N
N

N

HAL

open science

Optimal frequency selection in circuit design for energy
minimization

Bruno Gaujal, Eric Thierry

» To cite this version:

Bruno Gaujal, Eric Thierry. Optimal frequency selection in circuit design for energy minimization.
Proceedings of the 10th International Conference on Real-Time and Embedded Computing Systems

and Applications - RTCSA’2004, 2004, Gothenburg/Sweden, pp.437-448. inria-00099916

HAL Id: inria-00099916
https://inria.hal.science/inria-00099916
Submitted on 26 Sep 2006

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.

https://inria.hal.science/inria-00099916
https://hal.archives-ouvertes.fr

Optimal frequency selection in circuit designs for
energy minimization

Bruno Gaujal' and Eric Thierry!

LIP, ENS-Lyon, INRIA, CNRS, UCBL, 46 Allée d'Italie, 69007 Lyon, France,

Bruno.Gaujal@ens-lyon.fr, Eric.ThierryQens-lyon.fr

Abstract. In this paper we present a quadratic time algorithm using
dynamic programming to compute the set of NV speeds that a processor
should use to minimize its energy consumption while meeting real time
constraints. This computation is based on the energy consumption as
a function of the clock frequencies and a statistical knowledge of the
likelihood of using any frequency in the range from zero to the maximal
possible frequency.

keywords: Energy consumption; dynamic programming; circuit design.

1 Introduction

Energy consumption is one of the most important issue in modern digital circuit
design.

Several techniques are used to lower the energy use: On a static level one can
mention the reduction of leaks, or removing the redundancy of logical gates [2].
On the dynamic level one can think of minimizing the size of the memory [1]
or dynamically changing the voltage over time [4]. Many papers in the real time
community have been devoted to the latter issue However most of them consider
the following problem: given a circuit which can use a fixed set of N frequencies,
how to use them in order to minimize the energy consumption while meeting
real-time constraints. For example under EDF scheduling, an optimal solution
(off-line) is given in [9]. On-line algorithms are given in [3,5,6,9] using various
assumptions on the set of tasks. Under FPP, finding the optimal solution is
NP-hard but approximable [10]. To the best of our knowledge, there are few
theoretical studies on a different problem: how to first select those N sample
frequencies? In [7], such a problem is addressed in order to minimize the worst
case. However, this paper disregards the fact that some frequencies will be used
more than others and also the fact that one can use two samples instead of one
to replace one frequency. These two points will be addressed here: the frequency
of utilization is taken into account in a measure p and the replacement of the
optimal theoretical frequency by the samples is done optimally.

When designing a processor with dynamically varying frequencies, it is very
interesting to make a good preliminary selection of the frequencies that the
processor is going to use in order to reduce the energy consumption. So far,

in most cases, these choices are based on experimental studies, simulations and
tests. The choice of the speeds is indeed a difficult problem because it depends on
hardware compromises and unknown parameters. Also, the typical number N of
different frequencies that a circuit can use is usually 2 or 3 so that an exhaustive
search is considered feasible. However, for asynchronous circuits, for example, N
tend to be much larger [8], as well as the range over which the frequencies can
be chosen. This makes the problem more combinatorial.

In this paper, we deal with all these difficulties by assuming a statistical
knowledge on some of these unknown parameters and by using a mathemat-
ical approach to model all the constraints of the problem and to remove the
combinatorial nature of the problem.

Several factors may play a role in this choice. Firstly, hardware constraints
have to be taken into account (in some cases, it is easier to select a set of
doubling frequencies of the type {f,2f,4f,8f,---}). Secondly, the instantaneous
consumption as a function of the current frequency has also to be taken into
account.

In the following, we group together those two factors into a single ”cost
function” g(f) which gives the cost (both in energy and hardware complexity)
of using frequency f.

Finally, a statistical knowledge of the future use of the processor can also
play an important role in the speed selections. One way to think about this
last parameter is to consider a first (expensive) circuit built for experimental
purposes with a very large number of available speeds. This experimental circuit
runs over a typical application for the future cheaper circuit (which will only
have a few available speeds) and the designer measures which speeds are used
more often. This measurements are gathered under the form of a mathematical
measure p over R.

Now, the selection of the speeds will be a compromise between their cost (g)
and their likelihood (y).

The paper continues as follows, Section 2.2 constructs the mathematical
model of the problem, Section 3 presents a dynamic programming algorithm
solving the problem in quadratic time in the discrete case as well as a deriva-
tion of bounds for the continuous case. Section 4 shows several extensions of the
problem.

