N

HAL

open science

Practical introduction to artificial neural networks

Laurent Bougrain

» To cite this version:

Laurent Bougrain. Practical introduction to artificial neural networks. IFAC symposium on automa-
tion in Mining, Mineral and Metal Processing - MMM’04, Sep 2004, Nancy, France, 6 p. inria-

00099922

HAL Id: inria-00099922
https://inria.hal.science/inria-00099922
Submitted on 26 Sep 2006

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.

https://inria.hal.science/inria-00099922
https://hal.archives-ouvertes.fr

PRACTICAL INTRODUCTION TO
ARTIFICIAL NEURAL NETWORKS

Laurent Bougrain*

* Loria, Campus Scientifique - BP 239 - 54506
Vandeuvre-lés-nancy Cedex - France

Abstract: What are they ? What for are they ? How to use them ? This article
wants to answer these three fundamental questions about artificial neural networks
that every engineer interested by this machine learning technique asks to oneself.
We present the most useful architectures. We explain how to train them using a
supervised or an unsupervised learning depending on the task we want to do :
regression, discrimination or clustering. What kind of data can one use and how
to prepare them ? Finally, we will be interested to which confidence can we give
to the observed results ? Copyright © 2004 IFAC

Keywords: Artificial neural networks, methodology, introduction.

1. INTRODUCTION

Artificial neural networks (ANN), also called
connectionism, start to be a standard method
to model a phenomenon from examples with a
good performance. A lot of famous software such
as Matlab™, Mathematica™or Weka have in-
cluded them in their toolbox. Engineers or re-
searchers can easily access to this technique. Nev-
ertheless, several choices should be done before
to get interesting results. The following sections
present the most useful neural networks, their goal
and the methodology to use them.

2. FROM A BIOLOGICAL NEURON TO
ARTIFICAL NEURAL NETWORKS

In this section, we present the two principal com-
ponents of a neural network : the architectures
and the learning processes. The next section will
explain how to choose the most well-matched cou-
ples according to the task.

2.1 Architecture

2.1.1. The neuron The basic computing unit
of an artificial neural network is a formal neuron
(see Figure 1). Directly inspired by the biological
neuron, and reduced to the simplest expression by
Mc Culloch and Pitts (McCulloch and Pitts 1943),
it is a little system combining the information it
receives into a value called potential and returns
a single output value applying its activation func-
tion to its potential. Then, this output value can
be sent to other neurons through connections.

A connection is an unidirected edge, also called
synapsis in reference to the neurobiologic vocabu-
lary. It connects a pre-synaptic neuron to a post-
synaptic neuron. It is characterized by a value: its
weight.

The potential a(.) of a neuron j is a function of
the output z; of each neuron 7 at the origin of
a connection linked to it and the weights wj; of
these connections. Usually, it is the weighted sum
plus a bias wjo (neuron with the output always
equal to 1 used to learn the best threshold of the
activation function).

a formal neuron

activation functions

1 with a threshold linear hyperbolic tangent logistic
wo
p=1
z
! K é max * ~— max=1
min=0
a(x, W) % Y min
N % o

y = ¢(a)

where a = a(x,w) =), w;z; + wy

[minsiz <0 -
¢(z)7{mazsiz>0) =pz+b

é(z) maxr — min i
T) = ——F +min
1+ exp(—pz)

Fig. 1. A mathematical formalization of a neuron and some standard activation functions to assign to it.

a; = a(x,w) = ijixi + wjo
i

The activation function ¢(.) takes as input the
potential and returns the output value, or activa-
tion, of the neuron. The choice of the activation
function depends on the flexibility we want to give
it and of the bounds of the output space. Usually,
the functions used are a threshold function, a lin-
ear function or some sigmoid functions (see figure

1).

2.1.2. Neural networks Within a neural net-
work, three types of units can be distinguished :
the input neurons which receive the input values,
the output neurons which transmit the output
values of the system and the hidden neurons which
do not have a bond with the outside world. The
neurons are gathered by type in a layer. Usually,
the neurons of the same layer have the same
activation function. The input layer should not
be defined has a layer of the network because
no computation is done. Nevertheless, it is very
common to use this term and in very rare cases,
it may carry out a transformation of the input
values.

