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A type-based termination 
riterion fordependently-typed higher-order rewrite systemsFrédéri
 Blanqui ∗January 22, 2004Abstra
t: Several authors devised type-based termination 
riteria for ML-likelanguages (polymorphi
 λ-
al
uli with indu
tive types and 
ase analysis), thatallows non-stru
tural re
ursive 
alls. We extend these works to general rewritingand dependent types, hen
e providing a powerful termination 
riterion for the
ombination of rewriting and β-redu
tion in the Cal
ulus of Constru
tions.1 Introdu
tionThe Cal
ulus of Constru
tions [19℄ is a powerful type system allowing polymor-phi
 and dependent types. It is the basis of many proof assistants sin
e it allowsone to formalize the proofs of higher-order logi
. In this 
ontext, it is essentialto allow users to de�ne fun
tions and predi
ates in the most 
onvenient way andto be able to de
ide whether a term is a proof of some proposition, and whethertwo terms/propositions are equivalent w.r.t. user de�nitions. As exempli�ed in[21, 11℄, a promising approa
h is rewriting. To this end, we need powerful 
rite-ria to 
he
k the termination of higher-order rewrite-based de�nitions 
ombinedwith β-redu
tion.In a previous work [11℄, we proved that su
h a 
ombination is strongly nor-malizing if, on the one hand, �rst-order rewrite rules are strongly normalizingand non-dupli
ating1 and, on the other hand, non �rst-order rewrite rules (
alledhigher-order in the following) satis�es a termination 
riterion based on the no-tion of 
omputability 
losure and similar to higher-order primitive re
ursion.Unfortunately, many interesting rewrite systems are either �rst-order and du-pli
ating, or higher-order with non-stru
tural re
ursive 
alls (e.g. division onnatural numbers23, Figure 1).
∗Laboratoire Lorrain de Re
her
he en Informatique et Automatique (LORIA) & InstitutNational de Re
her
he en Informatique et Automatique (INRIA), 615 rue du Jardin Botanique,BP 101, 54602 Villers-lès-Nan
y, Fran
e, blanqui�loria.fr.1Strong normalization is not modular in general [38℄. It is modular for non-dupli
ating�rst-order rewrite systems [35℄. Here, we do not have two non-dupli
ating �rst-order rewritesystems but a hierar
hi
al 
ombination of a higher-order rewrite system (satisfying strongtermination 
onditions) built over a non-dupli
ating �rst-order rewrite system.2/ x y denotes ⌈ x

y+1
⌉.3We use 
urried symbols all over the paper.1



Figure 1: Division on natural numbers
(1) − x 0 → x
(2) − 0 x → 0
(3) − (sx) (sy) → − x y

(4) / 0 x → 0
(5) / (sx) y → s (/ (− x y) y)Hughes et al [28℄, Xi [41, 42℄, Giménez et al [26, 5℄ and Abel [2℄ devisedtermination 
riteria able to treat su
h examples by exploiting the way indu
tivetypes are usually interpreted [31℄. Take for instan
e the addition4 on Brouwer'sordinals ord (Figure 2) whose 
onstru
tors are 0 : ord, s : ord ⇒ ord and

lim : (nat⇒ ord)⇒ ord.Figure 2: Addition on Brouwer's ordinals
(1) + 0 x → x
(2) + (sx) y → s (+ x y)
(3) + (lim f) y → lim ([x : nat](+ (f x) y))The usual 
omputability-based te
hnique for proving the termination of thisfun
tion is to interpret ord by the �xpoint of the following monotone fun
tion

ϕ on the powerset of SN , the set of strongly normalizing terms, ordered byin
lusion:5
ϕ(X) = {t ∈ SN | t→∗ su⇒ u ∈ X ; t→∗ limf ⇒ ∀u ∈ SN , fu ∈ X}The �xpoint of ϕ, [[ord]], 
an be rea
hed by trans�nite iteration and every

t ∈ [[ord]] is obtained after a smallest ordinal o(t) of iterations, the order of t.This naturally de�nes an ordering: t > u i� o(t) > o(u), with whi
h we 
learlyhave lim f > fu for all u ∈ SN .Now, applying this te
hnique to nat, we 
an easily 
he
k that o(−tu) ≤ o(t)and thus allow the re
ursive 
all with −xy in the de�nition of /. First note that
−tu is 
omputable (i.e. belongs to [[nat]]) i� all its redu
ts are 
omputable (seeSe
tion 5). We pro
eed by indu
tion on o(t):� If −tu mat
hes rule (1) then o(−tu) = o(t).� If −tu mat
hes rule (2) then o(−tu) = 0 ≤ o(t).� If −tu mat
hes rule (3) then t = st′ and u = su′. By indu
tion hypothesis,
o(−t′u′) ≤ o(t′). Thus, o(−tu) = 1 + o(−t′u′) ≤ 1 + o(t′) = o(t).� If −tu mat
hes no rule then o(−tu) = 0 ≤ o(t).4[x : T ]u denotes the fun
tion whi
h asso
iates u to every x of type T .5→∗ is the re�exive and transitive 
losure of the redu
tion relation →.2



The idea of the previously 
ited authors is to add this size/index/stage in-formation to the syntax in order to prove this automati
ally. Instead of a singletype nat, they 
onsider a family of types {nata}a∈ω, ea
h type nata being in-terpreted by the set obtained after a iterations of the fun
tion ϕ for nat. Andthey de�ne a de
idable type system in whi
h minus (de�ned by �xpoint/
ases
onstru
tions in their work) 
an be typed by natα ⇒ natβ ⇒ natα, where αand β are size variables, meaning that the order of −tu is not greater than theorder of t.This 
an also be interpreted as a way to automati
ally prove theorems onthe size of the result of a fun
tion w.r.t. the size of its arguments [39, 25℄ withappli
ation to 
omplexity and resour
e bound 
erti�
ation, and 
ompilationoptimization (e.g. bound 
he
k elimination [34℄, ve
tor-based memoisation [16℄).In this paper, we extend this te
hnique to the full Cal
ulus of Algebrai
 Con-stru
tions [11℄ whose type 
onversion rule depends on the user-de�ned rewriterules, and to general rewrite-based de�nitions (in
luding mat
hing on de�nedsymbols and rewriting modulo equational theories [9℄) instead of de�nitionsonly based on letrec/match (or fixpoint/cases) 
onstru
tions. Note that ourwork makes a heavy use of (and simplify) the te
hniques developed by Chen forstudying the Cal
ulus of Constru
tions with subtyping [15℄.On the one hand, we allow a ri
her size algebra than the one in [28, 5, 2℄ (seeSe
tion 6). On the other hand, we do not allow existential size variables and
onditional rewriting6 that are essential for 
apturing, for instan
e, the size-preserving property of qui
ksort (Example 5) and Ma
 Carty's �91� fun
tion(Example 8) respe
tively, as it 
an be done in Xi's work [42℄. Note howeverthat Xi is interested in the 
all-by-value normalization of 
losed simply-typed
λ-terms, while we are interested in the strong normalization of the open termsof the Cal
ulus of Constru
tions.2 The Cal
ulus of Algebrai
 Constru
tions withSize AnnotationsThe Cal
ulus of Constru
tions (CC) is the full Pure Type System with the setof sorts S = {⋆,2} and the axiom ⋆ : 2 [4℄. ⋆ is intended to be the universeof types and propositions, while 2 is intended to be the universe of predi
atetypes. Let X be the set of variables.The Cal
ulus of Algebrai
 Constru
tions (CAC) [11℄ is an extension of CCwith a set F of fun
tion or predi
ate symbols de�ned by a setR of (higher-order)rewrite rules [20, 30℄. Every variable x (resp. symbol f) is equipped with a sort
sx (resp. sf ). We denote by DF the set of de�ned symbols, that is, the set ofsymbols f su
h that there is a rule l → r ∈ R with l = f~l, and by CF the set
F \ DF of 
onstant symbols. We add a supers
ript s to restri
t these sets tovariables or symbols of sort s.6The equivalent of if-then-else 
onstru
tions in fun
tional programming.3



Now, we assume given a (sorted) �rst-order term algebra A = T (H,Z),
alled the algebra of size expressions, built from a non-empty set H of sizesymbols of �xed arity and a set Z of size variables. We assume that H ∩ F =
Z ∩ X = ∅. Let V(t) be the set of size variables o

urring in a term t. Arenaming is an inje
tion from a �nite subset of Z to Z.We assume that, for every rule l → r ∈ R, V(l) = V(r) = ∅. Hen
e, if t→ t′then, for all size substitution ϕ, tϕ→ t′ϕ.We also assume that A is equipped with a quasi-ordering ≤A stable by sizesubstitution (i.e. if a ≤A b then, for all size substitution ϕ, aϕ ≤A bϕ) su
hthat (A,≤A) has a well-founded model (A,≤A):De�nition 1 (Size model) A pre-model of A is given by a set A, an ordering
≤A on A and a fun
tion hA from A

n to A for every n-ary size symbol h ∈ H.A size valuation is a fun
tion ν from Z to A, naturally extended to a fun
tionon A. A pre-model is a model if, for all size valuation ν, aν ≤A bν whenever
a ≤A b. Su
h a model is well-founded if >A is well-founded.The Cal
ulus of Algebrai
 Constru
tions with Size Annotations (CACSA) isan extension of CAC where 
onstant predi
ate symbols are annotated by sizeexpressions. The terms of CACSA are de�ned by the following grammar rule:

t ::= s | x | Ca | f | [x : t]t | (x : t)t | ttwhere C ∈ CF2, f ∈ F \ CF2 and a ∈ A. We denote by TA(F ,X ) the setof terms built from F , X and A. Let T be the set of the underlying CACterms and be the fun
tion erasing size annotations. Among CAC terms, wedistinguish the following disjoint sets:� kinds: K ∈ K ::= ⋆ | (x : t)K� predi
ates: P ∈ P ::= f ∈ F2 | x ∈ X2 | (x : t)P | [x : t]P | Pt� obje
ts: o ∈ O ::= f ∈ F⋆ | x ∈ X ⋆ | [x : t]o | otwhere t ∈ T is any CAC term.Finally, we assume that every symbol f is equipped with a type τf =

(~x : ~T )U ∈ T su
h that FV(τf ) = ∅, sf = 2 ⇒ V(τf ) = ∅, and f~l → r ∈

R ⇒ |~l| ≤ |~t|.We also assume that every symbol f is equipped with a set Mon+(f) ⊆ Af =
{1, . . . , |~x|} of monotone arguments and a set Mon−(f) ⊆ Af of anti-monotonearguments su
h that Mon+(f) ∩Mon−(f) = ∅. For a size symbol h, Mon+(h)(resp. Mon−(h)) is taken to be the arguments in whi
h hA is monotone (resp.anti-monotone).An environment Γ is a sequen
e of pairs variable-term. Let t ↓ u i� there is
v su
h that t→∗ v ∗← u. The typing rules of CACSA are given in Figure 4 andits subtyping rules in Figure 3. W.l.o.g. we 
an assume that, for all f , ⊢ τf : sf .We also assume that, for every rule l → r ∈ R, there exist an environment Γand a type T su
h that Γ ⊢ r : T . This is to make sure that r is not ill-formed(see Lemma 12 in [11℄). 4