2 Presentation of the model

2.1 Construction of p

We assume that through some statistical analysis one can derive the distribution
of the frequencies (also called speeds in the following) that are the most desirable
for the processor. In order to be as general as possible, this knowledge is given
under the form of a measure p over the interval [0, fiqz]. In particular, this
include the case of a discrete measure (something of the following flavor: on
average, the processor will use the maximal speed 1/3 of the time and half the

maximal speed 2/3 of the time). It also includes the case where a continuous
density is mixed with a discrete measure.

Although this is a crucial point for the appropriateness of the method pre-
sented below, we will not discuss much further on the determination of the mea-
sure p. As mentioned in the introduction, one can imagine that y is constructed
along the following lines. Construct a simulation of the circuit which can choose
over a very large selection of speeds. Run this simulation several times over
its typical real-time applications. Each application is decomposed into several
phases (for DSPs, these are typically matrix inversions, matrix products,...)
with different real time constraints. For each step, the simulation computes the
best speed that verifies the real-time constraints of the application while mini-
mizing the energy use, such as the one proposed in [9] for example. The last step
is to monitor the simulation over a large number of runs, identify the frequencies
that are used the most and capture this under a measure u over the whole range

[0, fmaa]-

2.2 Statement of the problem

The instantaneous energy consumption of a processor depends on the frequency
f(t) at time ¢ according to a function g which depends on the technology of the
processor. This function is usually convex. The non-convex case is postponed to
Section 4.2. In the following we assume that f,,4; = 1. This is possible with no
loss of generality by time rescaling.

Now, we consider a theoretical model I" for the processor that can use the
whole continuum of speeds in the range [0, 1]. By construction of y, at any point
in time, this model uses speed f with probability du(f) and the corresponding
instantaneous energy consumption is g(f). Under stationary and ergodic as-
sumptions on the behavior of I', the expected energy consumption over a large
time period T is ¢T fol g(f)dp (here c is the normalization constant: ¢ fol dp =1).

Actually, the real circuit C' can only use a set of N + 2 fixed frequencies
0< f1 <:-- < fy < 1. Therefore, to emulate the model I, each time I" uses
speed f, C uses a combination of the two speeds f, frr+1 such that fi < f < fr41
with a time ratio @ between the two speeds such that afy + (1 — &) fx+1 = f.
This policy for allocating the finite set of speeds has been proved optimal in
terms of energy consumption (see [3]), as long as the overhead induced by speed
changes is neglected.

In some frequency (or voltage) scalable processors, such as Linux/RK CPUs [7],
this is not the case because changing frequencies takes a lot time. However, in
asynchronous processors [8] and even for some experimental synchronous CPUs
with voltage scaling such as modified XScale BRH circuits [7], the overhead
induced by speed changes is very small and can be neglected.

Therefore, the expected energy consumption of the real circuit C over a
given time period T is ¢T fol h(f1, -, fn)du, where h(f1,---, fn) is the linear
interpolation of g over the points (0, f1--- , fn,1) (see Figure 1).

Speed

fo fi fa f3
Fig. 1. The function g and its linear interpolation h.

Therefore, the problem of choosing the best frequencies is: given N, g and p,

1
Minimize / h(fi, -, fn)dpoverall 0 < fi <--- < fy < 1.
0

Another way to state the problem is the following: given a convex function
g, find the piecewise affine function h above g (with N + 1 segments) closest (for
the measure u) to g.

A more explicit way to formulate this problem is by using the actual form of
the function h. The problem becomes:
1- Compute the expected energy consumption rate under fy - -- fx (H(f1--- fn) =
fol h(f1, -+, fn)du) by decomposing the interval [0,1] into the sub-intervals
(fx, fk+1]k:0,--- N (with fo =0 and fyi1 =1):

N
H(fi---fn) =)o,
=0
with

o I [s M [i s A5
0 otherwise,

2 - Find the minimum energy consumption rate:

OSflﬁn}'HSlfol (h In)

3 Dynamic Programming Solution

Let us call S*(V, z,y) the value of the optimal expected energy consumption rate
with N speeds distributed between x and y. Using the definition of S*(N,z,y),

inf
0<f1<<fn<1

It is easy to see that S* satisfies the following recurrence equation:

S*(N,.Z',y) = énf; (S(O,Z',Z)+S*(N—1,Z,y)),
<2<y

where

1
zZ—x

8(0,2,y) = ((g(x)z - o)) [Cdu+ (9(2) - 9(@)) /) fdu>-

This can be used to compute the optimal solution with a dynamic programming
approach as soon as the state space of the speeds is finite. In order to do this,
we discretize the interval [0, 1] with steps of length 1/k where £ is large enough.
The size of k is given in the following section (3.1).