Feed-forward networks propagate the flow of infor-
mation in a single direction since the input layer
up to the output layer. There is no cycle. This
kind of networks is the most usually observed in
the literature. This category includes for example
the perceptron (Rosenblatt 1961) and the multi-
layer perceptron (Rumelhart et al. 1986) (Figure
2).

Recurrent networks belong to another category
of ANNs. They contain some cycles to introduce
a time relation or a space relation between the
examples and the answers, or between the answers
using a contextual information (the architecture
of neural networks are comparable to an oriented
graph). Thus, at least one connection links one
neuron to another neuron of the same layer or of a

o<

AN

A\\'ll{ \ ,
N0 7NN
XK 9,
LRI @A‘AA
SRS

el

Fig. 2. A multi-layer perceptron with one hidden
layer.

previous layer (Figure 3). This category includes,
for example, the Elman’s network (Elman 1990),
the Jordan’s network (Jordan 1986) and the self-
organising map by Kohonen (Kohonen 1989).

2.2 Learnings

A neural network must process the data presented
as inputs in such a way that the produced outputs
answer what we want. When we do not know
a prior:t the characteristics to be given to the
network (what is often the case), the management
of the process is done using an iterative training,
by modification of the weights and more rarely by
modification of the architecture. The transforma-
tions brought depend on the learning rule.

2.2.1. Supervised learning If the values explic-
itly required as outputs are known, the learning is
called supervised. A cost function measures the

10Ae[mndur
1A% mdino
Iofe] gndur

1X0IU0D

1X9U00

h y

10 mdur
1] dino

Fig. 3. Recurrents networks : a Jordan’s model, a Elman’s model and a self-organising map by Kohonen.

difference between the desired outputs and the
produced outputs. Then, a learning rule updates
the network to reduce this difference.

Whatever the learning paradigm (supervised or
unsupervised learning presented below), it changes
the value of the weights. The learning rule deter-
mines this modification with regard to the con-
tribution of the weight on the quality of the final
result.

The supervised learning th most used is the back-
propagation algorithm gives a rule to update the
weights of a multi-layer perceptron or a recurrent
network for a supervised task. This learning rule
follows the gradient descent optimisation Aw =
—e% where € is the learning rate (usually € <<
1). A learning with a small learning rate needs a
long training stage to obtain a good model while a
big learning rate does not allow to tune correctly
the weight. A compromise can be to decrease
the learning rate during the learning stage. The
update of the weight of a connection linking a
hidden neuron j to an output neuron k depends
on :
OF _ OF 6yk 6ak

8’11)jk - 6—yk M Bwjk

where ay,, ¢r() and yj, are, respectively, the poten-
tial, the activation function and the output of neu-
ron k. We have y, = ¢r(ax) and ay = Zj Wi

On one hand, if we choose, as error measure,
the sum-of-square error function defined by E =
%Ek(dk — yx)? where dj, is the desired value, or
target value, for the output neuron k, and yy is
the output value of the output neuron & then :

0B _
Oy

% > (di - yk)2] = —(dk — yr)

On the other hand,

Oyr _ Ogplar)
dar = dan b (ax)

So, if the activation function of the output neuron
¢r, is the logistic sigmoid one H% then ¢} (z) =

Sk (z) (1 — P (z))-
From which

= yr(l — i)

Finally,

dar 0 ;Tjwjn
6’wjk o

=T;
6'wjk J

Then
Awjy, = e(dr, — yr)yr(1 — yi)z;

The update of the weight of a connection linking
an input neuron ¢ and a hidden neuron j depends
on :

OF _ 3~ OF Oy Oax 0u; Oa;
Bwij & 8yk 8ak 8yj 8aj 611),']'

where yr = ¥;(ax) et ap = Z]. TjWik.