Sin
e, in the (symb) rule, symbol types are applied to arbitrary size sub-stitutions ϕ, the name of size variables in symbol types is not relevant (sizevariables in symbol types are impli
itly universally quanti�ed).A substitution θ preserves typing between Γ and ∆, written θ : Γ ; ∆, i�
∆ ⊢ xθ : xΓθ for all x ∈ dom(Γ). A type-preserving substitution satis�es thefollowing important substitution property: if Γ ⊢ t : T and θ : Γ ; ∆ then
∆ ⊢ tθ : Tθ. Figure 3: Subtyping rules(re�) T ≤ T(size) Ca~t ≤ Cb~t (C ∈ CF2, a ≤A b)(prod) U ′ ≤ U V ≤ V ′

(x : U)V ≤ (x : U ′)V ′(
onv) T ′ ≤ U ′

T ≤ U
(T ↓ T ′, U ′ ↓ U)(trans) T ≤ U U ≤ V

T ≤ VIn this paper, we make two important assumptions.Assumptions:(1) β ∪R is 
on�uent. This is the 
ase for instan
e if R is 
on�uent and left-linear. Finding other su�
ient 
onditions when there are type-level rewriterules is an open problem.(2) R preserves typing: if l → r ∈ R and Γ ⊢ lσ : T then Γ ⊢ rσ : T .Finding su�
ient 
onditions with subtyping and dependent types does notseem easy as shown by the following example. We leave the study of thisproblem for future work.Example 1 (Subje
t redu
tion) Assume that s ∈ H, nat : ⋆, s : natα ⇒
natsα, − : natα ⇒ natβ ⇒ natα, and let us prove that the rule −(sx)(sy) →
−xy preserves typing. Assume that Γ ⊢ −(st)(su) : T . We must prove that
Γ ⊢ −tu : T . By inversion, Γ ⊢ −(st) : (z2 : T2)U2, Γ ⊢ su : T2 and U2{z2 7→
su} ≤ T . By inversion again, Γ ⊢ − : (z1 : T1)U1, Γ ⊢ st : T1 and U1{z1 7→ st} ≤
(z2 : T2)U2. Again, nata ⇒ natb ⇒ nata ≤ (z1 : T1)U1, Γ ⊢ s : (z3 : T3)U3,
Γ ⊢ t : T3, U3{z3 7→ t} ≤ T1, natc ⇒ natsc ≤ (z3 : T3)U3, Γ ⊢ s : (z4 : T4)U4,
Γ ⊢ u : T4, U4{z4 7→ u} ≤ T2 and natd ⇒ natsd ≤ (z4 : T4)U4. By Lemma4, we have T3 ≤ natc, natsc ≤ U3, T4 ≤ natd, natsd ≤ U4, T1 ≤ nata and
natb ⇒ nata ≤ U1. Again, sin
e U1{z1 7→ st} ≤ (z2 : T2)U2, T2 ≤ natband nata ≤ U2. Therefore, sin
e Γ ⊢ t : T3 ≤ natc, Γ ⊢ u : T4 ≤ natd and5



Figure 4: Typing rules(ax) ⊢ ⋆ : 2(size) ⊢ τC : 2

⊢ Ca : τC
(C ∈ CF2)(symb) ⊢ τf : sf

⊢ f : τfϕ
(f /∈ CF2)(var) Γ ⊢ T : sx

Γ, x : T ⊢ x : T
(x /∈ dom(Γ))(weak) Γ ⊢ t : T Γ ⊢ U : sx

Γ, x : U ⊢ t : T
(x /∈ dom(Γ))(prod) Γ ⊢ U : s Γ, x : U ⊢ V : s′

Γ ⊢ (x : U)V : s′(abs) Γ, x : U ⊢ v : V Γ ⊢ (x : U)V : s

Γ ⊢ [x : U ]v : (x : U)V(app) Γ ⊢ t : (x : U)V Γ ⊢ u : U

Γ ⊢ tu : V {x 7→ u}(sub) Γ ⊢ t : T Γ ⊢ T ′ : s

Γ ⊢ t : T ′
(T ≤ T ′)

Γ ⊢ − : natc ⇒ natd ⇒ natc, we have Γ ⊢ −tu : natc. Now, we must prove that
natc ≤ T . First, natc ≤ natsc ≤ U3. Sin
e U3{z3 7→ t} ≤ T1, natc ≤ T1. Sin
e
nata ⇒ natb ⇒ nata ≤ (z1 : T1)U1, T1 ≤ nata and natb ⇒ nata ≤ U1. Sin
e
U1{z1 7→ st} ≤ (z2 : T2)U2, natb ⇒ nata ≤ (z2 : T2)U2. Therefore, nata ≤ U2.Now, sin
e U2{z2 7→ su} ≤ T , we indeed have natc ≤ T .3 Properties of subtypingLemma 2 If U ≤ V then, for all size substitution ψ, Uψ ≤ V ψ.Proof. Easy indu
tion. �We now prove that the subtyping rule (trans) 
an be eliminated.Theorem 3 (Transitivity elimination) Let≤t be the subtyping relation ob-tained without using (trans). Then, ≤t=≤.6



Proof. Se
tion 9. �This means that, in a subtyping derivation, we 
an always assume that thereis no appli
ation of (trans) and that, in a typing derivation, there is no su

essiveappli
ations of (sub).Lemma 4 (Produ
t 
ompatibility) If (x : U)V ≤ (x : U ′)V ′ then U ′ ≤ Uand V ≤ V ′.Proof. By 
ase on the last rule of (x : U)V ≤ (x : U ′)V ′. By 
on�uen
e, we
an assume that there is no su

essive appli
ations of (
onv). This is immediatefor (re�) and (prod). (symb) is not possible. For (
onv), we have:
(x : U)V ↓ T ≤ T ′ ↓ (x : U ′)V ′

(x : U)V ≤ (x : U ′)V ′Then, we reason by 
ase on the last rule of T ≤ T ′.(re�) In this 
ase, T = T ′. Therefore, by 
on�uen
e, (x : U)V ↓ (x : U ′)V ′,
U ↓ U ′ and V ↓ V ′. Thus, U ′ ≤ U and V ≤ V ′.(symb) Not possible sin
e T = Ca~t has no 
ommon redu
t with (x : U)V(sin
e C is 
onstant).(
onv) Ex
luded.(prod) In this 
ase, T = (x : U1)V1, T ′ = (x : U2)V2, U2 ≤ U1 and V1 ≤ V2.By 
on�uen
e U ↓ U1, V ↓ V1, U2 ↓ U ′ and V2 ↓ V ′. Therefore, by 
onversion,
U ′ ≤ U and V ≤ V ′. �We now prove that the subtyping relation 
an be further simpli�ed. Considerthe following two admissible rules:(red) T →∗ T ′ T ′ ≤ U ′ U ′ ∗← U

T ≤ U(exp) T ∗← T ′ T ′ ≤ U ′ U ′ →∗ U

T ≤ U(
onv) 
an 
learly be repla
ed by both (red) and (exp).Theorem 5 (Expansion elimination) Let ≤r be the subtyping relation with(red) instead of (
onv). Then, ≤r=≤.Proof. Se
tion 10. �Now, let ≤s be the subtyping relation with (re�), (symb) and (prod) only.Lemma 6 T ≤ U i� there exist T ′ and U ′ su
h that T →∗ T ′ ≤s U ′ ∗← U .Furthermore, if T, U ∈ WN then T↓≤s U↓.7



Proof. The if-part is immediate. The only-if-part is easily proved by indu
-tion on T ≤ U . In the (red) 
ase, if T →∗ T ′ ≤ U ′ ∗← U then, by indu
tionhypothesis, there exist T ′′ and U ′′ su
h that T ′ →∗ T ′′ ≤s U ′′ ∗← U ′. Therefore,
T →∗ T ′′ ≤s U ′′ ∗← U .Now, if T, U ∈ WN then T↓≤ U↓. Thus, T↓≤s U↓ sin
e T↓ and U↓ are notredu
ible. �Lemma 7 � For all s ∈ S, if T ≤ s or s ≤ T then T →∗ s.� For all K ∈ K, if T ≤ K or K ≤ T then T →∗ T ′ ∈ K.Proof.� If s ≤ T then s ≤s T ′ ∗← T . The only possible 
ase is T ′ = s. If T ≤ s then
T →∗ T ′ ≤s s. The only possible 
ase is T ′ = s.� If T ≤ K then T →∗ T ′ ≤s K ′ ∗← K and K ′ ∈ K. Now, one 
an easily proveby indu
tion that, if T ′ ≤s K ′, then T ′ ∈ K. If K ≤ T then K →∗ K ′ ≤s
T ′ ∗← T and K ′ ∈ K. One 
an easily prove by indu
tion that, if K ′ ≤s T ′,then T ′ ∈ K. �Theorem 8 (De
idability of subtyping) ≤ is de
idable whenever→ is 
on-�uent, weakly normalizing and �nitely bran
hing (or 
on�uent and stronglynormalizing).Proof. Immediate 
onsequen
e of Lemma 6.4 Properties of typingLemma 9 If Γ ⊢ t : T then, for all size substitution ψ, Γψ ⊢ tψ : Tψ.Proof. Easy indu
tion. �Lemma 10 (Type 
orre
tness) If Γ ⊢ t : T then either T = 2 or Γ ⊢ T : sfor some sort s.Proof. Easy indu
tion. �Lemma 11 � If T →∗

2 then T is not typable.� If Γ ⊢ t : 2 then t ∈ K.� If K ∈ K and Γ ⊢ K : L then L = 2.� If T →∗ K ∈ K and Γ ⊢ T : s then T ∈ K and s = 2.Proof. These properties are proved for CAC in [11℄ (Lemma 11). Theirproofs need only a few 
orre
tions based on Lemma 7 to be valid for CACSAtoo. �Lemma 12 (Narrowing) If Γ, y : A,Γ′ ⊢ t : T , B ≤ A, Γ ⊢ B : sy then
Γ, y : B,Γ′ ⊢ t : T . 8



Proof. By indu
tion on Γ, y : A,Γ′ ⊢ t : T . We only detail some 
ases.(var) There are two 
ases. Assume that we have Γ ⊢ A : sy and Γ, y : A ⊢ y : A.Sin
e Γ ⊢ B : sy, by (var), Γ, y : B ⊢ y : B. Sin
e B ≤ A and Γ ⊢ A : sy, by(sub), Γ, y : B ⊢ y : A.Assume now that we have Γ, y : A,Γ′ ⊢ T : sx and Γ, y : A,Γ′, x : T ⊢ x : T .By indu
tion hypothesis, Γ, y : B,Γ′ ⊢ T : sx. Thus, by (var), Γ, y : B,Γ′, x :
T ⊢ x : T .(weak) There are two 
ases. Assume that we have Γ ⊢ t : T , Γ ⊢ A : sy and
Γ, y : A ⊢ t : T . Sin
e Γ ⊢ B : sy, by (weak), Γ, y : B ⊢ t : T .Assume now that we have Γ, y : A,Γ′ ⊢ t : T , Γ, y : A,Γ′ ⊢ U : sx and
Γ, y : A,Γ′, x : U ⊢ t : T . By indu
tion hypothesis, Γ, y : B,Γ′ ⊢ t : T and
Γ, y : B,Γ′ ⊢ U : sx. Thus, by (weak), Γ, y : B,Γ′, x : U ⊢ t : T . �Theorem 13 (β-Subje
t redu
tion) If Γ ⊢ t : T and t→β t