Once this is done, we can reformulate the recurrence equation using integer
variables z and y between 0 and k.

SE(N,z,y) = min(S} (0,2, 2) + SE(N — 1, 2,1)),

where

S;(0,2,2) =5(0

El RN

T
JEJ)

This provides an algorithm computing both S; (N, 0, 1) and the argmin (f{ - -- fx/).
This algorithm is given in Figure 2, where all variables have initial value 0.

for z from 0 to k£ do
Snew[x] = S(O, .CC/k,].)
for i from 1 to n do
for x from k to 0 do
Sold[m] = Snew [x]
Snewlz] := 00
for y from x to k do
if S(0,z/k,y/k) + Sota[y] < Snew[x] then
Snewlz] = S(0,2/k, y/k) + Sotaly]
fli,z] =y
f*[n] == f[n,0]
for i from n-1 to 1 do
frle] = £l i+ 1]
return(Spew[0] and f*[1]--- f*[N]).

Fig. 2. Dynamic Programming Algorithm computing f; - - - f3 with O(k®> N) operations
and O(kN) memory space

The arithmetic complexity of the algorithm is O (k% N) operations with O(kN)
memory space. Using k = p/e, (where p is an appropriate constant, see the next

section), insures an error bound e. This provides a quadratic complexity in the
error bound and a linear complexity in the number of points.

It is also possible to modify the algorithm into a new one with O(k?N?)
operations and O(k) memory space (again, all variables have an initial value
equal to 0). This algorithm is given in Figure 3.

for x from 0 to k do
Snew [CE] = S(O, .’I?/k,].)
for j from n to 1 do
for i from 1 to j do
for x from k to 0 do
Sold[x] = Onew [.’E]
Snew[] 1= 00
for y from x to k do
if S(0,z/k,y/k) + Soia[y] < Snew[z] then
Snew|z] := S(0,2,y) + Soialy]
flz] =y
1= £l + 1]
return(Shew[0] and f*[1]--- f*[N]).

Fig. 3. Dynamic Programming Algorithm computing Sj(V,0,1) and fi --- fx with
O(k*>N?) operations and O(k) memory space

3.1 Bounding k

The goal of this section is to derive the value of k given the fact that we want
to approximate S*(N,0,1) with an error bounded by . The problem is to find
k such that S} (N,0,1) — S*(N,0,1) <e.

Since g is convex, the slope of g is always bounded by p := max(g/, (0), g’ (1)).

Proposition 1. If k > 2 then 0 < S;(N,0,1) — S*(N,0,1) <e.

Proof. Let f{ <--- < fx be the optimal solution with cost S*(IV,0, 1). For sim-
plicity, the function h(ff - -- f3) (the linear interpolation induced by f{ - -- f,) is
denoted h*. We approximate ff -- - fx by values over the discrete set {%}izo,,k.
We set z; := [kff]! and f; ;== x;/k forall 1 <i < N.

Now, for simplicity, we also denote by h, the linear interpolation induced
by fi,---,fn, namely, h def h(fi, -+, fn). We also construct the function w
which is the piecewise affine function between the points fg,-- -, fA-,; such that

w(ff) == h(f})-

! here, [z] is the integer closest to =

We will first show that w > h. Indeed, for all 0 < i < n, since w(f) = h(f})
and since w is affine between f; and f | and h is convex between f; and f,

, then w > h on [ff, fi]

We now show that 0 < [} w(f)—h*(f)du < p/k. First note that [, w(f)du >
fol h*dp because w(f;) = h(f}) > g(fF) = h*(f}) and both functions are piece-
wise affine between those points. For all i,

w(ff) —h*(f7) = h(f7) — h*(f)
= h(f7) = h(fi) + h(fi) = " (f7)
= h(f7) = h(fi) + 9(fi) — 9(f})
<|R(fF) = h(f)l + 1g(fi) — 9(£7)
<2p|f - fil
< p/k.

