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A type-based termination riterion fordependently-typed higher-order rewrite systemsFrédéri Blanqui ∗January 22, 2004Abstrat: Several authors devised type-based termination riteria for ML-likelanguages (polymorphi λ-aluli with indutive types and ase analysis), thatallows non-strutural reursive alls. We extend these works to general rewritingand dependent types, hene providing a powerful termination riterion for theombination of rewriting and β-redution in the Calulus of Construtions.1 IntrodutionThe Calulus of Construtions [19℄ is a powerful type system allowing polymor-phi and dependent types. It is the basis of many proof assistants sine it allowsone to formalize the proofs of higher-order logi. In this ontext, it is essentialto allow users to de�ne funtions and prediates in the most onvenient way andto be able to deide whether a term is a proof of some proposition, and whethertwo terms/propositions are equivalent w.r.t. user de�nitions. As exempli�ed in[21, 11℄, a promising approah is rewriting. To this end, we need powerful rite-ria to hek the termination of higher-order rewrite-based de�nitions ombinedwith β-redution.In a previous work [11℄, we proved that suh a ombination is strongly nor-malizing if, on the one hand, �rst-order rewrite rules are strongly normalizingand non-dupliating1 and, on the other hand, non �rst-order rewrite rules (alledhigher-order in the following) satis�es a termination riterion based on the no-tion of omputability losure and similar to higher-order primitive reursion.Unfortunately, many interesting rewrite systems are either �rst-order and du-pliating, or higher-order with non-strutural reursive alls (e.g. division onnatural numbers23, Figure 1).
∗Laboratoire Lorrain de Reherhe en Informatique et Automatique (LORIA) & InstitutNational de Reherhe en Informatique et Automatique (INRIA), 615 rue du Jardin Botanique,BP 101, 54602 Villers-lès-Nany, Frane, blanqui�loria.fr.1Strong normalization is not modular in general [38℄. It is modular for non-dupliating�rst-order rewrite systems [35℄. Here, we do not have two non-dupliating �rst-order rewritesystems but a hierarhial ombination of a higher-order rewrite system (satisfying strongtermination onditions) built over a non-dupliating �rst-order rewrite system.2/ x y denotes ⌈ x

y+1
⌉.3We use urried symbols all over the paper.1



Figure 1: Division on natural numbers
(1) − x 0 → x
(2) − 0 x → 0
(3) − (sx) (sy) → − x y

(4) / 0 x → 0
(5) / (sx) y → s (/ (− x y) y)Hughes et al [28℄, Xi [41, 42℄, Giménez et al [26, 5℄ and Abel [2℄ devisedtermination riteria able to treat suh examples by exploiting the way indutivetypes are usually interpreted [31℄. Take for instane the addition4 on Brouwer'sordinals ord (Figure 2) whose onstrutors are 0 : ord, s : ord ⇒ ord and

lim : (nat⇒ ord)⇒ ord.Figure 2: Addition on Brouwer's ordinals
(1) + 0 x → x
(2) + (sx) y → s (+ x y)
(3) + (lim f) y → lim ([x : nat](+ (f x) y))The usual omputability-based tehnique for proving the termination of thisfuntion is to interpret ord by the �xpoint of the following monotone funtion

ϕ on the powerset of SN , the set of strongly normalizing terms, ordered byinlusion:5
ϕ(X) = {t ∈ SN | t→∗ su⇒ u ∈ X ; t→∗ limf ⇒ ∀u ∈ SN , fu ∈ X}The �xpoint of ϕ, [[ord]], an be reahed by trans�nite iteration and every

t ∈ [[ord]] is obtained after a smallest ordinal o(t) of iterations, the order of t.This naturally de�nes an ordering: t > u i� o(t) > o(u), with whih we learlyhave lim f > fu for all u ∈ SN .Now, applying this tehnique to nat, we an easily hek that o(−tu) ≤ o(t)and thus allow the reursive all with −xy in the de�nition of /. First note that
−tu is omputable (i.e. belongs to [[nat]]) i� all its reduts are omputable (seeSetion 5). We proeed by indution on o(t):� If −tu mathes rule (1) then o(−tu) = o(t).� If −tu mathes rule (2) then o(−tu) = 0 ≤ o(t).� If −tu mathes rule (3) then t = st′ and u = su′. By indution hypothesis,
o(−t′u′) ≤ o(t′). Thus, o(−tu) = 1 + o(−t′u′) ≤ 1 + o(t′) = o(t).� If −tu mathes no rule then o(−tu) = 0 ≤ o(t).4[x : T ]u denotes the funtion whih assoiates u to every x of type T .5→∗ is the re�exive and transitive losure of the redution relation →.2



