulated as it is) that the
clique which has to be linked to Ht(l)GEI)OEI) (resp. H?)G?)O?)) is Ht(l)HtQ)ng)l
(resp. Ht(l)Ht(Z)Ht(z)l). Then, by induction one can prove that the clique which has
to be linked to H™G™OM is HY -  H™H™, - .. H®) The time slices t = 1 and
t =T are then treated separately to remove the variables which are not necessary
to satisfy the runing intersection property. The resulting junction tree is shown in
Figure 6. We thus have a computationally optimal tree to propagate the effect of
observed evidence.

The complexity of the JLLO and Dawid algorithms scales as the sum of clique state-
spaces. Therefore, given the asynchrony assumptions, the left-to-right topology and
our junction tree, the total complexity to infer this B-band DBN is O(MBD|L,|BT)
where D is the dimension of the acoustic vectors.

5.3. Model parameters estimation

So far, we have assumed that parameters of the B-band DBN are known for each
word. In this section, we present an algorithm of parameters estimation. In all the
experiments we carry out later, we learn the model of each word independently of
the others, i.e., we do not perform embedded training. We emphasize however that
this is not a constraint of our system. Indeed, embedded training can be performed
exactly as in the HMMs setting given that all graphical structures of the models are
the same. Also, the use of words as acoustic units in not a constraint neither, any
kind of acoustic units (phonemes, diphones...) can be used without any particular
change in our methodology.

In order to simplify the notation in the formulae below, we drop the reference
to the word under consideration. Suppose that we have (for a given word v) an
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be the set of all possible trajectories of the hidden process defined by the Ht(n). Then,

from (1) and by marginalization over H, the likelihood is given by:

heH t=1n=1 \p=1

Z {H AW p M H “h(”‘”hg’_‘{h,ﬁ”)} {H H <Z wh(”)pbh(n) ))> } :

Therefore, by aplying the EM algorithm, the auxiliary function can be decomposed
as the sum of terms depending each on one component of the parameters set. Thus,
solving the parameters estimation problem comes back to a simple generalization of
the Baum-Welch algorithm. This is made possible essentially because we have im-
posed that continuous variables are conditioned by discrete ones. The re-estimation
formulae are obtained as follows: suppose that we have estimated the parameters at
iteration [ and define for (i, 7, k,p) € {1, ...,m}3 x {1,..., M} (here we assume that
the number of hidden states is the same for all words and equals some integer m,

ie., |I,| = m,Vv):

VAN
wﬁ”( ) = P(HY, =i, H" = jlo)
wt (2 gk )ép([{t(” b :z,Ht(_)1 = j, H™ =klo) for n=2,...,B
W, 5) = lei”(z',j)
t=

T

D™ (i k) 2 S W™, 5, k) for n=2,..,B
=1
d)gn)(l,p) é P ‘Ht(n) — Z,ng) :p|0) fOI' n = ]_, ’B
T
o™ (i, p) = > q&,ﬁ”’ (i,p) for n=1 B
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Figure 6: Junction tree of the B-band Bayesian network. Cliques and separators are respectively
represented by ellipsoids and rectangles. For each clique, the variables in bold are those which are
assigned to that clique in order to obtain an initial representation of the JPD (see section 3).

Then, the new parameters at iteration { 4+ 1 are given byl

YO, j)

> v, k)

k=1

aij =

IFor sake of notational simplicity, we drop the iteration index.
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ijk — m —
lzw(”)(m,l)
=1

T
t; o™ (i, p)ol™
Hip = &™) (i, p)
> o (i, p) (0" — ™) (0™ — ™)
win) _ =
b ¢ (i, p)

What remains is to efficiently compute the posterior probabilities w,ﬁ” (i,7), zpt(”) (4,7, k)

and ¢§”) (¢, p) defined in equation (7). All these posterior probabilities can be effi-
ciently computed using the JLO algorithm which allows the computation of marginal
and conditional probabilities of clique variables. We point out also that in the full-
band case (B = 1) which collaps to an HMM, the computation of @/},5”(2’,]’) and
qbgl)(i,p) using the JLO algorithm is (exactly) equivalent to the Forward-Backward
algorithm.