In the same way, the update value depends on
the error function and the activation functions
chosen. We have a recursive calculation of the
modification of the weights.

This constitutes the back-propagation algorithm
of the error applicable when the supervised net-
work is made up of derivable functions of activa-
tion.

2.2.2. Unsupervised learning Here, the informa-
tion concerning the desired output value is not
available. No knowledge is given to the network a
priori. It must discover regularities in the patterns

which are presented to it. The number of ouput
neurons specifies the number of categories which
one wants to see emerging. The system must de-
velop its own representation of the shapes of the
inputs by discovering the statistically redundant
features (see section 3.3).

2.2.8. Incremental and batch learnings The fre-
quency of the modifications can be moderate in
two ways :

(1) on-line training (or incremental learning) :
the update of the weights takes place after
each example.

(2) off-line training (or batch learning) : the
update of the weights takes place after all
examples were presented i.e. after a cycle.
The modifications to bring to the weights are
cumulated and take effect at the end of the
cycle. In this case, the learning rate should be
divided by the number of training patterns.

3. WHAT FOR
3.1 Regression

A prediction task, within the framework of ANNs,
wants to forecast one or several numerical vari-
ables from a certain number of numeric variables.
When the variables to forecast are continuous, we
speak about regression. Classically, the first model
to use is a multi-layer perceptron. Indeed, this
model is a nonlinear multivariate multiple regres-
sion model. The input layer will contain as many
input neurons as input variables and as many
output neurons as target variables. The input and
output neurons have a linear activation function.
One or eventually two hidden layers should be suf-
ficient to obtain a model as good as by using more
hidden layers. The number of hidden neurons is
depending upon the number of input variables and
the complexity of the task to model. It should not
exceed 20 units unless to have more than 200 input
variables, and a number between 5 and 15 is rea-
sonable. To have many hidden neurons lets model
a complex function but they need many examples
to be learned correctly. If not, the model will not
generalize well (we speak about overtraining, see
section 4.5 and 4.7). A good choice is to assign an
hyperbolic tangent function as activation function
to the hidden neurons, rather than a linear or
a logistic one, to prevent a too large flexibility
requiring a long training, and to allows negative
output values on the hidden layers. Finally, the
sum-of-square error function which is equal to

m

B(t,y) = 5 3 (6 =)’

k=1

is well adapted to a regression task. It “was

obtained from the maximum likehood principle
assuming the target data was generated from a
smooth deterministic function with added Gaus-
sian noise” (Bishop 1995).

3.2 Discrimination

A discrimination task is a specific prediction task
where the variable to forecast is a nominal vari-
able. In this case, we want to classify (i.e. to assign
to pre-existent classes) patterns characterized by a
certain number of numeric variables. If the classes
are linearly separable one from another then the
use of a perceptron, i.e. a feed-forward network
without hidden layer, is enough. Let us recall
that for a forecasting task, we apply a supervised
learning such as the backpropagation algorithm.
Then, the architecture of the network contains
as many output neurons as values taken by the
nominal variable, i.e. as classes. The class will be
recode as a 1-of-c target scheme. For example, if
you want to predict if a pattern belongs to class
A, class B or class C, the output layer will have
three neurons and the class of the examples will
be recoded respectively as (1, 0, 0), (0, 1, 0) or
(0, 0, 1). Using the sum-of-square error function
and a linear activation function for the output
neurons allows to approximate the posterior prob-
abilities of class membership, conditioned on the
input vector (see (Bishop 1995), chapter 6 for a
complete explanation). This property can also be
obtained using the cross-entropy error function
and the softmax activation function which are,
from a theorical point of view, more indicated for
a discrimination problem (Bridle 1990).

The cross-entropy error function is as follows :

c
E(t,y)=- Ztk In z—k
k=1 k

The softmax activation function is a generaliza-
tion of the logistic sigmoid activation function :

k= exp(a)
ZZ!:l exp(ax’)

The discrimination between two classes can also
be treated using only one output neuron. The
cross-entropy error function becomes

y (1-y)
E(t,y)y=—-tlnz—-(1—-1t)ln
(t,9) [—(=m =Y
and the associated activation function is the logis-
tic one. Compared to a 2-target code, the perfor-
mance is the same but the 1-target representation
minimizes the number of weights to learn.