′ then Γ ⊢ t′ : T .Proof. By indu
tion on Γ ⊢ t : T , we also prove that, if Γ →β Γ′, then
Γ′ ⊢ t : T . We only detail the 
ase of a β-head redu
tion. Assume that wehave Γ ⊢ [x : U ′]v : (x : U)V and Γ ⊢ u : U . We must prove that Γ ⊢ v{x 7→
u} : V {x 7→ u}. By inversion, Γ, x : U ′ ⊢ v : V ′, Γ ⊢ (x : U ′)V ′ : s′, (x :
U ′)V ′ ≤ (x : U)V and Γ ⊢ (x : U)V : s. By produ
t 
ompatibility, U ≤ U ′ and
V ′ ≤ V . By inversion, Γ ⊢ U : s1 and Γ ⊢ V ′ : s2. By narrowing and subtyping,
Γ, x : U ⊢ v : V . Therefore, by substitution, Γ ⊢ v{x 7→ u} : V {x 7→ u}. �Lemma 14 If Γ ⊢ t : T , T ≤ T ′ and Γ ⊢ T ′ : s′ then Γ ⊢ T : s for some s.Proof. By type 
orre
tness, either T = 2 or Γ ⊢ T : s for some s. If T = 2then, by Lemma 7, T ′ →∗

2 and, by Lemma 11, T ′ 
annot be typable. �Lemma 15 (Uni
ity of sorting) If T ≤ T ′, Γ ⊢ T : s and Γ ⊢ T ′ : s′ then
s = s′.Proof. If s = 2 then T ∈ K. By Lemma 7, T ′ →∗ K ∈ K. By Lemma 11,
T ′ ∈ K and s′ = 2. By symmetry, if s′ = 2 then s = 2. So, s = 2 i� s′ = 2.Sin
e s, s′ ∈ S = {⋆,2}, s = ⋆ i� s′ = ⋆. Therefore, s = s′. �5 Strong normalizationLet SN (resp. WN ) be the set of strongly (resp. weakly) normalizable terms,and t↓ be the normal form of a term t ∈ WN (→ is assumed 
on�uent).De�nition 16 (Redu
ibility 
andidates) We assume given a set CT of 
on-stru
tor terms.7 A term t is neutral if it is not an abstra
tion, not a 
onstru
torterm, nor of the form f~t with f ∈ DF and |~t| < |~l| for some rule f~l → r ∈ R.We indu
tively de�ne the set Rt of the interpretations for the terms of type t,7CT is de�ned in De�nition 26. 9



the ordering ≤t on Rt, the element ⊤t ∈ Rt, and the fun
tions ∧
t and ∨

t fromthe powerset of Rt to Rt as follows. If t /∈ K ∪ {2} then:� Rt = {∅}, ≤t=⊆ and ∧
t(ℜ) =

∨
t(ℜ) = ⊤t = ∅.Otherwise:� Rs is the set of all the subsets R of T su
h that:(R1) R ⊆ SN (strong normalization).(R2) If t ∈ R then →(t) ⊆ R (stability by redu
tion).(R3) If t is neutral and →(t) ⊆ R then t ∈ R (neutral terms).Furthermore, ≤s=⊆, ⊤s = SN , ∨
s(ℜ) =

⋃
ℜ, ∧

s(ℜ) =
⋂
ℜ if ℜ 6= ∅, and∧

s(∅) = ⊤s.� R(x:U)K is the set of fun
tions R from T × RU to RK su
h that R(u, S) =
R(u′, S)whenever u→ u′ or u = u′, ⊤(x:U)K(u, S) = ⊤K , ∧(x:U)K(ℜ)(u, S) =
∧
K({R(u, S) | R ∈ ℜ}), ∨

(x:U)K(ℜ)(u, S) =
∨
K({R(u, S) | R ∈ ℜ}) and

R ≤(x:U)K R′ i� R(u, S) ≤K R′(u, S).Let (~t, ~S) ≤i (~t′, ~S′) i� ~t = ~t′, Si ≤ S′
i and, for all j 6= i, Sj = S′

j . A fun
tion R ∈
R(~x:~T )⋆ is monotone (resp. anti-monotone) in its ith argument if R( ~Q) ≤ R( ~Q′)whenever ~Q ≤i ~Q′ (resp. ~Q ≥i ~Q′). Let Rmτf

be the set of fun
tions R ∈ Rτfsu
h that R is monotone in all its arguments i ∈ Mon+(f), and anti-monotonein all its arguments i ∈ Mon−(f).Lemma 17 (Rt,≤t) and (Rmt ,≤t) are 
omplete latti
es with ⊤t as their great-est element and ∧
t(ℜ) as the greatest lower bound of ℜ. Moreover:� If ℜ is totally ordered then ∨

t(ℜ) is the lowest upper bound of ℜ.� For all R ∈ Rs, X ⊆ R.� If Γ ⊢ t : T and θ : Γ ; ∆ then RTθ = RT .� If Γ ⊢ t : T then RTϕ = RT .� The smallest element ⊥s =
∧
s(Rs) only 
ontains neutral terms.Proof. The proof is similar to the one for CAC [11℄. �Lemma 18 If Γ ⊢ T ≤ T ′ : s then RT = RT ′ .Proof. If s = ⋆ then RT = {∅} = RT ′ . Assume now that s = 2. Wepro
eed by indu
tion on T ≤ T ′.(re�) Immediate.(symb) Not possible.(prod) R(x:U)V is the set of fun
tions from T ×RU toRV that are invariant byredu
tion and size substitution. R(x:U ′)V ′ is the set of fun
tions from T ×RU ′to RV ′ that are invariant by redu
tion and size substitution. By indu
tionhypothesis, RU = RU ′ and RV = RV ′ . Therefore, R(x:U)V = R(x:U ′)V ′ .(
onv) By indu
tion hypothesis,RT ′ = RU ′ . Sin
eRT = RT ′ andRU = RU ′ ,we have RT = RU . �10



De�nition 19 (Interpretation s
hema) A 
andidate assignment is a fun
-tion ξ from X to ⋃
{Rt | t ∈ T }. A 
andidate assignment ξ validates anenvironment Γ or is a Γ-assignment, ξ |= Γ, if, for all x ∈ dom(Γ), xξ ∈ RxΓ.An interpretation for a symbol C ∈ CF2 is a monotone fun
tion I from Ato Rmτf

. An interpretation for a symbol f /∈ CF2 is an element of Rmτf
. Aninterpretation for a set G of predi
ate symbols is a fun
tion whi
h, to everysymbol g ∈ G, asso
iates an interpretation for g.The interpretation of t w.r.t. a 
andidate assignment ξ, an interpretation Ifor F , a substitution θ and a valuation ν, [[t]]I,νξ,θ , is de�ned by indu
tion on t:� [[t]]I,νξ,θ = ⊤t if t ∈ O ∪ S� [[F ]]I,νξ,θ = IF if F ∈ DF2� [[Ca]]I,νξ,θ = IaνC if C ∈ CF2� [[x]]I,νξ,θ = xξ� [[(x : U)V ]]I,νξ,θ = {t ∈ T | ∀u ∈ [[U ]]I,νξ,θ , ∀S ∈ RU , tu ∈ [[V ]]I,ν

ξS
x ,θ

u
x
}� [[[x : U ]v]]I,νξ,θ (u, S) = [[v]]I,ν

ξS
x ,θ

u
x� [[tu]]I,νξ,θ = [[t]]I,νξ,θ (uθ, [[u]]

I,ν
ξ,θ )where θux = θ ∪ {x 7→ u} and ξSx = ξ ∪ {x 7→ S}.Let I be an interpretation for F . A symbol f is 
omputable if, for all ν,

f ∈ [[τf ]]
I,ν . A substitution θ is adapted to a Γ-assignment ξ and a valuation

ν, ξ, θ |=ν Γ, if dom(θ) ⊆ dom(Γ) and, for all x ∈ dom(θ), xθ ∈ [[xΓ]]I,νξ,θ .The interpretation is invariant by redu
tion if, for all ν, ξ, θ and t, t′ ∈ WN ,
[[t]]I,νξ,θ = [[t′]]I,νξ,θ whenever t→ t′.Lemma 20 � If Γ ⊢ t : T and ξ |= Γ then [[t]]I,νξ,θ ∈ RT .� If θ → θ′ or θ = θ′ then [[t]]I,νξ,θ = [[t]]I,νξ,θ′ .Proof. The proof is similar to the one for CAC [11℄. �Lemma 21 (Candidate substitution) If Γ ⊢ t : T , γ : Γ ; ∆ and ξ |= ∆then [[tγ]]I,νξ,σ = [[t]]I,νη,γσ with xη = [[xγ]]I,νξ,σ and η |= Γ.Proof. The proof is similar to the one for CAC [11℄. �Lemma 22 (Size substitution) If Γ ⊢ t : T then [[tϕ]]I,νξ,θ = [[t]]I,ϕνξ,θ where
α(ϕν) = (αϕ)ν.Proof. By indu
tion on t.� If t is an obje
t, a sort or a symbol f ∈ F⋆ then tϕ is of the same kind and

[[tϕ]]I,νξ,θ = [[tϕ]]I,νξ,θ = ⊤t.� [[Caϕ]]I,νξ,θ = IaϕνC = [[Ca]]I,ϕνξ,θ .� [[xϕ]]I,νξ,θ = [[x]]I,νξ,θ = xξ. 11



� [[(x : Uϕ)V ϕ]]I,νξ,θ = {t ∈ T | ∀u ∈ [[Uϕ]]I,νξ,θ , ∀S ∈ RUϕ, tu ∈ [[V ϕ]]I,ν
ξS

x ,θ
u
x
}. Byindu
tion hypothesis, [[Uϕ]]I,νξ,θ = [[U ]]I,ϕνξ,θ and [[V ϕ]]I,ν

ξS
x ,θ

u
x

= [[V ]]I,ϕν
ξS

x ,θ
u
x
. Andsin
e RUϕ = RU , [[(x : Uϕ)V ϕ]]I,νξ,θ = [[(x : U)V ]]I,νξ,θ .� If Γ ⊢ [x : U ]v : T then, by inversion, Γ ⊢ [x : U ]v : (x : U)V for some V ,and Γϕ ⊢ [x : Uϕ]vϕ : (x : Uϕ)V ϕ. Sin
e RUϕ = RU and RV ϕ = RV , [[[x :

Uϕ]vϕ]]I,νξ,θ has the same domain and 
odomain as [[[x : U ]v]]I,νξ,θ . Furthermore,
[[[x : Uϕ]vϕ]]I,νξ,θ (u, S) = [[vϕ]]I,ν

ξS
x ,θ

u
x

= [[v]]I,ν
ξS

x ,θ
u
x
by indu
tion hypothesis.� [[tϕuϕ]]I,νξ,θ = [[tϕ]]I,νξ,θ (uϕθ, [[uϕ]]I,νξ,θ ) = [[t]]I,ϕνξ,θ (uθ, [[u]]I,ϕνξ,θ ) by indu
tion hypoth-esis and invarian
e by size 
hange. �We now de�ne the sets of positive and negative positions in a term, whi
hwill enfor
e monotony and anti-monotony properties respe
tively.De�nition 23 (Positive and negative positions) The set of positions in aterm t is indu
tively de�ned as follows:8� Pos(s) = Pos(x) = Pos(f) = {ε}� Pos((x : u)v) = Pos([x : u]v) = Pos(uv) = 1.Pos(u) ∪ 2.Pos(v)� Pos(Ca) = {ε} ∪ 0.Pos(a)Let Pos(x, t) be the set of positions of the free o

urren
es of x in t, and

Pos(f, t) be the set of positions of the o

urren
es of f in t. The set of posi-tive positions in t, Pos+(t), and the set of negative positions in t, Pos−(t), aresimultaneously de�ned by indu
tion on t:� Posδ(s) = Posδ(x) = {ε | δ = +}� Posδ((x : U)V ) = 1.Pos−δ(U) ∪ 2.Posδ(V )� Posδ([x : U ]v) = 2.Posδ(v)� Posδ(tu) = 1.Posδ(t) if t 6= f~t� Posδ(f~t) = {1|~t| | δ = +} ∪
⋃
{1|~t|−i2.Posεδ(ti) | ε ∈ {−,+}, i ∈ Monε(f)}� Posδ(Ca~t) = Posδ(C~t) ∪ {1|~t|0 | δ = +}.Posδ(a).where δ ∈ {−,+}, −+ = − and −− = + (usual rule of signs).Lemma 24 (Monotony) Let ≤+=≤; ≤−=≥; ξ ≤x ξ′ i� xξ ≤ xξ′ and, for all

y 6= x, yξ = yξ′; I ≤f I ′ i� If ≤ I ′f and, for all g 6= f , Ig = I ′g; ν ≤α ν′ i�
αν ≤A αν′ and, for all β 6= α, βν = βν′. Assume that Γ ⊢ t : T and ξ, ξ′ |= Γ.� If ξ ≤x ξ′ and Pos(x, t) ⊆ Posδ(t) then [[t]]I,νξ,θ ≤