6. Application to isolated speech recognition

For an isolated speech recognition task, the decoding algorithm is readily given by
the material described in section 3. Indeed, once we have learned a B-band DBN
model ©, for each v € V, then given a speaker utterance o, we compute the likelihood
P(0|©,) for each v € V using the JLO algorithm and choose the word v* such that

v* = argmax, P(0|©,)

to be the pronounced word. The computational complexity of this decoding algo-
rithm is O(M BmPT), we recall that M is the number of Gaussian components in
each mixture and m is the number of hidden states.

Experiments

We now evaluate the performance of the B-band DBN on an isolated digit recogni-
tion task. We compare our model to HMMs, a classical multi-band (CMB) system
and a synchronous ”"multi-band” Bayesian network. The experiments are carried
out on the isolated part of the Tidigits database™ in which 112 (resp. 113) speakers
are used for training (resp. test). Each speaker utters 11 digits twice. The param-
eterization for the classical full-band HMM is done as follows: 25ms frames with a

**We emphasize here that our purpose in this paper is not to perform benchmark tests, i.e., our
goal here is not to tune the parameters in order to achieve the highest performances. Rather, we

provide comparisons using baseline systems in order to illustrate the capabilities of each system
and have a fair judgment on their potentail.
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frame shift of 10ms, each frame is passed through a set of 24 triangular filters re-
sulting in a vector of 35 features, namely, 11 static MFCC (the energy is dropped),
12 A and 12 AA. For our model, we present experiments in the case of 2, 3 and
4-band BN. The parameterization for the 2-band DBN is done as follows: each
frame is passed through the 14 first (resp. last 10) filters resulting in the acous-
tic vector of sub-band 1 (resp. sub-band 2). Each vector contains 17 features: 5
static MFCC, 6 A and 6 AA. The resulting bandwidths of sub-bands 1 and 2 are
[0..1467H 2| and [1211H 2..10000H 2] respectively. For the 3-band BN, each frame is
passed through the first 8, second 8 and last 8 filters resulting in the acoustic vector
of sub-band 1, 2 and 3 respectively. Each vector contains 11 features: 3 static MFCC,
4 A and 4 AA. The resulting bandwidths of sub-bands 1, 2 and 3 are [0..692H z],
[615H 2..2152H z] and [1777H 2..10000H z| respectively. Similarly, for the 4-band BN,
each frame is passed through the first 6, second 6, third 6 and last 6 filters. Each
resulting vector contains 8 features. The resulting bandwidths of sub-bands 1, 2, 3
and 4 are [0..538H z], [461H2..1000H z|, [923H z..3158 Hz] and [2607H z..10000H z]
respectively. In all the experiments, for every digit and all models, the number of
hidden states is six (m = 6) and we have a single Gaussian per state with a diagonal
covariance matrix. Table 1 shows the recognition scores obtained using the 2, 3 and
4-band BNs and also the score with a classical full-band HMM. In this experiment,
both train and test are on clean speech. In these results the three B-band BNs all

Model | HMM | 2-band | 3-band | 4-band
Score | 93.4% | 97.4% | 97.3% | 95.4%

Table 1: Recognition scores of the HMM and the B-band DBN (B = 2,3,4) on clean
speech.