The idea of the previously ited authors is to add this size/index/stage in-formation to the syntax in order to prove this automatially. Instead of a singletype nat, they onsider a family of types {nata}a∈ω, eah type nata being in-terpreted by the set obtained after a iterations of the funtion ϕ for nat. Andthey de�ne a deidable type system in whih minus (de�ned by �xpoint/asesonstrutions in their work) an be typed by natα ⇒ natβ ⇒ natα, where αand β are size variables, meaning that the order of −tu is not greater than theorder of t.This an also be interpreted as a way to automatially prove theorems onthe size of the result of a funtion w.r.t. the size of its arguments [39, 25℄ withappliation to omplexity and resoure bound erti�ation, and ompilationoptimization (e.g. bound hek elimination [34℄, vetor-based memoisation [16℄).In this paper, we extend this tehnique to the full Calulus of Algebrai Con-strutions [11℄ whose type onversion rule depends on the user-de�ned rewriterules, and to general rewrite-based de�nitions (inluding mathing on de�nedsymbols and rewriting modulo equational theories [9℄) instead of de�nitionsonly based on letrec/match (or fixpoint/cases) onstrutions. Note that ourwork makes a heavy use of (and simplify) the tehniques developed by Chen forstudying the Calulus of Construtions with subtyping [15℄.On the one hand, we allow a riher size algebra than the one in [28, 5, 2℄ (seeSetion 6). On the other hand, we do not allow existential size variables andonditional rewriting6 that are essential for apturing, for instane, the size-preserving property of quiksort (Example 5) and Ma Carty's �91� funtion(Example 8) respetively, as it an be done in Xi's work [42℄. Note howeverthat Xi is interested in the all-by-value normalization of losed simply-typed
λ-terms, while we are interested in the strong normalization of the open termsof the Calulus of Construtions.2 The Calulus of Algebrai Construtions withSize AnnotationsThe Calulus of Construtions (CC) is the full Pure Type System with the setof sorts S = {⋆,2} and the axiom ⋆ : 2 [4℄. ⋆ is intended to be the universeof types and propositions, while 2 is intended to be the universe of prediatetypes. Let X be the set of variables.The Calulus of Algebrai Construtions (CAC) [11℄ is an extension of CCwith a set F of funtion or prediate symbols de�ned by a setR of (higher-order)rewrite rules [20, 30℄. Every variable x (resp. symbol f) is equipped with a sort
sx (resp. sf ). We denote by DF the set of de�ned symbols, that is, the set ofsymbols f suh that there is a rule l → r ∈ R with l = f~l, and by CF the set
F \ DF of onstant symbols. We add a supersript s to restrit these sets tovariables or symbols of sort s.6The equivalent of if-then-else onstrutions in funtional programming.3



Now, we assume given a (sorted) �rst-order term algebra A = T (H,Z),alled the algebra of size expressions, built from a non-empty set H of sizesymbols of �xed arity and a set Z of size variables. We assume that H ∩ F =
Z ∩ X = ∅. Let V(t) be the set of size variables ourring in a term t. Arenaming is an injetion from a �nite subset of Z to Z.We assume that, for every rule l → r ∈ R, V(l) = V(r) = ∅. Hene, if t→ t′then, for all size substitution ϕ, tϕ→ t′ϕ.We also assume that A is equipped with a quasi-ordering ≤A stable by sizesubstitution (i.e. if a ≤A b then, for all size substitution ϕ, aϕ ≤A bϕ) suhthat (A,≤A) has a well-founded model (A,≤A):De�nition 1 (Size model) A pre-model of A is given by a set A, an ordering
≤A on A and a funtion hA from A