δ [[t]]I,νξ′,θ.� If I ≤f I ′ and Pos(f, t) ⊆ Posδ(t) then [[t]]I,νξ,θ ≤
δ [[t]]I

′,ν
ξ,θ .� If ν ≤α ν′ and Pos(α, t) ⊆ Posδ(t) then [[t]]I,νξ,θ ≤

δ [[t]]I,ν
′

ξ,θ .� If Γ ⊢ T ≤ T ′ : s, T, T ′ ∈ WN and the interpretation is invariant by redu
tionthen [[T ]]I,νξ,θ ≤ [[T ′]]I,νξ,θ .8It is de�ned so that Pos(t) ⊆ Pos(t). 12



Proof.� The �rst two properties are proved for CAC in [11℄ and their proofs are stillvalid.� We now prove the third property. It uses the same te
hniques. So, we onlydetail the 
ase t = Ca~t. Let R = [[t]]I,νξ,θ and R′ = [[t]]I,ν
′

ξ,θ . R = IaνC (~tθ, ~S)with ~S = [[~t]]I,νξ,θ , and R′ = Iaν
′

C (~tθ, ~S′) with ~S = [[~t]]I,ν
′

ξ,θ . Let n = |~t| and
i ∈ {1, . . . , n}. If Pos(α, ti) = ∅ then Si = S′

i. Otherwise, sin
e Pos(α, t) ⊆
Posδ(t), there is εi su
h that i ∈ Monεi(f) and Pos(α, ti) ⊆ Posεiδ(ti).Thus, by indu
tion hypothesis, Si ≤εiδ S′

i. Let Qkj = (~tθ, S′
j) if j ≤ k,and Qkj = (~tθ, Sj) if j > k. We have ~Q0 = (~tθ, ~S), ~Qn = (~tθ, ~S′) and, forall k ∈ {1, . . . , n}, ~Qk−1 ≤εkδ

k
~Qk. Thus, IaνC ( ~Qk−1) ≤ε

2
kδ IaνC ( ~Qk), that is,

IaνC ( ~Qk−1) ≤δ IaνC ( ~Qk) sin
e ε2k = + and symbol interpretations are mono-tone in their monotone arguments and anti-monotone in their anti-monotonearguments. So, R = IaνC ( ~Q0) ≤δ IaνC ( ~Qn). Now, if Pos(α,Ca) = ∅ then
aν = aν′ and R ≤δ R′ = IaνC ( ~Qn). Otherwise, δ = + and aν ≤A aν′sin
e Pos(α, a) ⊆ Pos+(a). Thus, R ≤ R′ sin
e symbol interpretations aremonotone fun
tions on A.� We now prove the last property by indu
tion on T ≤ T ′. Let R = [[T ]]I,νξ,θ and
R′ = [[T ′]]I,νξ,θ ,(re�) Immediate.(symb) Let ~Q = (~tθ, [[~t]]I,νξ,θ ). We have R = IaνC ( ~Q) ≤ R′ = IbνC ( ~Q) sin
e
aν ≤A bν and symbol interpretations are monotone on A.(prod) Let t ∈ R, u ∈ [[U ′]]I,νξ,θ and S ∈ RU ′ . We must prove that tu ∈
[[V ′]]I,ν

ξS
x ,θ

u
x
. By indu
tion hypothesis, [[U ′]]I,νξ,θ ≤ [[U ]]I,νξ,θ . So, u ∈ [[U ]]I,νξ,θ .Sin
e RU ′ = RU and t ∈ R, tu ∈ [[V ]]I,νξS

x ,θ
u
x
. Now, by indu
tion hypothesis,

[[V ]]I,νξS
x ,θ

u
x
≤ [[V ′]]I,νξS

x ,θ
u
x
. Therefore, tu ∈ [[V ′]]I,νξS

x ,θ
u
x
.(
onv) By indu
tion hypothesis, [[T ′]]I,νξ,θ ≤ [[U ′]]I,νξ,θ . Sin
e T, U ∈ WN andthe interpretation is invariant by redu
tion, [[T ′]]I,νξ,θ = R and [[U ′]]I,νξ,θ = R′.Therefore, R ≤ R′. �Theorem 25 (Strong normalization) If there is an interpretation I invari-ant by redu
tion and su
h that every symbol is 
omputable then every well-typedterm is strongly normalizable.Proof. One �rst prove by indu
tion that, if Γ ⊢ t : T then, for all ξ, ν and

θ su
h that ξ |= Γ and ξ, θ |=ν Γ, then tθ ∈ [[T ]]νξ,θ. Then, one prove that, if
xθ = x and xξ = ⊤xΓ, then ξ |= Γ and ξ, θ |=ν Γ. See [11℄ for details. �6 Constru
tor-based systemsWe now study the 
ase of CACSA's whose size algebra 
ontains the followingexpressions (at least): 13



a ::= α | sa | ∞ | . . .In 
ase that there is no other symbol, the ordering ≤A on size expressionsis de�ned as the smallest quasi-ordering ≤ su
h that, for all a, a < sa and
a ≤ ∞. We interpret size expressions in the set A = Ω + 1, where Ω is the �rstun
ountable ordinal, by taking:� sA(a) = a + 1 if a < Ω, and Ω otherwise.� ∞A = Ω.One 
an easily imagine other size expressions like a+ b, max(a, b), . . .De�nition 26 (Constru
tor-based system) We assume given a pre
eden
e
≤F on F , that is, a quasi-ordering whose stri
t part >F is well-founded, andthat every C ∈ CF2 with C : (~z : ~V )⋆ is equipped with a set Cons(C) of
onstru
tors, that is, a set of 
onstant symbols f : (~y : ~U)Ca~v equipped with aset Acc(f) ⊆ {1, . . . , |~y|} of a

essible arguments su
h that:
• If there are D =F C and j ∈ Acc(c) su
h that Pos(D,Uj) 6= ∅ then V(τf ) =
{α} and a = sα.
• For all j ∈ Acc(c):� For all D >F C, Pos(D,Uj) = ∅.� For all D ≃F C and p ∈ Pos(D,Uj), p ∈ Pos+(Uj) and Uj |p = Dα.� For all p ∈ Pos(α,Uj), p = q0, Uj|q = Dα and D ≃F C.� For all x ∈ FV2(Uj), there is ιx with vιx = x and Pos(x, Uj) ⊆ Pos+(Uj).
• For all F ∈ DF2 and F~l→ r ∈ R:� For all G >F F , Pos(G, r) = ∅.� For all i ∈Monδ(F ), li ∈ X2 and Pos(li, r) ⊆ Posδ(r).� For all x ∈ FV2(r), there is κx with lkx

= x.A C-
onstru
tor term is a term of the form f~u with f ∈ Cons, f : (~y : ~U)Ca~v,
|~u| = |~y| and Acc(f) 6= ∅. Let CT (C) be the set of C-
onstru
tor terms.The 
onditions involving ιx and κx means that we restri
t our attention tosmall indu
tive types. Strong elimination, that is, predi
ate-level re
ursion onbig indu
tive types may lead to non-termination [18℄. Yet, weak elimination,that is, obje
t-level re
ursion on big indu
tive types is admissible. As shownin [8℄, it is possible to raise this restri
tion at the pri
e of not being allowed tomat
h de�ned symbols.Among 
onstant predi
ate symbols, we distinguish the 
lass of primitivetypes that in
ludes all �rst-order data type like natural numbers, lists of naturalnumbers, . . . Primitive types are not polymophi
 but they 
an have primitivedependan
ies like the type of arrays of natural numbers.De�nition 27 (Primitive types) A symbol C ∈ CF2 is primitive if τC =

(~z : ~V )⋆, {~z} ⊆ X ⋆ and, for all D ≃F C, for all 
onstru
tor f : (~y : ~U)Dsα~vand for all j ∈ Acc(f), either Uj = E∞~t with E <F C and E primitive, or
Uj = Eα~t with E ≃F C. The size of a term t in a primitive type C is de�ned14



as follows. If t is a 
onstru
tor term f~u with f : (~y : ~U)Csα~v and, for all j ∈
Acc(f) su
h that Pos(α,Uj) 6= ∅, Uj = Cαj ~v

j , then |t|C = 1 +max{|uj |Cj
| j ∈

Acc(f),Pos(α,Uj) 6= ∅}. Otherwise, |t|C = 0.We de�ne the interpretation of predi
ate symbols by indu
tion on >F .De�nition 28 (Interpretation of de�ned predi
ate symbols) Assumethat F : (~x : ~T )U . We take IF (~t, ~S) = [[r]]Iξ,σ if ~t ∈ WN , ~t↓= ~lσ, F~l → r ∈ Rand xξ = Sκx
. Otherwise, we take IF (~t, ~S) = ⊤U .Thanks to Lemma 24, one 
an easily 
he
k that I is monotone in its mono-tone arguments. The well-foundedness of the de�nition is a 
onsequen
e of the
orre
tness of the termination 
riterion.We now de�ne the interpretation of a 
onstant predi
ate symbols by trans-�nite indu
tion on a ∈ A.De�nition 29 (Interpretation of 
onstant predi
ate symbols)� I0

C(~S)9 is the set of u ∈ SN su
h that u never redu
es to a C-
onstru
torterm.� Ia+1
C (~S) is the set of terms u ∈ SN su
h that, if u redu
es to a 
onstru
torterm f~u with f : (~y : ~U)Csα~v then, for all j ∈ Acc(f), uj ∈ [[Uj ]]

I,ν
ξ,θ with

yξ = Sιy , ~yθ = ~u and αν = a.� Ib
C =

∧
τC

({Ia
C | a < b}) if b is a limit ordinal.Let Ka

C(~S) = Ia
C(~S) ∩ CT (C) and, for t ∈ IΩ

C (~S), let oC(~S)(t) be the smallestordinal a su
h that t ∈ Ia
C(~S).The interpretation is well de�ned thanks to the assumptions made on Ujwhen j is a

essible.Lemma 30 If f~u ∈ KΩ

C(~S) then oC(~S)(f~u) is a su

essor ordinal.Proof. Assume that a = oC(~S)(f~u) is a limit ordinal. Then, Ia
C(~S) =

⋃
{Ib
C(~S) | b < a} and tσ ∈ Ib

C(~S) for some b < a, whi
h is not possible. Now,
a 6= 0 sin
e K0

C(~S) = ∅. Therefore, a is a su

essor ordinal. �Lemma 31 I is monotone.Proof. We prove that a ≤ b⇒ Ia ≤ Ib by indu
tion on a.
• a = 0.� b = 0. Immediate.9We do not write ~t sin
e the interpretation does not depend on it.
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� b = b′ + 1. By indu
tion hypothesis, I0 ≤ Ib
′ . We now prove that Ib

′

≤
Ib

′+1. Let t ∈ Ib
′

C (~S). Then, t ∈ SN . Assume now that t redu
es to a
onstru
tor term f~u with f : (~y : ~U)Csα~v. By Lemma 30, t ∈ Ic+1
C (~S) forsome c < b′. Let j ∈ Acc(f). Then, uj ∈ [[Uj ]]

ν
ξ,θ with yξ = Sιy , ~yθ = ~uand αν = c. After the 
onditions on Uj , by Lemma 24, [[Uj ]]

ν
ξ,θ ⊆ [[Uj ]]

µ
ξ,θwhere αµ = b′. Thus, t ∈ Ib

′+1
C (~S).� b is a limit ordinal. By indu
tion hypothesis, I0 ≤ Ib

′ for all b′ < b. Thus,
I0 ≤ Ib.