outperform the HMM recognizer that we tested. We conclude that taking into ac-
count the frequency dynamics leads to a higher fidelity speech modeling. One can
notice however (in this experiment) that when the number of sub-bands increases
the accuracy decreases. This should not be understood as a characteristic of our
multi-band system. Probably one explanation is the fact that we are using the same
amount of data to estimate models with an increasing number of parameters. We
believe however that this behavior is mainly due to the ad-hoc choice of sub-bands
bandwidths. For instance, sub-band n is more relevant than sub-band n' in the B-
band DBN if n’ > n, in the sense that it governs the behaviour of sub-band n'. Thus,
for example, sub-band 1 is more relevant than all the others and in the parameteri-
zation we chose, when the number of sub-bands increases the amount of information
contained in sub-band 1 decreases. The optimization of the sub-bands bandwidths
is not our major concern in this work because we do not perform benchmark tests.
What should be retained from these results is that, even with such ad-hoc choice of
sub-bands frequencies, the B-band DBN outperform HMMs. This is in fact a major
advantage since, to the best of our knowledge, the only multi-band systems which
out-perform HMMs in clean conditions use the full-band parameterization as an ad-
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ditional “sub-band”. Such a manipulation is conceptually unrealistic in our opinion
and penalizes the systems in noisy conditions.

In the following experiments, training is done on clean speech and test is done on
noisy speech. We show the performances of our model when the noise is additive
and corrupt one spectral sub-band with two different bandwidths. We compare a
2-band DBN to HMMs and two other models. The first one is a standard 2-band
model where the recombination is performed by a multi-layer perceptron (MLP),
we term this model CMB-MLP. The topology of this MLP is: 22 input, 15 hidden
and 11 output neurons. In the second model that we term Sync, for each frame, we
concatenate the acoustic vectors of sub-band 1 and 2 and use the resulting vector (34
features) as an input for the HMM-based system. It is important to note that, since
we use diagonal covariances, Sync is equivalent to a 2-band DBN where a complete
synchrony is imposed between the two bands. Indeed, given that covariances are
diagonal, the HMM representing Sync can be viewed as the DBN shown in Figure
7, where B = 2 and each variable H; (resp. G;) takes its values in the set {1,...,m}
(resp.{1, ..., M'}). The model of Figure 7 corresponds in turn to a completely syn-
chronous B-band DBN. Therefore, the comparison between Sync and our 2-band
DBN will be a good indication about the importance of asynchrony. The issue of
asynchrony in multi-band ASR has been studied by many researchers. For instance,
in [24] the authors conclude that considering asynchrony in multi-band ASR may
improve the acoustic modeling. They failed however, in [25], to improve the recogni-
tion performances when relaxing the synchrony constraints in a multi-band system,
they then conclude that asynchrony is not advantageous. We believe that if this
argument is true, it is only in the sense of incorporating asynchrony assumptions in
a classical multi-band system. In other words, even if this argument is true, it does
not mean that asynchrony does not exist or is irrelevant. It only means that it is
difficult to exploit and deal with asynchrony in classical multi-band systems. As we
will see below, The DBNs perspective to multi-band ASR suggests that asynchrony
is in fact advantageous.

Figure 7: Synchronous B-band dynamic Bayesian network

The noisy speech (in test) is obtained by adding to the clean one, at different
SNRs, band-pass filtered white noises with different bandwidths: [5000H z..10000H 2]
for Noise A and [2000H z..7000H z] for Noise B, the SNR being estimated as:

Signal Energy)

SNR =101
o810 < Noise Energy
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Therefore, in both cases, only sub-band 2 is corrupted . Table 2 (resp. Table 3)
gives the recognition rates obtained for Noise A (resp. Noise B) using the four models
(HMM, Sync, CMB-MLP and the 2-band DBN). For both noises, the 2-band DBN
largely outperforms all the other models. Even when the scores of the latter are
extremely low (sometimes close to random decision), our model still yield relatively
good recognition rates. This indicates that our model is well adapted to the case of
band-limited noisy speech. It is also remarkable how huge are the differences between
the scores of our model and those of Sync. We believe this illustrates the importance
of asynchrony in multi-band speech modeling.