3.8 Clustering

A clustering task is a technique of data analy-
sis. The data are gathered by similarity in non
pre-defined homogeneous classes. To do that, the
architecture of the network contains as many out-
put neurons as categories and the unsupervised
learning uses a competitive algorithm to produce
a regrouping inherent in the data. A competition
system can, without supervised learning, lead to
worked out treatments, such as a data partition,
a vector quantization of the data space, a diminu-
tion of the number of patterns and an extraction
of characteristics. Within the framework of arti-
ficial neural networks, the useful information for
clustering the data is the weight vector associated
to each class, termed prototype. The closest proto-
type using an Euclidian distance, or better a Ma-
halanobis’ distance, identifies the class to which
belongs the current data. The prototype converges
towards the gravity center of the cluster. As a
particular and useful illustration, the goal of self-
organising maps is to obtain a clustering of the
examples with a neighborhood constraint between
the classes (which imposes that two elements of
close classes are close in the data space but the
reciprocal one is not always true. The topology
is defined according to the problem. Usually, it
projects into a 2 or 3-dimentional space and will
have as an elementary form a grid with square,
hexagonal or cubic cells. Various topologies de-
fine a specific number of neighbors and specific
relations of distance. The distance between the
classes on the grid is used to define the force
with which the representatives of the classes are
modified compared to the closest. In this manner,
the topology of the classes reflects the topology of
the inputs. The distance can be, for example, the
Euclidean distance or the Manhattan distance.
The use of the topographic representations is so
widespread that it constitutes a relevant data pro-
cessing obviously.

4. PRE-PROCESSING AND
POST-PROCESSING

4.1 binary variables

Each binary variable should be recode into -1
and +1 in place of 0 and 1 because, when you
apply the backpropagation algorithm, the update
to assign to each weight of a connection located
between the input layer and the first hidden layer
is a product of the input value and another term.
So, using zero to describe the value of a binary
variable, you will never change the weight of
the connections taking as input the value of a
binary variable when this value equals zero. It
is not necessary to apply this transformation to

an output binary variable. Moreover, this can
make a problem in some cases. Thus, if you
use the entropy function, for example, with a
supervised network to discriminate classes (see
previous section), the cross-entropy is computed
for 0 and 1. In the same idea, using a sigmoid
function as the activation function of an output
unit will always give as output value a value
between 0 and 1 (if you want to obtain a value
between -1 and 1, you can use for example the
hyperbolic tangent function).

4.2 Nominal variables

A nominal variable should be transformed into
as binary inputs as values. Firstly, because neu-
ral networks only take numerical value as input.
Secondly, because to use a single continus vari-
able where each modality has been assigned to a
particular value does not respect the equidistance
between the modalities. So, it is better to use a 1-
to-n code where one binary variable will be equal
to 1 and the (n - 1) others binary variables will
be equal to 0 (or -1, see section 4.1). Thus, each
modality is represented by a binary variable.

4.8 Continus variables

Each continus variable should be normalized. The
potential of a neuron is the weighted sum of
its inputs and its weights. If you use a single
learning rate to update every weight, the variation
of any variable will influence in the same way the
potential. But each variable has a specific domain
of definition. So a small variation for a variable
with a smal domain of definition can reflect an
important change where as the same variation
for a variable with a large domain of definition
can be unsignificant. To normalize the values, it
is possible to apply a linear interpolation which
project linearly the input value between -1 and 1,
or a statistical normalisation removing their mean
and dividing by their standard deviation.

4.4 Missing values

Patterns with missing values cannot be used by
ANNS just as they are. The missing value should
be forecasted starting from the other values of this
pattern. Using a supervised learning, the missing
value could be replaced by the average value of
the variable while with an unsupervised learning,
the missing value can be replaced sometimes by
the weight associated to this variable to obtain
no influence of this variable upon the competitive
process.