• a = a′ + 1.� b = 0. Not possible.� b = b′ + 1. Then, a′ ≤ b′. Let t ∈ Ia
C(~S). Then, t ∈ SN . Assume now that

t redu
es to a 
onstru
tor term f~u with f : (~y : ~U)Csα~v and let j ∈ Acc(f).Then, uj ∈ [[Uj ]]
ν
ξ,θ with yξ = Sιy , ~yθ = ~u and αν = a′. After the 
onditionson Uj , by Lemma 24, [[Uj ]]

ν
ξ,θ ⊆ [[Uj ]]

µ
ξ,θ where αµ = b′. Thus, t ∈ Ib

C(~S).� b is a limit ordinal. Then, a′ < b′ for some b′ < b and we 
an 
on
lude byindu
tion hypothesis.
• a is a limit ordinal.� b = 0. Not possible.� b = b′ + 1. Then, a ≤ b′ and we 
an 
on
lude by indu
tion hypothesis.� b is a limit ordinal. Then, for all a′ < a, a′ < b, and we 
an 
on
lude byindu
tion hypothesis. �Lemma 32 (Primitive types) Let C be primitive type. If a ≥ ω then Ia

C =

⊤τC
. Otherwise, Ia

C(~S) = {t ∈ SN | |t↓|C ≤ a}, that is, oC(~s)(t) = |t↓|C .Proof. We pro
eed by indu
tion on C with >F as well-founded ordering.Let Ja
C = {t ∈ SN | |t↓ |C ≤ a}. Sin
e primitive types are not polymorphi
,every Si = ∅. So, we 
an drop the arguments ~S. Note also that |t|C ≤ |t′|Cwhenever t→ t′ (sin
e Cons ⊆ CF).We �rst prove that, for all a < ω, if oC(t) = a then |t↓|C = a.� a = 0. If oC(t) = 0 then t ∈ I0

C ⊆ J
0
C . Thus, |t↓|C = 0.� a = a′ + 1. If oC(t) = a′ + 1 then t ∈ Ia

′+1
C \ Ia

′

C . Sin
e t /∈ I0
C , t redu
es to a
onstru
tor term f~u with f : (~y : ~U)Csα~v. Let j ∈ Acc(f). Then, uj ∈ [[Uj ]]

ν
ξ,θwith yξ = Sιy , ~yθ = ~u and αν = a′. Moreover, either Uj = Cαj ~v

j with
Cj ≃F C, or Uj = C∞

j ~v
j with Cj <F C. In the former 
ase, uj ∈ Ia

′

Cj
. Thus,

oCj
(uj) ≤ a

′ and, by indu
tion hypothesis, oCj
(uj) = |uj ↓ |Cj

. Therefore,
oC(t) = |t↓|.Thus oC(t) = |t ↓ |C and, for all a < ω, Ia

C = Ja
C . We now prove that

Iω+1
C = IωC = SN . Let t ∈ Iω+1

C \ IωC . Sin
e t /∈ I0
C , t redu
es to a 
onstru
-tor term f~u with f : (~y : ~U)Csα~v and, for all j ∈ Acc(f), uj ∈ [[Uj ]]

ν
ξ,θ with

yξ = Sιy , ~yθ = ~u and αν = ω. Thus, for all j ∈ Acc(f), there is aj < ω su
hthat uj ∈ [[Uj ]]
νj

ξ,θ with ανj = aj. a = max{aj | j ∈ Acc(f) is well de�ned sin
e16



Acc(f) 6= ∅ and a < ω sin
e Acc(f) is �nite. Thus, t ∈ Ia+1
C ⊆ IωC . �We now give general 
onditions for every symbol to be 
omputable, based onthe fundamental notion of 
omputability 
losure. The 
omputability 
losure of aterm t is a set of terms that 
an be proved 
omputable whenever t is 
omputable.If, for every rule f~l → r, r belongs to the 
omputability 
losure of ~l, then rulespreserve 
omputability, hen
e strong normalization.In [11℄, the 
omputability 
losure is indu
tively de�ned as a typing relation

⊢c similar to ⊢ ex
ept for the (symb) 
ase whi
h is repla
ed by two new 
ases:(symb<) for symbols stri
tly smaller than f , and (symb=) for symbols equivalentto f whose arguments are stru
turally smaller than ~l.Here, we propose to add a new 
ase for symbols equivalent to f whosearguments have sizes stri
tly smaller than those of ~l. For 
omparing the sizes,one 
an use metri
s like in [42℄.De�nition 33 (Ordering on symbol arguments) For every symbol f : (~x :
~T )U , we assume given two well-founded domains, (DA

f , >
A
f ) and (DA

f , >
A

f ), andtwo measure/metri
 fun
tions ζAf : An → DA
f and ζA

f : An → DA
f (n = |~x|) su
hthat (DX

f , >
X
f ) = (DX

g , >
X
f ) (X ∈ {A,A}) whenever f ≃F g, and we de�ne:� aif = a if Ti = Ca~v, and aif =∞ otherwise.� (f, ϕ) >A (g, ψ) i� f >F g or f ≃F g and ζAf (~afϕ) >A

f ζAg (~agψ).� (f, ν) >A (g, µ) i� f >F g or f ≃F g and ζA

f (~afν) >
A

f ζ
A
g (~agµ).Then, we assume that >A is de
idable and that (for all ν) (f, ϕν) >A (g, ψν)whenever (f, ϕ) >A (g, ψ).Example 2 (Lexi
ographi
 and multiset status) A simple metri
 is givenby assigning a status to every symbol, that is, a non-empty sequen
e of �nitemultisets of stri
tly positive integers, des
ribing a simple 
ombination of lexi-
ographi
 and multiset 
omparisons. Given a set D and a status ζ of arity n(biggest integer o

urring in it), we de�ne [[ζ]]D on Dn as follows:� [[M1 . . .Mk]]D(~x) = ([[M1]]

m
D(~x), . . . , [[Mk]]

m
D(~x))� [[{i1, . . . , ip}]]mD(~x) = {xi1 , . . . , xip} (multiset)Now, take ζXf = [[ζf ]]X , DX

f = ζXf (Xn) and >Xf = ((>X)mul)lex.For building the 
omputability 
losure, one must start from the variablesof the left hand-side. However, one 
annot take any variable sin
e not everysubterm of a 
omputable term is 
omputable a priori. To this end, based onthe de�nition of the interpretation of 
onstant predi
ate symbols, we introdu
ethe notion of a

essibility.De�nition 34 (A

essibility) We say that u : U is a-a

essible10 in t : T ,written t : T �a u : U , i� t = f~u, f ∈ Cons, f : (~y : ~U)Csα~v, |~u| = |~y|,10We may not indi
ate a if it is not relevant.17



u = uj , j ∈ Acc(f), T = Csαϕ~vγ, U = Ujγϕ, γ = {~y 7→ ~u}, ϕ = {α 7→ a} and
Pos(α, ~u) = ∅.A 
onstru
tor c : (~y : ~U)Ca~v is �nitely bran
hing11 i�, for all j ∈ Acc(c),either Pos(α,Uj) = ∅ or there exists D su
h that Uj = Dα~u. We say that u : Uis strongly a-a

essible in t : T , written t : T �· a u : U , i� t : T �a u : U , f is a�nitely bran
hing 
onstru
tor and Pos(α,Uj) 6= ∅.We say that u : U is ∗-a

essible modulo ϕ in t : T , written t : T ≫ϕ u : U ,i� either t : Tϕ = u : U and ϕ|V(T ) is a renaming, or t : Tϕ�· ∗ �ǫ u : U for somesize variable ǫ.De�nition 35 (Termination 
riterion) Let (f~l → r,Γ, ϕ) ∈ R with f :

(~x : ~T )U and γ = {~x 7→ ~l}. The 
omputability 
losure asso
iated to this ruleis given by the type system of Figure 5 on the set of terms TA(F ′,X ′) where
F ′ = F ∪ dom(Γ), X ′ = X \ dom(Γ) and, for all x ∈ dom(Γ), τx = xΓ and
x <F f . The termination 
onditions are:
• Well-typedness: for all x ∈ dom(Γ), ⊢c li : Tiϕγ.
• Linearity: Γ is linear w.r.t. size variables.
• A

essibility: for all x ∈ dom(Γ), there are i and β su
h that li : Tiγ ≫ϕ x :
xΓ,12 Ti = Cβ~t and V(~t) = ∅.
• Computability 
losure: ⊢c r : Uϕγ.
• Positivity: for all α ∈ V(~T ), Pos(α,U) ⊆ Pos+(U).
• Safeness: γ is an inje
tion from dom2(Γf ) to dom2(Γ).Note that, if ∆ ⊢c t : T then Γ,∆ ⊢ t : T . Hen
e, the well-typedness
ondition implies that γ : Γfϕ ; Γ and thus that the left hand-side is well-typed: Γ ⊢ f~l : Uϕγ.The positivity 
ondition on the output type of f w.r.t. size variables appearsin the previous works on sized types too. In [3℄, Abel gives an example of afun
tion whi
h is not terminating be
ause it does not satisfy su
h a 
ondition.This 
an be extended to more general 
ontinuity 
onditions [28, 1℄ and is indeedne
essary (see Example 8).As for the safeness 
ondition, it simply says that one 
annot do mat
hingor have non-linearities on predi
ate variables, whi
h is known to lead to non-termination [27℄. It is also part of other works on the Cal
ulus of Constru
tionswith indu
tive types [36℄ and rewriting [40℄.The positivity, safeness and a

essibility 
onditions are de
idable. For the
onditions based on the 
omputability 
losure, we prove the strong normaliza-tion in Se
tion 7.Let us now see some examples.Example 3 (Division on natural numbers, Figure 1) Take the types nat :
⋆, 0 : nat0, s : natα ⇒ natsα, − : natα ⇒ natβ ⇒ natα and / : natα ⇒ natβ ⇒11Primitive types are �nitely bran
hing.12This implies in parti
ular that every xΓ is of the form Cǫ~t with ǫ ∈ Z.18



Figure 5: Computability 
losure of f~l→ r with f : (~x : ~T )U and γ = {~x 7→ ~l}(ax)
⊢c ⋆ : 2(size) ⊢c τC : 2

⊢c Ca : τC
(C ∈ CF2)(symb) ⊢c τg : sg (∀i)∆ ⊢c yiδ : Uiψδ

∆ ⊢c g~yδ : V ψδ
(g /∈ CF2, g : (~y : ~U)V,

(g, ψ) <A (f, ϕ))(var) ∆ ⊢c T : sx

∆, x : T ⊢c x : T
(x /∈ dom(∆))(weak) ∆ ⊢c t : T ∆ ⊢c U : sx

∆, x : U ⊢c t : T
(x /∈ dom(∆))(prod) ∆, x : U ⊢c V : s

∆ ⊢c (x : U)V : s(abs) ∆, x : U ⊢c v : V ∆ ⊢c (x : U)V : s

∆ ⊢c [x : U ]v : (x : U)V(app) ∆ ⊢c t : (x : U)V ∆ ⊢c u : U

∆ ⊢c tu : V {x 7→ u}(
onv) ∆ ⊢c t : T ∆ ⊢c T : s ∆ ⊢c T ′ : s

∆ ⊢c t : T ′
(T ≤ T ′)

natα, with Acc(s) = {1}. All positivity 
onditions are 
learly satis�ed. Safenessis immediate (there is no predi
ate variables). For the other 
onditions, we onlydetail (3) and (5).
• For (3), take Γ− = p : natα, q : natβ , ζ−(α, β) = α, Γ = x : natδ, y : natǫ,
γ = {p 7→ sx, q 7→ sy}, ϕ = {α 7→ sδ, β 7→ sǫ} and s <F −.� Well-typedness: By (symb), ⊢c x : natδ and ⊢c y : natǫ. Thus, by (symb),
⊢c sx : natsδ and ⊢c sy : natsǫ.� A

essibility: One 
an easily 
he
k that sx : natsδ ≫ϕ x : natδ and sysǫ ≫ϕ

y : natǫ.� Computability 
losure: By (symb), ⊢c x : natδ and ⊢c y : natǫ. By (symb),
⊢c −xy : natδ sin
e ζ−(δ, ǫ) = δ < ζ−(sδ, sǫ) = sδ. Thus, by (sub), ⊢c −xy :
natsδ.