Noise A: 5-10 KHz | HMM | Sync | CMB-MLP | 2-band DBN
SNR 26db 53.4% | 43.5% 59.5% 84.9%
SNR 20db 38.8% | 27.2% 39.0% 77.9%
SNR 14db 26.3% | 18.8% 23.4% 70.8%
SNR 8db 18.4% | 11.6% 14.7% 65.5%
SNR 2db 13.7% | 9.3% 10.4% 63.2%

Table 2: Recognition scores for Noise A using the different models

Noise B: 2-7 KHz | HMM | Sync | CMB-MLP | 2-band DBN
SNR 26db 52.3% | 45.8% 54.0% 82.7%
SNR 20db 46.2% | 32.1% 42.8% 71.2%
SNR 14db 39.0% | 20.1% 37.3% 60.8%
SNR 8db 32.5% | 11.3% 33.7% 54.4%
SNR 2db 28.6% | 9.5% 26.9% 49.4%

Table 3: Recognition scores for Noise B using the different models

7. Application to continuous speech recognition

In a continuous speech recognition task, given a B-band DBN model of each word
in the vocabulary and a speaker utterance, the goal is to identify the most likely
sequence of words given the observation. A naive solution would be to use a B-
dimensional Viterbi algorithm [26] which is computationally very expensive. In this
section, we present an efficient decoding algorithm which relies essentially on a state-
augmented B-band DBN model, we then show experiments on a connected digits
recognition task.

7.1. Decoding algorithm

The basic idea is to build a new B-band DBN model which represents all the words
in the vocabulary, decoding is then performed by inferring this new DBN. Precisely,

ttObviously, in most real world applications one does not know a priori which sub-bands are
corrupted, these has to be detected using some noise estimation algorithm.
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the graphical structure of this new B-band DBN is the same as the one of Figure
3, the difference is that the variables do not depend any more on the word under
consideration, and each variable Ht(n) takes now its values in the set I = |J, oy Io-
To complete the definition of this new DBN we need to specify the conditional
probabilities of the hidden and the observed variables. Let (7,7, k,p) € I* x J such
that (7,7, k) € I,> for some v € V. Then, the observation’s conditional probabilities

are simply given by those corresponding to each word, namely:

PO} = |H{" = i,GI" = p) 28, (0,1)

To specify the hidden process parameterization we need to include the language
model, we also make some (a)synchrony assumptions: we still allow complete asyn-
chrony inside a word, but we impose a full synchrony of all sub-bands when transiting
between words. Precisely, since we have a left-to-right topology, the only non-zero
conditional probabilities are the following:

e The synchronous transition between two (not necessarily different) words v and
v

2

P(H?" = 1,|HY, = m,) = P(ul)

P(H™ = 1,|H" " = 1,, H") = m,) = P(v[¢/)

where P(v|v') is given by the language model.
e The inside-word conditional probabilities:
A

P(H" = jlH", = i) = a;(v)

P(H" = K|H =i B = j) 2 ufj)(0).

Now we have a completely defined B-band model on which decoding can be per-
formed. To do so, we use the Dawid algorithm [11] which allows the identification
(with the same time complexity as the JLO algorithm [22]) of the most likely se-
quence of hidden states given observations.

Given the (a)synchrony assumptions and the left-to-right topology, the total com-
plexity of this decoding algorithm is O(MBmPT + |[V|*T). We point out also that
in the 1-band case (i.e. HMMs), this algorithm is equivalent to Viterbi decoding.

7.2. Experiments

The experiments are carried out on the connected part of the Tidigits database in
which 112 (resp. 113) speakers are used for training (resp. test). Each speaker utters
77 sentences resulting in 8642 sentences for training and 8701 for test, each sentence
contains between 1 and 7 digits. We show comparisons™ of the performances of a

At the time of writing we do not have a continuous version of the CMB system to show
its performances. However, we expect our system to have even better performances than such a
system as compared to the results obtained in the isolated task. Indeed, the latter is the ideal
setting for a CMB system because there is no word-asynchrony to deal with, and it is well known
that recombination is a more difficult task in the continuous setting than in the isolated one. Our
system does not have such discrepancy. Also, we do not show the results of the Sync model because
it always yields the lowest performances.
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2-band DBN with a single Gaussian per state to HMMs with a different number
of Gaussian components in each mixture. For every digit and the silence model,
the number of hidden states is seven (m = 7) and all the covariance matrices are