n to A for every n-ary size symbol h ∈ H.A size valuation is a funtion ν from Z to A, naturally extended to a funtionon A. A pre-model is a model if, for all size valuation ν, aν ≤A bν whenever
a ≤A b. Suh a model is well-founded if >A is well-founded.The Calulus of Algebrai Construtions with Size Annotations (CACSA) isan extension of CAC where onstant prediate symbols are annotated by sizeexpressions. The terms of CACSA are de�ned by the following grammar rule:

t ::= s | x | Ca | f | [x : t]t | (x : t)t | ttwhere C ∈ CF2, f ∈ F \ CF2 and a ∈ A. We denote by TA(F ,X ) the setof terms built from F , X and A. Let T be the set of the underlying CACterms and be the funtion erasing size annotations. Among CAC terms, wedistinguish the following disjoint sets:� kinds: K ∈ K ::= ⋆ | (x : t)K� prediates: P ∈ P ::= f ∈ F2 | x ∈ X2 | (x : t)P | [x : t]P | Pt� objets: o ∈ O ::= f ∈ F⋆ | x ∈ X ⋆ | [x : t]o | otwhere t ∈ T is any CAC term.Finally, we assume that every symbol f is equipped with a type τf =

(~x : ~T )U ∈ T suh that FV(τf ) = ∅, sf = 2 ⇒ V(τf ) = ∅, and f~l → r ∈

R ⇒ |~l| ≤ |~t|.We also assume that every symbol f is equipped with a set Mon+(f) ⊆ Af =
{1, . . . , |~x|} of monotone arguments and a set Mon−(f) ⊆ Af of anti-monotonearguments suh that Mon+(f) ∩Mon−(f) = ∅. For a size symbol h, Mon+(h)(resp. Mon−(h)) is taken to be the arguments in whih hA is monotone (resp.anti-monotone).An environment Γ is a sequene of pairs variable-term. Let t ↓ u i� there is
v suh that t→∗ v ∗← u. The typing rules of CACSA are given in Figure 4 andits subtyping rules in Figure 3. W.l.o.g. we an assume that, for all f , ⊢ τf : sf .We also assume that, for every rule l → r ∈ R, there exist an environment Γand a type T suh that Γ ⊢ r : T . This is to make sure that r is not ill-formed(see Lemma 12 in [11℄). 4



Sine, in the (symb) rule, symbol types are applied to arbitrary size sub-stitutions ϕ, the name of size variables in symbol types is not relevant (sizevariables in symbol types are impliitly universally quanti�ed).A substitution θ preserves typing between Γ and ∆, written θ : Γ ; ∆, i�
∆ ⊢ xθ : xΓθ for all x ∈ dom(Γ). A type-preserving substitution satis�es thefollowing important substitution property: if Γ ⊢ t : T and θ : Γ ; ∆ then
∆ ⊢ tθ : Tθ. Figure 3: Subtyping rules(re�) T ≤ T(size) Ca~t ≤ Cb~t (C ∈ CF2, a ≤A b)(prod) U ′ ≤ U V ≤ V ′

(x : U)V ≤ (x : U ′)V ′(onv) T ′ ≤ U ′

T ≤ U
(T ↓ T ′, U ′ ↓ U)(trans) T ≤ U U ≤ V

T ≤ VIn this paper, we make two important assumptions.Assumptions:(1) β ∪R is on�uent. This is the ase for instane if R is on�uent and left-linear. Finding other su�ient onditions when there are type-level rewriterules is an open problem.(2) R preserves typing: if l → r ∈ R and Γ ⊢ lσ : T then Γ ⊢ rσ : T .Finding su�ient onditions with subtyping and dependent types does notseem easy as shown by the following example. We leave the study of thisproblem for future work.Example 1 (Subjet redution) Assume that s ∈ H, nat : ⋆, s : natα ⇒
natsα, − : natα ⇒ natβ ⇒ natα, and let us prove that the rule −(sx)(sy) →
−xy preserves typing. Assume that Γ ⊢ −(st)(su) : T . We must prove that
Γ ⊢ −tu : T . By inversion, Γ ⊢ −(st) : (z2 : T2)U2, Γ ⊢ su : T2 and U2{z2 7→
su} ≤ T . By inversion again, Γ ⊢ − : (z1 : T1)U1, Γ ⊢ st : T1 and U1{z1 7→ st} ≤
(z2 : T2)U2. Again, nata ⇒ natb ⇒ nata ≤ (z1 : T1)U1, Γ ⊢ s : (z3 : T3)U3,
Γ ⊢ t : T3, U3{z3 7→ t} ≤ T1, natc ⇒ natsc ≤ (z3 : T3)U3, Γ ⊢ s : (z4 : T4)U4,
Γ ⊢ u : T4, U4{z4 7→ u} ≤ T2 and natd ⇒ natsd ≤ (z4 : T4)U4. By Lemma4, we have T3 ≤ natc, natsc ≤ U3, T4 ≤ natd, natsd ≤ U4, T1 ≤ nata and
natb ⇒ nata ≤ U1. Again, sine U1{z1 7→ st} ≤ (z2 : T2)U2, T2 ≤ natband nata ≤ U2. Therefore, sine Γ ⊢ t : T3 ≤ natc, Γ ⊢ u : T4 ≤ natd and5