• For (5), take Γ/ = p : natα, q : natβ, ζ/(α, β) = α, Γ = x : natδ, y : natǫ,19



γ = {p 7→ sx, q 7→ y}, ϕ = {α 7→ sδ, β 7→ ǫ} and − <F /.� Well-typedness: By (symb), ⊢c x : natδ and ⊢c y : natǫ. Thus, by (symb),
⊢c sx : natsδ.� A

essibility: One 
an easily 
he
k that sx : natsδ ≫ϕ x : natδ and y :
natǫ ≫ϕ y : natǫ.� Computability 
losure: By (symb), ⊢c x : natδ and ⊢c y : natǫ. By (symb),
⊢c −xy : natδ. By (symb), ⊢c /(−xy)y : natδ sin
e ζ/(δ, ǫ) = δ < ζ/(sδ, ǫ) =

sδ. Thus, by (symb), ⊢c s(/(−xy)y) : natsδ.Example 4 (Addition on Brouwer's ordinals, Figure 2) Take the types
ord : ⋆, 0 : nat0, s : natα ⇒ natsα, lim : (nat ⇒ ordα) ⇒ ordsα and + :
natα ⇒ natβ ⇒ nat∞, with Acc(s) = Acc(lim) = {1}. All positivity 
onditionsare 
learly satis�ed. We only detail rule (3). Take Γ+ = p : ordα, q : ordβ ,
ζ+(α, β) = α, Γ = f : nat∞ ⇒ ordδ, y : ordǫ, γ = {p 7→ limf, q 7→ y},
ϕ = {α 7→ sδ, β 7→ ǫ} and s, lim <F +.� Well-typedness: By (symb), ⊢c f : nat∞ ⇒ ordδ and ⊢c y : ordǫ. Thus, by(symb), ⊢c limf : ordsδ .� A

essibility: One 
an easily 
he
k that limf : ordsδ ≫ϕ f : nat∞ ⇒ ordδand y : ordǫ ≫ϕ y : ordǫ.� Computability 
losure: By (symb), ⊢c f : nat∞ ⇒ ordδ and ⊢c y : ordǫ. Let

∆ = x : nat∞. By (var), ∆ ⊢c x : nat∞. By (weak), ∆ ⊢c f : nat∞ ⇒ ordδand ∆ ⊢c y : ordǫ. By (app), ∆ ⊢c fx : ordδ . By (symb), ∆ ⊢c +(fx)y : ord∞sin
e ζ+(δ, ǫ) = δ < ζ+(sδ, ǫ) = sδ. By (abs), ⊢c [x : nat∞](+(fx)y) : (x :
nat∞)ordδ . Thus, by (symb), ⊢c lim([x : nat∞](+(fx)y)) : ordsδ .Example 5 (Qui
k sort, Figure 6) Take the types bool : ⋆, true : bool∞,

false : bool∞, list : ⋆, nil : list0, cons : nat∞ ⇒ listα ⇒ listsα, blist : ⋆,
pair : listα ⇒ listβ ⇒ blistmax(α,β), fst : blistα ⇒ listα, snd : blistα ⇒ listα,
≤: nat∞ ⇒ nat∞ ⇒ bool∞, pivot : nat∞ ⇒ listα ⇒ blistα, qs : list∞ ⇒
list∞ ⇒ list∞ and qsort : list∞ ⇒ list∞. We only detail the 
omputability
losure 
ondition of rule (11).Take ζqs(α, β) = α, Γ = x : nat∞, l : listδ, l′ : listǫ, ϕ = {α 7→ sδ, β 7→ ǫ}and qs >F pivot >F cons, pair, fst , snd. By (symb), ⊢c x : nat∞, ⊢c l : listδ and
⊢c l′ : listǫ. By (symb), ⊢c pivot x l : blistδ. By (symb), ⊢c u : listδ and ⊢c v :
listδ. By (symb), ⊢c qs v l′ : list∞. By (symb), ⊢c cons x (qs v l′) : list∞. Thus,by (symb), ⊢c qs u (cons x (qs v l′)) : list∞ sin
e ζqs(δ,∞) = δ < ζqs(sδ, ǫ) = sδ.Note that we 
annot take qs : listα ⇒ listβ ⇒ listα+β and thus qsort :
listα ⇒ listα sin
e too mu
h information is lost by taking pair : listα ⇒
listβ ⇒ blistmax(α,β). Even though we take pair : listα ⇒ listβ ⇒ blist〈α,β〉with 〈α, β〉 interpreted as a pair of ordinals, the 
urrent setting does not allowus to say that pivot has type nat∞ ⇒ listα ⇒ blist〈β,γ〉 for some β and γ su
hthat β + γ = α, as it 
an be done in Xi's framework [42℄.The following examples are taken from [25℄.20



Figure 6: Qui
k sort
(1) fst (pair x y) → x
(2) snd (pair x y) → y

(3) ≤ 0 x → true
(4) ≤ (s x) 0 → false
(5) ≤ (s x) (s y) → ≤ x y

(6) if true x y → x
(7) if false x y → y

(8) pivot x nil → pair nil nil
(9) pivot x (cons y l) → if (≤ y x) (pair (cons y u) v) (pair u (cons y v))where u = fst (pivot x l) and v = snd (pivot x l)

(10) qs nil l → l
(11) qs (cons x l) l′ → qs u (cons x (qs v l′))where u = fst (pivot x l) and v = snd (pivot x l)

(12) qsort l → qs l nilFigure 7: Paulson's normalization of if -expressions
(1) nm at → at
(2) nm (if at y z) → if at (nm y) (nm z)
(3) nm (if (if u v w) y z) → nm (if u (nm (if v y z)) (nm (if w y z)))Example 6 (Paulson's normalization of if -expressions, Figure 7) Takethe types expr : ⋆, at : expr1, if : exprα ⇒ exprβ ⇒ exprγ ⇒ exprα(1+β+γ) and
nm : exprα ⇒ exprα. We only detail the 
omputability 
losure 
ondition of rule(3). Take ζnm(α) = α, Γ = u : exprα, v : exprβ , w : exprγ , y : exprδ, z : exprǫ,
υ = α(1 + β + γ)(1 + δ + ǫ), ϕ = {α 7→ υ} and nm >F at, if . Then,one 
an 
he
k that υ is stri
tly greater than β(1 + δ + ǫ), γ(1 + δ + ǫ) and
α(1 + β(1 + δ+ ǫ) + γ(1 + δ+ ǫ)) if variables are interpreted by stri
tly positiveintegers.Example 7 (Huet and Hullot's reverse fun
tion, Figure 8) Take the types
rev1 : nat∞ ⇒ list∞ ⇒ nat∞, rev2 : nat∞ ⇒ listβ ⇒ listβ and rev :
listα ⇒ listα. We only detail the 
omputability 
losure 
ondition of rule (4).Take ζrev(α) = 2α, ζrev2(α, β) = 2β + 1, Γ = x : nat∞, y : nat∞, l : listδ,
ϕ = {β 7→ δ + 1} and rev ≃F rev2 >F rev1 >F cons, nil. Then, one 
an
he
k that ζrev2(∞, δ+ 1) = 2δ+ 3 is stri
tly greater than ζrev2(∞, δ) = 2δ+1,21



Figure 8: Huet and Hullot's reverse fun
tion
(1) rev1 x nil → x
(2) rev1 x (cons y l) → rev1 y l

(3) rev2 x nil → nil
(4) rev2 x (cons y l) → rev (cons x (rev (rev2 y l)))

(5) rev nil → nil
(6) rev (cons x l) → cons (rev1 x l) (rev2 x l)

ζrev(δ) = 2δ and ζrev(1 + δ) = 2δ + 2.Figure 9: Ma
 Carthy's �91� fun
tion
(1) f x → f (f (+ x 11)) if ≤ x 100 = true
(2) f x → − x 10 if ≤ x 100 = falseExample 8 (Ma
 Carthy's �91� fun
tion, Figure 9) Ma
 Carthy's �91�fun
tion f is de�ned by the following equations: f(x) = f(f(x+11)) if x ≤ 100,and f(x) = x − 10 otherwise. In fa
t, one 
an prove that f is equal to thefun
tion F su
h that F (x) = 91 if x ≤ 100, and F (x) = x − 10 otherwise.A way to formalize this in CACSA would be to use 
onditional rewrite rules(see Figure 9) and take13 f : natα ⇒ natF (α) and ζXf (x) = max(0, 101− x) asmeasure fun
tion, as it 
an be done in Xi's framework. Then, by taking intoa

ount the rewrite rule 
onditions, one 
ould prove that, if Γ = x : natδ and

≤ x 100 = true, then δ ≤ 100, ζf (δ + 11) < ζf (δ) and ζf (F (δ)) < ζf (δ).7 Termination proofWe �rst prove some lemmas for proving the 
orre
tness of a

essibility w.r.t.
omputability (a

essible subterms of a 
omputable term are 
omputable). Then,we prove the 
orre
tness of the 
omputability 
losure (every term of the 
om-putability 
losure is 
omputable) and the 
omputability of every symbol, hen
ethe strong normalization of every well-typed term.Lemma 36 (A

essibility properties)(1) If t : T �· k u : De~u then T = Cs
ke~t.(2) If t : Cβ~t≫ϕ u : U then there are ǫ ∈ Z and k ≥ 0 su
h that βϕ = skǫ.13Note that F (α) is monotone w.r.t. α. 22



(3) If t : T � u : U , tσ ∈ Kb
C(~S) then oC(~S)(t) is a su

essor ordinal.(4) If t : T �· u : U and tσ ∈ Ib

C(~S) then uσ ∈ Ib
D(~S′) for some D and ~S′.(5) Let f : (~y : ~U)Csα~v be a �nitely bran
hing 
onstru
tor su
h that, if

j ∈ Acc(f) and Pos(α,Uj) 6= ∅ then Uj = Cαj ~v
j . If f~u ∈ Ka

C(~S) then
oC(~S)(f~u) = max{oCj(~Sj)(uj) | j ∈ Acc(f),Pos(α,Uj) 6= ∅} + 1, where
~Sj = [[~vj ]]νξ,θ, yξ = Sιy , ~yθ = ~u and αν = a.(6) If t : T �· k � u : U and tσ ∈ Kb