diagonal. We use a uniform language model, i.e., P(v]v') = & (eleven digits +

silence). The parameterization of the classical full-band HM1\/112is done as in the
isolated task (see the previous section). The parameterization of the 2-band DBN is
done as follows: each frame is passed through the 16 first (resp. last 8) filters resulting
in the acoustic vector of sub-band 1 (resp. sub-band 2). Each vector contains 17
features: 5 static MFCC, 6 A and 6 AA. The resulting bandwidths of sub-bands
1 and 2 are [0..2152Hz] and [1777H~z..10000H z] respectively. The training of all
models is done on clean speech only. The test however is performed on noisy speech
which is obtained by adding, at different SNRs, a band-pass filtered white noise
with a bandwidth of [3000H z..6000H z]. Table 4 and 5 show respectively the digit
and phrase accuracy that we obtain using both models. If one compares the 2-
band DBN with HMM-1G which both have a single Gaussian per state, one sees
that our model largely outperforms the HMM-1G model. One can argue that this
may be due to the fact that our model uses (slightly) more parameters than the
other model. The comparison between our model and the other HMMs (which have
more than 2 Gaussian components per state) shows the opposite of this argument.
Indeed, all these HMMs use much more parameters than the 2-band DBN, still our
model yield the best performances. Particularly, the more the SNR is low the higher
is the accuracy of the 2-band DBN as compared to the HMMs. This illustrates
the potential of our approach in exploiting the information contained in the non-
corrupted sub-band. In summary, the behavior of our system in the continuous task
remains consistent as compared to the isolated task and its performances on this
illustrative experiment are impressive. This shows that the DBNs perspective to
multi-band speech recognition is very promising.

Noise 3-6 KHz | HMM-1G | HMM-2G | HMM-4G | HMM-8G | 2-band DBN (1G)
SNR 26 db 89.95% 92.69% 97.20% 96.82% 96.16%
SNR 20 db 82.17% 85.17% 94.19% 93.59% 94.89%
SNR 14 db 73.27% 75.33% 87.44% 86.64% 90.81%
SNR 8 db 62.57% 59.57% 73.85% 72.91% 82.27%
SNR 2 db 58.86% 40.82% 54.60% 53.48% 75.51%

Table 4: Digit accuracy rates(nG means n Gaussian components per state)

Noise 3-6 KHz | HMM-1G | HMM-2G | HMM-4G | HMM-8G | 2-band DBN (1G)
SNR 26 db 71.47% 79.05% 92.00% 90.77% 89.42%
SNR 20 db 52.49% 59.38% 84.09% 82.65% 85.90%
SNR 14 db 35.69% 40.13% 69.22% 67.29% 74.67%
SNR 8 db 20.90% 20.55% 46.00% 43.17% 53.86%
SNR 2 db 10.97% 9.696% 23.82% 22.52% 39.87%

Table 5: Phrase accuracy rates (nG means n Gaussian components per state)
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8. Conclusion

We presented a new approach to multi-band speech recognition which consists in
building a dynamic Bayesian network to model speech in the time-frequency domain.
We developed all the necessary algorithmic material to apply it in isolated and con-
tinuous speech recognition. The experiments we carried out illustrate the potential of
this new approach as compared to classical HMMs and classical multi-band systems.
Generally speaking, this paper shows that the DBNs perspective is a very promising
framework in the field of multi-band and noisy speech recognition. We emphasize
here that the approach we presented in this paper can be further improved either
by applying a structural learning procedure to learn the speech multi-band model
from data, or by considering more complex dependencies between the variables of
the hidden process in the B-band DBN with no additional cost in the inference
complexity. Indeed, one can consider the more complex model shown in Figure 8 for
a single time slice. This DBN has the same junction tree as the DBN we considered
in this paper. Thus, it has the same inference complexity as our B-band DBN if the
latter is assumed ergodic (i.e., no left-to-right topology is assumed). Moreover, such
model would illustrate the importance of cross-correlation between sub-bands. This,
as well as benchmark experiments, will be the purpose of future works.
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