Figure 4: Typing rules(ax) ⊢ ⋆ : 2(size) ⊢ τC : 2

⊢ Ca : τC
(C ∈ CF2)(symb) ⊢ τf : sf

⊢ f : τfϕ
(f /∈ CF2)(var) Γ ⊢ T : sx

Γ, x : T ⊢ x : T
(x /∈ dom(Γ))(weak) Γ ⊢ t : T Γ ⊢ U : sx

Γ, x : U ⊢ t : T
(x /∈ dom(Γ))(prod) Γ ⊢ U : s Γ, x : U ⊢ V : s′

Γ ⊢ (x : U)V : s′(abs) Γ, x : U ⊢ v : V Γ ⊢ (x : U)V : s

Γ ⊢ [x : U ]v : (x : U)V(app) Γ ⊢ t : (x : U)V Γ ⊢ u : U

Γ ⊢ tu : V {x 7→ u}(sub) Γ ⊢ t : T Γ ⊢ T ′ : s

Γ ⊢ t : T ′
(T ≤ T ′)

Γ ⊢ − : natc ⇒ natd ⇒ natc, we have Γ ⊢ −tu : natc. Now, we must prove that
natc ≤ T . First, natc ≤ natsc ≤ U3. Sine U3{z3 7→ t} ≤ T1, natc ≤ T1. Sine
nata ⇒ natb ⇒ nata ≤ (z1 : T1)U1, T1 ≤ nata and natb ⇒ nata ≤ U1. Sine
U1{z1 7→ st} ≤ (z2 : T2)U2, natb ⇒ nata ≤ (z2 : T2)U2. Therefore, nata ≤ U2.Now, sine U2{z2 7→ su} ≤ T , we indeed have natc ≤ T .3 Properties of subtypingLemma 2 If U ≤ V then, for all size substitution ψ, Uψ ≤ V ψ.Proof. Easy indution. �We now prove that the subtyping rule (trans) an be eliminated.Theorem 3 (Transitivity elimination) Let≤t be the subtyping relation ob-tained without using (trans). Then, ≤t=≤.6



Proof. Setion 9. �This means that, in a subtyping derivation, we an always assume that thereis no appliation of (trans) and that, in a typing derivation, there is no suessiveappliations of (sub).Lemma 4 (Produt ompatibility) If (x : U)V ≤ (x : U ′)V ′ then U ′ ≤ Uand V ≤ V ′.Proof. By ase on the last rule of (x : U)V ≤ (x : U ′)V ′. By on�uene, wean assume that there is no suessive appliations of (onv). This is immediatefor (re�) and (prod). (symb) is not possible. For (onv), we have:
(x : U)V ↓ T ≤ T ′ ↓ (x : U ′)V ′

(x : U)V ≤ (x : U ′)V ′Then, we reason by ase on the last rule of T ≤ T ′.(re�) In this ase, T = T ′. Therefore, by on�uene, (x : U)V ↓ (x : U ′)V ′,
U ↓ U ′ and V ↓ V ′. Thus, U ′ ≤ U and V ≤ V ′.(symb) Not possible sine T = Ca~t has no ommon redut with (x : U)V(sine C is onstant).(onv) Exluded.(prod) In this ase, T = (x : U1)V1, T ′ = (x : U2)V2, U2 ≤ U1 and V1 ≤ V2.By on�uene U ↓ U1, V ↓ V1, U2 ↓ U ′ and V2 ↓ V ′. Therefore, by onversion,
U ′ ≤ U and V ≤ V ′. �We now prove that the subtyping relation an be further simpli�ed. Considerthe following two admissible rules:(red) T →∗ T ′ T ′ ≤ U ′ U ′ ∗← U