C(~S) then oC(~S)(t) = a + k + 1 for some a.(7) If t : T �
∗ u : U and tσ ∈ [[T ]]µξ,σ then uσ ∈ [[U ]]µξ,σ.Proof.(1) By indu
tion on k. For k = 0, this is immediate. Assume now that t :

T �· k v : V �· a u : De~u. Then, a = e and V = Ese~vγ. Therefore, byindu
tion hypothesis, T = Cs
k+1e~t.(2) There are two 
ases.� t : Cβϕ = u : U and ϕ|V(T ) is a renaming. Take ǫ = βϕ and k = 0.� t : Cβϕ�· k v : V �ǫ u : U . Then, V = Dsǫ~v and, by (1), βϕ = sk+1ǫ.(3) By Lemma 30.(4) By (3), we 
an assume that tσ ∈ Ia+1

C (~S). By De�nition 29, uj ∈ [[Uj ]]
ν
ξ,θwith yξ = Sιy , ~yθ = ~u and αν = a. By de�nition of �· , Uj = Dα~u. Thus,

uj ∈ Ia
D(~S′) with ~S′ = [[~u]]νξ,θ.(5) By (3), we 
an assume that f~u ∈ Ia+1

C (~S). By (4), for all j ∈ Acc(f) su
hthat Pos(α,Uj) 6= ∅, uj ∈ Ia
Cj

(~Sj). Let aj = oCj(~Sj)(uj). Sin
e a is as smallas possible, we must have max{aj | j ∈ Acc(f),Pos(α,Uj) 6= ∅} = a.(6) By indu
tion on k. For k = 0, this is (3). Assume now that t : T �· u :

U �· k � v : V . By (4), for all j ∈ Acc(f), ujσ ∈ Ia
Dj

(~Sj). Let aj =

oCj(~Sj)(ujσ). By indu
tion hypothesis, aj = bj + k + 1. Therefore, by (5),
oC(~S)(tσ) = bj + k + 2 for some bj .(7) By indu
tion on the number of �-steps. If there is no step, this is immedi-ate. Assume now that t : T�au : U�

∗v : V and αϕ = a. Sin
e T = Csαϕ~vγ,
[[T ]]µξ,σ = Iαϕµ+1

C (~S) with ~S = [[~vγ]]µξ,σ. Therefore, uσ ∈ [[Uj ]]
ϕµ
η,γσ with

yη = Sιy . Sin
e vιy = y, yη = [[yγ]]ϕµξ,σ = [[yγ]]µξ,σ sin
e Pos(α, γ) = ∅. So,by 
andidate substitution, [[Uj ]]
ϕµ
η,γσ = [[Ujγ]]

ϕµ
ξ,σ = [[U ]]µξ,σ. Therefore, byindu
tion hypothesis, vσ ∈ [[V ]]µξ,σ. �Theorem 37 (A

essibility 
orre
tness) If t : T ≫ϕ u : U , T = Cβ~t,

V(~t) = ∅ and tσ ∈ [[T ]]µξ,σ then there exists ν su
h that βϕν ≤ βµ and
uσ ∈ [[U ]]νξ,σ.Proof. There are two 
ases:
• t : Tϕ = u : U and ϕ|V(T ) is a renaming. Let ν = ϕ−1

|V(T )µ. βϕν = βµ and
uσ = tσ ∈ [[T ]]µξ,σ = [[Tϕ]]νξ,σ. 23



• t : Tϕ�· ∗u : U �ǫ v : V . By de�nition of �ǫ, U = Dsǫ~u. By Lemma 36(1), βϕ = sk+1ǫ. By (6), there exists a su
h that a + k + 1 ≤ βµ and
tσ ∈ Ia+k+1

C (~S). Let ǫν = a. Then, βϕν = sk+1ǫν = a + k + 1 ≤ βµ,
tσ ∈ [[Tϕ]]νξ,σ and, by (7), uσ ∈ [[Tϕ]]νξ,σ. �Theorem 38 (Corre
tness of the 
omputability 
losure) Let (f~l → r,Γ,

ϕ) ∈ R, f : (~x : ~T )U and γ = {~x 7→ ~l}. Assume that, for all (g, µ) <A (f, ϕν),
g ∈ [[τg]]

µ. If ∆ ⊢c t : T and ξ, σ |=ν Γ,∆ then tσ ∈ [[T ]]νξ,σ.Proof. By indu
tion on ∆ ⊢c t : T . We only detail the 
ase (symb). Sin
e
(g, ψ) <A (f, ϕ), (g, ψν) <A (f, ϕν). Hen
e, by assumption, g ∈ [[τg]]

ψν . Now,by indu
tion hypothesis, ~yδσ ∈ [[~Uψδ]]νξ,σ. By 
andidate substitution, thereexists η su
h that [[~Uψδ]]νξ,σ = [[~Uψ]]νη,δσ. By size substitution, [[~Uψ]]νη,δσ =

[[~U ]]ψνη,δσ. Therefore, g~yδσ ∈ [[V ]]ψνη,δσ = [[V ψδ]]νξ,σ.Lemma 39 (Computability of symbols) For all f and µ, f ∈ [[τf ]]
µ.Proof. Assume that τf = (~x : ~T )U with U distin
t from a produ
t. f ∈

[[τf ]]
µ i�, for all η, θ su
h that η, θ |=µ Γf , f~xθ ∈ [[U ]]µη,θ. We prove it by indu
tionon ((f, µ), θ) with (>A,→)lex as well-founded ordering. Let ti = xiθ and t = f~t.By assumption, for every rule f~l → r ∈ R, |~l| ≤ |~t|. So, if f /∈ Cons then t isneutral and it su�
es to prove that →(t) ⊆ [[U ]]µη,θ. Otherwise, [[U ]]µη,θ = IaµC (~S)with ~S = [[~v]]µη,θ. Sin
e η, θ |=µ Γf , tj ∈ [[Tj ]]

µ
η,θ. Therefore, in this 
ase too, itsu�
es to prove that →(t) ⊆ [[U ]]µη,θ.If the redu
tion takes pla
e in one ti then we 
an 
on
lude by indu
tionhypothesis. Assume now that there exist (l → r,Γ, ϕ) ∈ R and σ su
h that

t = lσ. Then, l = f~l and θ = γσ with γ = {~x 7→ ~l}.We now de�ne ξ su
h that [[U ]]µη,γσ = [[Uγ]]µξ,σ and [[~T ]]µη,γσ = [[~Tγ]]µξ,σ. Bysafeness, γ is an inje
tion from dom2(Γf ) to dom2(Γ). Let y ∈ dom2(Γ).If there exists x ∈ dom(Γf ) (ne
essarily unique) su
h that y = xγ, we take
yξ = xη. Otherwise, we take yξ = ⊤yΓ.We 
he
k that ξ |= Γ. If y 6= xγ, yξ = ⊤yΓ ∈ RyΓ. If y = xγ then yξ = xη.Sin
e η |= Γf , xη ∈ RxΓf

. Sin
e γ : Γfϕ ; Γ, Γ ⊢ y : xΓfϕγ. Therefore,
yΓ ≤ xΓfϕγ and RyΓ = RxΓfϕγ = RxΓf

. So, ξ |= Γ.Now, by 
andidate substitution, [[Uγ]]µξ,σ = [[U ]]µη′,γσ with xη′ = [[xγ]]ξ,σ. Let
x ∈ FV(~TU). By safeness, xγ = y ∈ dom2(Γ) and xη′ = yξ = xη. Therefore,
η′ = η.We now prove that ξ, σ |=ν Γ for some valuation ν su
h that ϕν ≤ µ. Let
x ∈ dom(Γ). By assumption, there exists i su
h that li : Tiγ ≫ϕ x : xΓ,
Tiγ = Cβx~u and V(~u) = ∅. By Lemma 36 (2), there is ǫx and kx su
h that
βxϕ = skxǫx. Sin
e liσ ∈ [[Tiγ]]ξ,σ, by Theorem 37, there exists νx su
h that
xσ ∈ [[xΓ]]νx

ξ,σ and βxϕνx ≤ βxµ. Sin
e Γ is linear w.r.t. size variables, ǫx 6= ǫywhenever x 6= y. So, we 
an de�ne ν by taking ǫxν = ǫxνx. Then, βxϕν =
skxǫxν = skxǫxνx = βxϕνx ≤ βxµ. 24



Therefore, sin
e ⊢c r : Uϕγ, by 
orre
tness of the 
omputability 
losure, rσ ∈
[[Uϕγ]]νξ,σ = [[Uϕ]]νη,θ = [[U ]]ϕνη,θ ≤ [[U ]]µη,θ sin
e, for all α, Pos(α,U) ⊆ Pos+(U).�Theorem 40 (Strong normalization) Every well-typed term is strongly nor-malizable.Proof. The invarian
e by redu
tion is proved in [11℄. Hen
e, we 
an 
on-
lude by Theorem 25 and Lemma 39. �8 Con
lusionThe notion of 
omputability 
losure, �rst introdu
ed in [12℄ and further extendedto higher-order pattern-mat
hing [10℄, higher-order re
ursive path ordering [29℄,type-level rewriting [7℄ and rewriting modulo equational theories [9℄, again showsto be essential for extending to rewriting and dependent types type-based termi-nation 
riteria for (polymorphi
) λ-
al
uli with indu
tive types and 
ase analysis[28, 42, 5, 2℄. In 
ontrast with what is suggested in [5℄, this notion, whi
h isexpressed as a sub-system of the whole type system (by restri
ting the size ofarguments in fun
tion 
alls in some 
omputability-preserving way, see Figure5), allows pattern-mat
hing and does not su�er from limitations one 
ould �ndin systems relying on external guard predi
ates for re
ursive de�nitions.Moreover, we allow a ri
her size algebra than the one in [28, 5, 2℄ (see Se
tion6). But, we do not allow existential size variables and 
onditional rewriting thatare essential for 
apturing for instan
e the size-preserving property of qui
ksort(Example 5) and Ma
 Carty's �91� fun
tion (Example 8) respe
tively, as it 
anbe done in Xi's work [42℄. Su
h extensions should allow us to subsume Xi's work
ompletely. More generally, it is important to have a better understandingof the di�eren
es between Xi's work whi
h does not use subtyping (but hasexistential size variables and singleton types) and the other works that are basedon subtyping.In this work, we assume that users provide appropriate sized types for fun
-tion symbols and then 
he
k by our te
hnique that the rewrite rules de�ningthese fun
tion symbols are 
ompatible with their types. An important exten-sion would be to infer these types. Works in this dire
tion for ML-like languagesare [32, 43, 17℄. The exa
t relations between these works and with re�nementtypes also [33, 22℄ still have to be investigated. Note also that de
iding thenon-size-in
reasing property of some fun
tions is investigated in [23, 24℄.We made two important assumptions that also need further resear
h. First,the 
on�uen
e of β ∪ R, whi
h is still an open problem when R is 
on�uent,terminating, non left-linear and 
ontains type-level rewrite rules. Se
ond, thepreservation of typing under rewriting (subje
t redu
tion for R), for whi
h weneed to �nd de
idable su�
ient 
onditions (see Example 1).Finally, by 
ombining rewriting and subtyping in the Cal
ulus of Constru
-tions, this work may also be seen as an important step towards the integration ofmembership equational logi
 [13℄ and dependent type systems. Previous works25
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tion, we prove Theorem 3 by following Chen's te
hnique [15℄.Lemma 41 ≤ is equivalent to the relation ≤′ where (symb) is repla
ed by:(symb') Cb~t ≤ T

