Towards a denotational semantics for the rho-calculus

Germain Faure 1 Alexandre Miquel
1 PROTHEO - Constraints, automatic deduction and software properties proofs
INRIA Lorraine, LORIA - Laboratoire Lorrain de Recherche en Informatique et ses Applications
Abstract : The rho-calculus, also called rewriting calculus, provides an integration of rewriting and lambda-calculus in which, we can abstract on arbitraty patterns. Up to now, this formalism has been studied only from the perspective of tis operational semantics. This paper is a first attempt to propose a Scott-style semantics for this formalism. After introducing the rho-calculus we define a notion of rho-model in the category of Scott domains, and prove the soudness of the reduction rules w.r.t. this notion of rho-model. We then show that any universal domain D = D -> D with a top element (including the Scott's historical D_infinity) can be given the structure of rho-model by interpreting the structure construction of the rho-calculus by binary sup. From this, we deduce that the full aCI-theory of the rho-calculus is conservative w.r.t. the beta-eta theory for normalisable lambda-terms.
Type de document :
[Intern report] A04-R-464 || faure04a, 2004, 14 p
Liste complète des métadonnées
Contributeur : Publications Loria <>
Soumis le : mardi 26 septembre 2006 - 10:15:57
Dernière modification le : jeudi 11 janvier 2018 - 06:19:57


  • HAL Id : inria-00100235, version 1



Germain Faure, Alexandre Miquel. Towards a denotational semantics for the rho-calculus. [Intern report] A04-R-464 || faure04a, 2004, 14 p. 〈inria-00100235〉



Consultations de la notice