T ≤ U(exp) T ∗← T ′ T ′ ≤ U ′ U ′ →∗ U

T ≤ U(onv) an learly be replaed by both (red) and (exp).Theorem 5 (Expansion elimination) Let ≤r be the subtyping relation with(red) instead of (onv). Then, ≤r=≤.Proof. Setion 10. �Now, let ≤s be the subtyping relation with (re�), (symb) and (prod) only.Lemma 6 T ≤ U i� there exist T ′ and U ′ suh that T →∗ T ′ ≤s U ′ ∗← U .Furthermore, if T, U ∈ WN then T↓≤s U↓.7



Proof. The if-part is immediate. The only-if-part is easily proved by indu-tion on T ≤ U . In the (red) ase, if T →∗ T ′ ≤ U ′ ∗← U then, by indutionhypothesis, there exist T ′′ and U ′′ suh that T ′ →∗ T ′′ ≤s U ′′ ∗← U ′. Therefore,
T →∗ T ′′ ≤s U ′′ ∗← U .Now, if T, U ∈ WN then T↓≤ U↓. Thus, T↓≤s U↓ sine T↓ and U↓ are notreduible. �Lemma 7 � For all s ∈ S, if T ≤ s or s ≤ T then T →∗ s.� For all K ∈ K, if T ≤ K or K ≤ T then T →∗ T ′ ∈ K.Proof.� If s ≤ T then s ≤s T ′ ∗← T . The only possible ase is T ′ = s. If T ≤ s then
T →∗ T ′ ≤s s. The only possible ase is T ′ = s.� If T ≤ K then T →∗ T ′ ≤s K ′ ∗← K and K ′ ∈ K. Now, one an easily proveby indution that, if T ′ ≤s K ′, then T ′ ∈ K. If K ≤ T then K →∗ K ′ ≤s
T ′ ∗← T and K ′ ∈ K. One an easily prove by indution that, if K ′ ≤s T ′,then T ′ ∈ K. �Theorem 8 (Deidability of subtyping) ≤ is deidable whenever→ is on-�uent, weakly normalizing and �nitely branhing (or on�uent and stronglynormalizing).Proof. Immediate onsequene of Lemma 6.4 Properties of typingLemma 9 If Γ ⊢ t : T then, for all size substitution ψ, Γψ ⊢ tψ : Tψ.Proof. Easy indution. �Lemma 10 (Type orretness) If Γ ⊢ t : T then either T = 2 or Γ ⊢ T : sfor some sort s.Proof. Easy indution. �Lemma 11 � If T →∗

2 then T is not typable.� If Γ ⊢ t : 2 then t ∈ K.� If K ∈ K and Γ ⊢ K : L then L = 2.� If T →∗ K ∈ K and Γ ⊢ T : s then T ∈ K and s = 2.Proof. These properties are proved for CAC in [11℄ (Lemma 11). Theirproofs need only a few orretions based on Lemma 7 to be valid for CACSAtoo. �Lemma 12 (Narrowing) If Γ, y : A,Γ′ ⊢ t : T , B ≤ A, Γ ⊢ B : sy then
Γ, y : B,Γ′ ⊢ t : T . 8