Furthermore, since w and h are piecewise affine, so is w — h. Its maximum
absolute value between 0 and 1 is reached at one of the f;. Therefore,

/0 w(f) — h*(f)dp < / max(w(f) — b (£)d,

1
<ok [du,
0
=p/k-

Finally, as soon as p/k < &, we have

[vz [wnaz [n @ [wi-e

We further know that the solution S;(NV,0,1) of the dynamic programming
equation verifies H(f{--- fx) < S{(N,0,1) < H(fi---fn). This shows that

Note that the bound on the value of k given by this proposition depends on
g but does not depend on N so that k can be chosen uniformly for all values of
N. Also note that since [0,1]" is compact and H(f1,--- , fn) is continuous in
fi-++, fn, the limits when k goes to infinity of all subsequences of the optimal
solutions of the dynamic program are optimal solutions.

4 Several extensions

4.1 The uniform case

Here is one important particular case: the measure p is uniform over [0,1]. The
uniform case corresponds to the case where one has no statistical information on

the future use of the processor so that all speeds between 0 and 1 seem equally
likely to be used.

In the uniform case, it is possible to give necessary conditions for f;--- fn
to reach the minimum value of S(N,0,1). Indeed, the cost function can be com-
puted more explicitly (up to a multiplicative constant):

N

H(fi--fn) =D (firr = fi)(9(Firr) + 9(f3))-

=0
By differentiating with respect to f;, one gets (assuming that g is differentiable)

OH(f1--- fn)
ofi

If f1--- fnv is a local minimum of s, then for all 1 <i < N,

o = =G @)

If g is strictly convex and derivable, this means that f; is the only point between
fi—1 and f;11 where the slope of g is the same as the global slope of g between
fi—1 and fiy1 (see Figure 4).

= —g(fir1) + 9(fic1) + (fiyr — fic1)g'(fo)-

fie1 fi fina

Fig. 4. The choice of speed f;, once f;_1 and f;11 are given

In some cases s has a unique local minimum (hence global) and the previous
characterization can help to compute the minimum explicitly. However, in most
cases s has many local minima and one needs additional properties to compute
the global minimum of s. For instance, if g is a polynomial of degree d, then
the system of equations for the local minima is made of n polynomial equations
each of degree d — 1. The number of solutions can be as large as (d — 1)V

However, if we consider the typical case where the energy is quadratic [7],
g(x) = az? (a > 0), then the system of equations (2) becomes:

2fi=fo
2fr=fas+f1
2fn = fN+1 +1
Which has a unique solution (ﬁa N NLH) This means that if the energy is

quadratic in the frequency, then the speeds should be evenly distributed over
[0,1] for any N.
4.2 The non convex case

There are two reasons to consider the case where g is not convex. The first one is
by taking into account static power leaks of circuits which is more and more im-
portant nowadays and cannot be neglected. In this case the power consumption
is not convex in the speeds any longer, as illustrated by figure 5.

Cost

P, stati

Speed

Fig. 5. Power consumption with a static leak Pstqtic.

The second reason is because the cost function g(f) should not only take
into account the energy consumption using frequency f but also the hardware
cost of implementing that frequency. In that case the cost g is also not convex
in general.

When g is not convex, the circuit C' introduced in Section 2.2 should not
use the two neighboring speeds to emulate a given speed f in order to optimize
its power consumption. Instead, its should use two frequencies f; and f; such
that f; < f < f; and all the points (f,9(fk))k=1...~ lie above the straight line
containing the points (f;, g(fi)) and (f;,9(f;)). This means that the average
energy consumption rate is no longer the integral of the linear interpolation

h(f1--- fn) but it is integral of its lower convex hull, called h.(f; --- fn) in the
following (see Figure 6). Note that by definition of h.(f1--- fn), he(f1--- fN) =
h(fiy, -+, fix) where {fi,, -+, fix } is the subset of {f1--- fny} made of the
extreme points used by the lower convex hull. For the example displayed in
Figure 6, where N = 3, h.(f1, f2, f3) = h(f1, f3) so that K =2 and iy = 1,is =
3.

Cost hc(flaf2a

Speed

]‘:'0 fl f2 f:'3 f4

Fig. 6. The function h when g is not convex

The goal is now to choose the set of frequencies fi,--- , fx for minimizing

the integral H.(f1, -+, fn) = fol he(fi, -+, fn)dp.

As for the convex case, we discretize the problem by restricting the search to
the finite set {n/k,n=1,--- k—1}.

We apply the same dynamic programming method as before. It should be
clear that it provides a set of N frequencies fy,- - - , fa that minimize H(f; - - - fn),
as before. However, it is not clear that H.(fi,---, fn) is also minimized by the
same set fy,---, fa. This is proved using the following lemma.