4.5 Training set, validation set and test set

The training is stopped according to a stopping
criterion. For the supervised methods, it can be
given by the performance obtained on a validation
dataset after training on the data of a training set :

(1) The training dataset contains most of the
data. The model updates its parameters, i.e.
its weights, according to the errors which
it observes on the examples of the training
dataset. So, the function to model is learned
on the training dataset.

(2) The validation dataset constains data un-
used for training. The performance observed
on this dataset indicates when to stop the
training, i.e. the epoch when the performance
on this dataset goes down meaning that the
model has finished to learn the general char-
acteristics of the task and starts to learn by
heart the examples from the training dataset.

(3) The test dataset contains new data to esti-
mate the performance of the model under
real conditions of use. These data are never
used to tune the model unlike the training
and the validation sets.

4.6 Cross-validation

The initialization of the weights is random and the
complete dataset is split, more or less arbitrarily,
into two or three subsets to train, to validate
and test the model. Unfortunatly, the results
we observed depend on these choices. With an
aim of having a better approximation of the
real performance of the system, it is better to
make several tries changing the initialization and
more important, changing the distribution of the
examples into the subsets. Several procedures
exist such as the cross-validation, the bootstrap
and the jackknife.

4.7 Owvertraining

A key point with machine learning systems is their
capability to obtain a general model from a set of
examples. The problem is that if the system is very
flexible, which means for a neural network to have
a large architecture, you need a lot of examples to
learn it. The use of a validation dataset solves this
problem but the best choice is to use a pruning
algorithm to obtain the minimum architecture
(Reed 1993).

4.8 Unbalanced classes and confusion matriz

The fact of presenting during the training stage
more examples of a class than of another one

will influence the model obtained. In the same
way, the fact of presenting during the test stage
more examples of a class than of another one will
influence the evaluation of its performance. Thus,
it is necessary, in the case of a discrimination
task, to avoid a too great unbalance between the
number of examples of each class and to check the
matrix of confusion to see the performance and
the weakness of the model in a more detailed way
than the rate of good discrimination.

5. CONCLUSIONS

Artificial neural networks can be very useful for
engineers or researchers who want to obtain a
model from a dataset of examples. This article
tried to present a short introduction to this ma-
chine learning technique with a significant part
reserved to the data pre-processing, the choice and
use of the neural networks as well as the result
analysis for a practical use.

REFERENCES

Bishop, C. M. (1995). Neural Networks for Pat-
tern Recognition. Clarendon Press. Oxford.

Bridle, J. S. (1990). Probabilistic interpretation
of feedforward classification network outputs,
with relationships to statistical pattern recog-
nition. In: Neuro-computing: Algorithms, Ar-
chitectures and Applications (F. Fogelman
Soulié and J. Hérault, Eds.). Springer. Berlin.
pp- 227-236.

Elman, J.L. (1990). Finding structure in time.
Cognitive Science 14, 179-211.

Jordan, M. I. (1986). Serial order: A parallel dis-
tributed processing approach. Technical Re-
port ICS Report 8604. Institute for Cogni-
tive Science, University of California at San
Diego. La Jolla, CA.

Kohonen, T. (1989). Self-Organization and As-
sociative Memory. 3 ed.. Springer-Verlag.
Berlin.

McCulloch, W. S. and W. Pitts (1943). A log-
ical calculus of ideas immanent in nervous
activity. Bulletin of Mathematical Biophysics
5, 115-133.

Reed, Russel (1993). Pruning algorithms — A sur-
vey. IEEE Transactions on Neural Networks
4(5), 740-746.

Rosenblatt, F. (1961). Principles of Neurodynam-
ics: Perceptrons and the Theory of Brain
Mechanisms. Spartan Books. Washington
DC.

Rumelhart, D. E., G. E. Hinton and R. J.
Williams (1986). Learning representations by
back-propagating errors. Nature 323, 533-
536.