Proof. By indution on Γ, y : A,Γ′ ⊢ t : T . We only detail some ases.(var) There are two ases. Assume that we have Γ ⊢ A : sy and Γ, y : A ⊢ y : A.Sine Γ ⊢ B : sy, by (var), Γ, y : B ⊢ y : B. Sine B ≤ A and Γ ⊢ A : sy, by(sub), Γ, y : B ⊢ y : A.Assume now that we have Γ, y : A,Γ′ ⊢ T : sx and Γ, y : A,Γ′, x : T ⊢ x : T .By indution hypothesis, Γ, y : B,Γ′ ⊢ T : sx. Thus, by (var), Γ, y : B,Γ′, x :
T ⊢ x : T .(weak) There are two ases. Assume that we have Γ ⊢ t : T , Γ ⊢ A : sy and
Γ, y : A ⊢ t : T . Sine Γ ⊢ B : sy, by (weak), Γ, y : B ⊢ t : T .Assume now that we have Γ, y : A,Γ′ ⊢ t : T , Γ, y : A,Γ′ ⊢ U : sx and
Γ, y : A,Γ′, x : U ⊢ t : T . By indution hypothesis, Γ, y : B,Γ′ ⊢ t : T and
Γ, y : B,Γ′ ⊢ U : sx. Thus, by (weak), Γ, y : B,Γ′, x : U ⊢ t : T . �Theorem 13 (β-Subjet redution) If Γ ⊢ t : T and t→β t

′ then Γ ⊢ t′ : T .Proof. By indution on Γ ⊢ t : T , we also prove that, if Γ →β Γ′, then
Γ′ ⊢ t : T . We only detail the ase of a β-head redution. Assume that wehave Γ ⊢ [x : U ′]v : (x : U)V and Γ ⊢ u : U . We must prove that Γ ⊢ v{x 7→
u} : V {x 7→ u}. By inversion, Γ, x : U ′ ⊢ v : V ′, Γ ⊢ (x : U ′)V ′ : s′, (x :
U ′)V ′ ≤ (x : U)V and Γ ⊢ (x : U)V : s. By produt ompatibility, U ≤ U ′ and
V ′ ≤ V . By inversion, Γ ⊢ U : s1 and Γ ⊢ V ′ : s2. By narrowing and subtyping,
Γ, x : U ⊢ v : V . Therefore, by substitution, Γ ⊢ v{x 7→ u} : V {x 7→ u}. �Lemma 14 If Γ ⊢ t : T , T ≤ T ′ and Γ ⊢ T ′ : s′ then Γ ⊢ T : s for some s.Proof. By type orretness, either T = 2 or Γ ⊢ T : s for some s. If T = 2then, by Lemma 7, T ′ →∗

2 and, by Lemma 11, T ′ annot be typable. �Lemma 15 (Uniity of sorting) If T ≤ T ′, Γ ⊢ T : s and Γ ⊢ T ′ : s′ then
s = s′.Proof. If s = 2 then T ∈ K. By Lemma 7, T ′ →∗ K ∈ K. By Lemma 11,
T ′ ∈ K and s′ = 2. By symmetry, if s′ = 2 then s = 2. So, s = 2 i� s′ = 2.Sine s, s′ ∈ S = {⋆,2}, s = ⋆ i� s′ = ⋆. Therefore, s = s′. �5 Strong normalizationLet SN (resp. WN ) be the set of strongly (resp. weakly) normalizable terms,and t↓ be the normal form of a term t ∈ WN (→ is assumed on�uent).De�nition 16 (Reduibility andidates) We assume given a set CT of on-strutor terms.7 A term t is neutral if it is not an abstration, not a onstrutorterm, nor of the form f~t with f ∈ DF and |~t| < |~l| for some rule f~l → r ∈ R.We indutively de�ne the set Rt of the interpretations for the terms of type t,7CT is de�ned in De�nition 26. 9



the ordering ≤t on Rt, the element ⊤t ∈ Rt, and the funtions ∧
t and ∨

t fromthe powerset of Rt to Rt as follows. If t /∈ K ∪ {2} then:� Rt = {∅}, ≤t=⊆ and ∧
t(ℜ) =

∨
t(ℜ) = ⊤t = ∅.Otherwise:� Rs is the set of all the subsets R of T suh that:(R1) R ⊆ SN (strong normalization).(R2) If t ∈ R then →(t) ⊆ R (stability by redution).(R3) If t is neutral and →(t) ⊆ R then t ∈ R (neutral terms).Furthermore, ≤s=⊆, ⊤s = SN , ∨
s(ℜ) =