Ca~t ≤ T
(a ≤A b)Proof. ≤⊆≤′: Assume that a ≤A b. By (re�), Cb~t ≤′ Cb~t. Hen
e, by(symb'), Ca~t ≤′ Cb~t. ≤′⊆≤: Assume that Ca~t ≤′ T sin
e Cb~t ≤′ T and a ≤A b.By indu
tion hypothesis, Cb~t ≤ T . By (symb), Ca~t ≤ Cb~t. Therefore, by(trans), Ca~t ≤ T . �Note that the following two subtyping rules are 
learly admissible:(left) T ↓ T ′ T ′ ≤ U

T ≤ U(right) T ≤ U ′ U ′ ↓ U

T ≤ UFor representing the subtyping dedu
tions, we introdu
e the following termalgebra:
d ::= ⊥ | I | Sd | Cd | Ld | Rd | Pdd | Tddwhere⊥ stands for some impossible 
ase, I for (re�), S for (symb'), C for (
onv),

L for (left), R for (right), P for (prod), and T for (trans).We now prove that the transformation rules of Figure 10 are valid, that is, adedu
tion mat
hing a left hand-side 
an be repla
ed by the 
orresponding righthand-side.(a) Cx→ R(Lx)

T ↓ T ′ T ′ ≤ U ′ U ′ ↓ U
C

T ≤ U29




an be transformed into:
T ↓ T ′ T ′ ≤ U ′

L
T ≤ U ′ U ′ ↓ U

R
T ≤ U(b) R(Rx)→ Rx

T ≤ U ′ U ′ ↓ U
R

T ≤ U U ↓ U ′′

R
T ≤ U ′′
an be transformed into:

T ≤ U ′ U ′ ↓ U ′′

R
T ≤ U ′′by 
on�uen
e of →.(
) L(Lx)→ LxLike (b).(d) L(Rx)→ R(Lx)

T ↓ T ′

T ′ ≤ U ′ U ′ ↓ U
R

T ′ ≤ U
L

T ≤ U
an be transformed into:
T ↓ T ′ T ′ ≤ U ′

L
T ≤ U ′ U ′ ↓ U

R
T ≤ UNote that the inverse transformation R(Lx)→ L(Rx) is valid too.(e) TIx→ x

I
T ≤ T T ≤ U

T
T ≤ U
an be transformed into:
T ≤ U(f) T (Sx)y → S(Txy)

Cb~t ≤ T
S

Ca~t ≤ T T ≤ U
T

Ca~t ≤ U
an be transformed into:
Cb~t ≤ T T ≤ U

T
Cb~t ≤ U

S
Ca~t ≤ U30



(g) T (Lx)y → L(Txy)

T ↓ T ′ T ′ ≤ U
L

T ≤ U U ≤ V
T

T ≤ V
an be transformed into:
T ↓ T ′

T ′ ≤ U U ≤ V
T

T ′ ≤ V
L

T ≤ V(h) T (RI)x→ Lx

I
T ≤ T T ↓ T ′

R
T ≤ T ′ T ′ ≤ U

T
T ≤ U
an be transformed into:

T ↓ T ′ T ′ ≤ U
L

T ≤ U(i) T (R(Sx))y → S(T (Rx)y)

Cb~t ≤ T
S

Ca~t ≤ T T ↓ T ′

R
Ca~t ≤ T ′ T ′ ≤ U

T
Ca~t ≤ U
an be transformed into:

Cb~t ≤ T T ↓ T ′

R
Cb~t ≤ T ′ T ′ ≤ U

T
Cb~t ≤ U

S
Ca~t ≤ U(j) T (R(Lx))y → L(T (Rx)y)By 
ombination of (g) and the inverse of (d).(k') TxI → xLike (e).(l) T (R(Pxy))(Sz)→ ⊥

U ′ ≤ U V ≤ V ′

P
(x : U)V ≤ (x : U ′)V ′ (x : U ′)V ′ ↓ Ca~t

R
(x : U)V ≤ Ca~t

Cb~t ≤ T
S

Ca~t ≤ T
T

(x : U)V ≤ Tis not possible sin
e (x : U ′)V ′ and Ca~t have no 
ommon redu
t sin
e C is
onstant. 31



(n') Tx(Ry)→ R(Txy)

T ≤ U

U ≤ V ′ V ′ ↓ V
R

U ≤ V
T

T ≤ V
an be transformed into:
T ≤ U U ≤ V ′

T
T ≤ V ′ V ′ ↓ V

R
T ≤ V(m') T (Rx)(Ly)→ Tx(Ly)

T ≤ U U ↓ U ′

R
T ≤ U ′

U ′ ↓ U ′′ U ′′ ≤ V
L

U ′ ≤ V
T

T ≤ V
an be transformed into:
T ≤ U

U ↓ U ′′ U ′′ ≤ V
L

U ≤ V
T

T ≤ Vby 
on�uen
e of →.(p) T (R(Pxy))(Pzt)→ P (Tz(Lx))(Ty(Lt))

U2 ≤ U1 V1 ≤ V2
P

(x : U1)V1 ≤ (x : U2)V2 (x : U2)V2 ↓ (x : U3)V3
R

(x : U1)V1 ≤ (x : U3)V3

U4 ≤ U3 V3 ≤ V4
P

(x : U3)V3 ≤ (x : U4)V4
T

(x : U1)V1 ≤ (x : U4)V4
an be transformed into:
U4 ≤ U3

U3 ↓ U2 U2 ≤ U1
L

U3 ≤ U1
T

U4 ≤ U1

V1 ≤ V2

V2 ↓ V3 V3 ≤ V4
L

V2 ≤ V4
T

V1 ≤ V4
P

(x : U1)V1 ≤ (x : U4)V4(r) T (Pxy)(Sz)→ ⊥Like (l).(s') Tx(LI)→ RxLike (h).(t) T (Pxy)(L(Sz))→ ⊥Like (l).(u) T (Pxy)(L(Pzt))→ P (Tz(Lx))(Ty(Lt))Like (p).(w) T (Pxy)(Pzt)→ P (Tzx)(Tyt)Like (p). 32



The above rules form a terminating rewrite system. For L and R, the re
ur-sive 
alls are stri
tly smaller (take L < R). For Tuv, the measure (|u|+ |v|, |v|),where |u| is the size of u, stri
tly de
reases lexi
ographi
ally. Now, it is easy tosee that T o

urs in no normal form of Tuv if u and v are 
losed terms (T is 
om-pletely de�ned). We pro
eed by indu
tion on the measure. The only unde�ned
ases for T are T (R(Pxy))(Tzt), T (Pxy)(L(Tzt)), T (Pxy)(Tzt) and T (Txy)z.By indu
tion hypothesis, T o

urs in no normal form of Tzt or Txy. Therefore,we fall in the de�ned 
ases and we 
an 
on
lude by indu
tion hypothesis.10 Expansion eliminationIn this se
tion, we prove Theorem 5 by following Chen's te
hnique [15℄. Weintrodu
e the following term algebra for representing the subtyping dedu
tions:
d ::= I | S | Ed | Rd | Pddwhere ⊥ stands for some impossible 
ase, I for (re�), S for (symb), C for (
onv),

E for (exp), R for (red), and P for (prod).We now prove that the following transformation rules are valid, that is, adedu
tion mat
hing a left hand-side 
an be repla
ed by the 
orresponding righthand-side.
(a) E(Rx) → R(Ex)
(b) E(Pxy) → P (Ex)(Ey)
(c) EI → RI
(d) ES → RS
(e) E(Ex) → Ex(a) E(Rx)→ R(Ex)Assume that we have the following dedu
tion:

T ′ →∗ T ′′ ≤ U ′′ ∗← U ′

R
T ∗← T ′ ≤ U ′ →∗ U

E
T ≤ UBy 
on�uen
e, there exist T ′′′ and U ′′′ su
h that T →∗ T ′′′ ∗← T ′′ and

U →∗ U ′′′ ∗← U ′′. So, the dedu
tion 
an be transformed into:
T ′′′ ∗← T ′′ ≤ U ′′ →∗ U ′′′

E
T →∗ T ′′′ ≤ U ′′′ ∗← U

R
T ≤ U(b) E(Pxy)→ P (Ex)(Ey)Assume that we have the following dedu
tion:

C ≤ A B ≤ D
P

T ∗← (x : A)B ≤ (x : C)D →∗ U
E

T ≤ U33



Then, T = (x : A′)B′ with A →∗ A′ and B →∗ B′, and U = (x : C′)D′with C →∗ C′ and D →∗ D′. So, the dedu
tion 
an be transformed into:
C′ ∗← C ≤ A→∗ A′

E
C′ ≤ A′

B′ ∗← B ≤ D →∗ D′

E
B′ ≤ D′

P
T ≤ U(
) EI → RIBy 
on�uen
e, as in (a) but with T ′ = T ′′ = U ′′ = U ′.(d) ES → RSAssume that we have the following dedu
tion:
a ≤A b

S
T ∗← Ca~t ≤ Cb~t→∗ U

E
T ≤ UThen, T = Ca~u with ~t →∗ ~u and U = Cb~v with ~t →∗ ~v. By 
on�u-en
e, there exists ~w su
h that ~u →∗ ~w ∗← ~v. So, the dedu
tion 
an betransformed into:
a ≤A b

S
T →∗ Ca ~w ≤ Cb ~w ∗← U

R
T ≤ U(e) E(Ex)→ ExImmediate.Now, the rewrite system de�ned by these transformation rules is 
learly ter-minating and 
on�uent (there is no 
riti
al pair). Sin
e it de�nes E 
ompletely,no normal form of a 
losed term may 
ontain E.

34



Figure 10: Transformation rules for eliminating transitivity
(a) Cx → R(Lx)
(b) R(Rx) → Rx
(c) L(Lx) → Lx
(d) L(Rx) → R(Lx)

(e) TIx → x

(f) T (Sx)y → S(Txy)

(g) T (Lx)y → L(Txy)

(h) T (RI)x → Lx
(i) T (R(Sx))y → S(T (Rx)y)
(j) T (R(Lx))y → L(T (Rx)y)
(k) T (R(Pxy))I → R(Pxy)
(l) T (R(Pxy))(Sz) → ⊥

(m) T (R(Pxy))(Lz) → T (Pxy)(Lz)
(n) T (R(Pxy))(Rz) → R(T (R(Pxy))z)
(p) T (R(Pxy))(Pzt) → P (Tz(Lx))(Ty(Lt))

(q) T (Pxy)I → Pxy
(r) T (Pxy)(Sz) → ⊥
(s) T (Pxy)(LI) → R(Pxy)
(t) T (Pxy)(L(Sz)) → ⊥
(u) T (Pxy)(L(Pzt)) → P (Tz(Lx))(Ty(Lt))
(v) T (Pxy)(Rz) → R(T (Pxy)z)
(w) T (Pxy)(Pzt) → P (Tzx)(Tyt)

(1) S⊥ → ⊥
(2) L⊥ → ⊥
(3) R⊥ → ⊥
(4) P⊥x → ⊥
(5) Px⊥ → ⊥
(6) T⊥x → ⊥
(7) Tx⊥ → ⊥Some of these rules are parti
ular instan
es of the following more general trans-formations:

(k′)(q′) TxI → x
(n′)(v′) Tx(Ry) → R(Txy)

(m′) T (Rx)(Ly) → Tx(Ly)
(s′) Tx(LI) → Rx
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