Skip to Main content Skip to Navigation
Journal articles

Comparative genomics of the methionine metabolism in Gram-positive bacteria: a variety of regulatory systems

Dmitry Rodionov Alexey Vitreschak 1 Andrey Mironov Mikhail Gelfand
1 ADAGE - Applying discrete algorithms to genomics
INRIA Lorraine, LORIA - Laboratoire Lorrain de Recherche en Informatique et ses Applications
Abstract : Regulation of the methionine biosynthesis and transport genes in bacteria is rather diverse and involves two RNA-level regulatory systems and at least three DNA-level systems. In particular, the methionine metabolism in Gram-positive bacteria was known to be controlled by the S-box and T-box mechanisms, both acting on the level of premature termination of transcription. Using comparative analysis of genes, operons and regulatory elements, we described the methionine metabolic pathway and the methionine regulons in available genomes of Gram-positive bacteria. A large number of methionine-specific RNA elements were identified. S-boxes were shown to be widely distributed in Bacillales and Clostridia, whereas methionine-specific T-boxes occurred mostly in Lactobacillales. A candidate binding signal (MET-box) for a hypothetical methionine regulator, possibly MtaR, was identified in Streptococcaceae, the only family in the Bacillus/Clostridium group of Gram-positive bacteria having neither S-boxes, nor methionine-specific T-boxes. Positional analysis of methionine-specific regulatory sites complemented by genome context analysis lead to identification of new members of the methionine regulon, both enzymes and transporters, and reconstruction of the methionine metabolism in various bacterial genomes. In particular, we found candidate transporters for methionine (MetT) and methylthioribose (MtnABC), as well as new enzymes forming the Sadenosylmethionine recycling pathway. Methionine biosynthetic enzymes in various bacterial species are quite variable. In particular, Oceanobacillus iheyensis possibly uses a homolog of the betaine– homocysteine methyltransferase bhmT gene from vertebrates to substitute missing bacterial-type methionine synthases
Document type :
Journal articles
Complete list of metadata

https://hal.inria.fr/inria-00100149
Contributor : Publications Loria <>
Submitted on : Tuesday, September 26, 2006 - 10:14:42 AM
Last modification on : Friday, February 26, 2021 - 3:28:02 PM

Identifiers

  • HAL Id : inria-00100149, version 1

Collections

Citation

Dmitry Rodionov, Alexey Vitreschak, Andrey Mironov, Mikhail Gelfand. Comparative genomics of the methionine metabolism in Gram-positive bacteria: a variety of regulatory systems. Nucleic Acids Research, Oxford University Press, 2004, 32 (11), pp.3340-3353. ⟨inria-00100149⟩

Share

Metrics

Record views

122