⋃
ℜ, ∧

s(ℜ) =
⋂
ℜ if ℜ 6= ∅, and∧

s(∅) = ⊤s.� R(x:U)K is the set of funtions R from T × RU to RK suh that R(u, S) =
R(u′, S)whenever u→ u′ or u = u′, ⊤(x:U)K(u, S) = ⊤K , ∧(x:U)K(ℜ)(u, S) =
∧
K({R(u, S) | R ∈ ℜ}), ∨

(x:U)K(ℜ)(u, S) =
∨
K({R(u, S) | R ∈ ℜ}) and

R ≤(x:U)K R′ i� R(u, S) ≤K R′(u, S).Let (~t, ~S) ≤i (~t′, ~S′) i� ~t = ~t′, Si ≤ S′
i and, for all j 6= i, Sj = S′

j . A funtion R ∈
R(~x:~T )⋆ is monotone (resp. anti-monotone) in its ith argument if R( ~Q) ≤ R( ~Q′)whenever ~Q ≤i ~Q′ (resp. ~Q ≥i ~Q′). Let Rmτf

be the set of funtions R ∈ Rτfsuh that R is monotone in all its arguments i ∈ Mon+(f), and anti-monotonein all its arguments i ∈ Mon−(f).Lemma 17 (Rt,≤t) and (Rmt ,≤t) are omplete latties with ⊤t as their great-est element and ∧
t(ℜ) as the greatest lower bound of ℜ. Moreover:� If ℜ is totally ordered then ∨

t(ℜ) is the lowest upper bound of ℜ.� For all R ∈ Rs, X ⊆ R.� If Γ ⊢ t : T and θ : Γ ; ∆ then RTθ = RT .� If Γ ⊢ t : T then RTϕ = RT .� The smallest element ⊥s =
∧
s(Rs) only ontains neutral terms.Proof. The proof is similar to the one for CAC [11℄. �Lemma 18 If Γ ⊢ T ≤ T ′ : s then RT = RT ′ .Proof. If s = ⋆ then RT = {∅} = RT ′ . Assume now that s = 2. Weproeed by indution on T ≤ T ′.(re�) Immediate.(symb) Not possible.(prod) R(x:U)V is the set of funtions from T ×RU toRV that are invariant byredution and size substitution. R(x:U ′)V ′ is the set of funtions from T ×RU ′to RV ′ that are invariant by redution and size substitution. By indutionhypothesis, RU = RU ′ and RV = RV ′ . Therefore, R(x:U)V = R(x:U ′)V ′ .(onv) By indution hypothesis,RT ′ = RU ′ . SineRT = RT ′ andRU = RU ′ ,we have RT = RU . �10



De�nition 19 (Interpretation shema) A andidate assignment is a fun-tion ξ from X to ⋃
{Rt | t ∈ T }. A andidate assignment ξ validates anenvironment Γ or is a Γ-assignment, ξ |= Γ, if, for all x ∈ dom(Γ), xξ ∈ RxΓ.An interpretation for a symbol C ∈ CF2 is a monotone funtion I from Ato Rmτf

. An interpretation for a symbol f /∈ CF2 is an element of Rmτf
. Aninterpretation for a set G of prediate symbols is a funtion whih, to everysymbol g ∈ G, assoiates an interpretation for g.The interpretation of t w.r.t. a andidate assignment ξ, an interpretation Ifor F , a substitution θ and a valuation ν, [[t]]I,νξ,θ , is de�ned by indution on t:� [[t]]I,νξ,θ = ⊤t if t ∈ O ∪ S� [[F ]]I,νξ,θ = IF if F ∈ DF2� [[Ca]]I,νξ,θ = IaνC if C ∈ CF2� [[x]]I,νξ,θ = xξ� [[(x : U)V ]]I,νξ,θ = {t ∈ T | ∀u ∈ [[U ]]I,νξ,θ , ∀S ∈ RU , tu ∈ [[V ]]I,ν

ξS
x ,θ

u
x
}� [[[x : U ]v]]I,νξ,θ (u, S) = [[v]]I,ν

ξS
x ,θ

u
x� [[tu]]I,νξ,θ = [[t]]I,νξ,θ (uθ, [[u]]

I,ν
ξ,θ )where θux = θ ∪ {x 7→ u} and ξSx = ξ ∪ {x 7→ S}.Let I be an interpretation for F . A symbol f is omputable if, for all ν,

f ∈ [[τf ]]
I,ν . A substitution θ is adapted to a Γ-assignment ξ and a valuation