Lemma 1. The lower convex hull of the points (ff,g(f1))s, -, (fr,9(fx))
contains all the points (ff,g(fr)), -+, (fr,9(f)) as extreme points (in other
words, h(fl*a Tt 7f1*\<[) = hC(fl*a tee af]tr))

Proof. The proof is by contradiction. Let us suppose that the point (fZ, g(f¥)) is
not an extreme point of the convex hull. Consider a new set of points, f1,---, fn
such that f; = f; for i # a and f, = fi, ;. Then, f|,---, fy is a valid solution
to the dynamic programming problem and its cost is the integral of the linear
interpolation of the points fi,--- , fo against p: fol h(f1,--+, fan)du. This is ob-
viously smaller than the cost of f,---, fx, namely fol h(ff, -+, fa)du because
by construction of fi,--«, fa, B(f1, . fn) < h(ff, -+, fa) everywhere.

Using the previous lemma, one may conclude that the dynamic program
provides the best points for the minimization of the linear interpolation A which

happens to be also convex and therefore coincides with h.. This means that
when using the dynamic program one gets the optimal solution for minimizing

H.(f1,---, f~n)- Indeed, for every fi1,---, fn, as mentioned above, there exists
K < N and iy, ---ix such that
Hc(fh"'afN):H(fil;"'afiK)) (3)
and
Hc(ffa’f]z):H(ffaaf;{T)a (4)
= min o min H(fi,-, fx), (6)
S min Hc(fl;"' afN)a (7)

fiyesfN

where (4) holds because of Lemma 1, (5) is the definition of (ff,---, fx),
(6) holds because one may choose f; = fi11, and (7) is a consequence of (3).

Finally, this means that f;,---, fx also minimizes H.(f1, -+, fn)-

As for computing a bound on k (the sampling parameter), Proposition 1 can
also be applied here as long as g is continuous with left and right derivatives
bounded by p everywhere.

4.3 Further extensions

Another factor that is very important in circuit design in order to reduce the
energy consumption is to play on the hardware design to change the shape
of the cost function g. We have too few informations at this point about the
technological constraints that drive the construction of g to make a pertinent
suggestion on this issue. The combined optimization of the shape of g and the
choice of the NV speeds is important in energy centric circuit design.

A practical implementation of this technique for real processors is required
to state the gain with respect to easy heuristics.

5 Conclusion

In this paper, we present a dynamic programming technique to select the best
N speeds for a power aware circuit with dynamically varying voltage. This com-
putation is based on an a priori statistical knowledge of the likelihood of the
frequencies.

References
1. F. Catthoor, S. Wuytack, E. De Greef, F. Balasa, L. Nachtergaele, and A. Vande-

cappelle. Custom Memory Management Methodology. Kluwer Academic Publish-
ers, 1998.

10.

A P. Chandrakasan and R.W. Brodersen. Minimizing power consumption in digital
cmos circuits. In Proceedings of the IEEE, volume 83, 1995.

B. Gaujal, N. Navet, and C. Walsh. A linear algorithm for real-time scheduling
with optimal energy use. Technical Report RR-4886, INRIA, 2003.

F. Gruian. Energy-Centric Scheduling for Real-Time Systems. PhD thesis, Lund
Institute of Technology, 2002.

1. Hong, M. Potkonjak, and M.B. Srivastava. On-line scheduling of hard real-time
tasks on variable voltage processor. In International Conference on Computer
Design, pages 653—656, 1998.

A. Qadi, S. Goddard, and S. Farritor. A dynamic voltage scaling algorithm for
sporadic tasks. In 24th IEEE International Real-Time Systems Symposium, pages
52-62, December 2003.

S. Saewong and R. Rajkumar. Practical voltage-scaling for fixed-priority rt-
systems. In 9th IEEE Real-Time and Embedded Technology and Applications Sym-
posium (RTAS), 2003.

Mohammed Es Salhiene, Laurent Fesquet, and Marc Renaudin. Dynamic voltage
scheduling for real time asynchronous systems. In Twelfth International Workshop
on Power And Timing Modeling, Optimization and Simulation (PATMOS), pages
81-91, Sevilla, Spain, 2002.

F. Yao, A. Demers, and S. Shenker. A scheduling model for reduced CPU energy.
In Proceedings of IEEE Annual Foundations of Computer Science, pages 374-382,
1995.

Han-Saem Yun and Jihong Kim. On energy-optimal voltage scheduling for fixed-
priority hard real-time systems. ACM Transactions on Embedded Computing Sys-
tems, 2(3):393-430, August 2003.