ν, ξ, θ |=ν Γ, if dom(θ) ⊆ dom(Γ) and, for all x ∈ dom(θ), xθ ∈ [[xΓ]]I,νξ,θ .The interpretation is invariant by redution if, for all ν, ξ, θ and t, t′ ∈ WN ,
[[t]]I,νξ,θ = [[t′]]I,νξ,θ whenever t→ t′.Lemma 20 � If Γ ⊢ t : T and ξ |= Γ then [[t]]I,νξ,θ ∈ RT .� If θ → θ′ or θ = θ′ then [[t]]I,νξ,θ = [[t]]I,νξ,θ′ .Proof. The proof is similar to the one for CAC [11℄. �Lemma 21 (Candidate substitution) If Γ ⊢ t : T , γ : Γ ; ∆ and ξ |= ∆then [[tγ]]I,νξ,σ = [[t]]I,νη,γσ with xη = [[xγ]]I,νξ,σ and η |= Γ.Proof. The proof is similar to the one for CAC [11℄. �Lemma 22 (Size substitution) If Γ ⊢ t : T then [[tϕ]]I,νξ,θ = [[t]]I,ϕνξ,θ where
α(ϕν) = (αϕ)ν.Proof. By indution on t.� If t is an objet, a sort or a symbol f ∈ F⋆ then tϕ is of the same kind and

[[tϕ]]I,νξ,θ = [[tϕ]]I,νξ,θ = ⊤t.� [[Caϕ]]I,νξ,θ = IaϕνC = [[Ca]]I,ϕνξ,θ .� [[xϕ]]I,νξ,θ = [[x]]I,νξ,θ = xξ. 11



� [[(x : Uϕ)V ϕ]]I,νξ,θ = {t ∈ T | ∀u ∈ [[Uϕ]]I,νξ,θ , ∀S ∈ RUϕ, tu ∈ [[V ϕ]]I,ν
ξS

x ,θ
u
x
}. Byindution hypothesis, [[Uϕ]]I,νξ,θ = [[U ]]I,ϕνξ,θ and [[V ϕ]]I,ν

ξS
x ,θ

u
x

= [[V ]]I,ϕν
ξS

x ,θ
u
x
. Andsine RUϕ = RU , [[(x : Uϕ)V ϕ]]I,νξ,θ = [[(x : U)V ]]I,νξ,θ .� If Γ ⊢ [x : U ]v : T then, by inversion, Γ ⊢ [x : U ]v : (x : U)V for some V ,and Γϕ ⊢ [x : Uϕ]vϕ : (x : Uϕ)V ϕ. Sine RUϕ = RU and RV ϕ = RV , [[[x :

Uϕ]vϕ]]I,νξ,θ has the same domain and odomain as [[[x : U ]v]]I,νξ,θ . Furthermore,
[[[x : Uϕ]vϕ]]I,νξ,θ (u, S) = [[vϕ]]I,ν

ξS
x ,θ

u
x

= [[v]]I,ν
ξS

x ,θ
u
x
by indution hypothesis.� [[tϕuϕ]]I,νξ,θ = [[tϕ]]I,νξ,θ (uϕθ, [[uϕ]]I,νξ,θ ) = [[t]]I,ϕνξ,θ (uθ, [[u]]I,ϕνξ,θ ) by indution hypoth-esis and invariane by size hange. �We now de�ne the sets of positive and negative positions in a term, whihwill enfore monotony and anti-monotony properties respetively.De�nition 23 (Positive and negative positions) The set of positions in aterm t is indutively de�ned as follows:8� Pos(s) = Pos(x) = Pos(f) = {ε}� Pos((x : u)v) = Pos([x : u]v) = Pos(uv) = 1.Pos(u) ∪ 2.Pos(v)� Pos(Ca) = {ε} ∪ 0.Pos(a)Let Pos(x, t) be the set of positions of the free ourrenes of x in t, and

Pos(f, t) be the set of positions of the ourrenes of f in t. The set of posi-tive positions in t, Pos+(t), and the set of negative positions in t, Pos−(t), aresimultaneously de�ned by indution on t:� Posδ(s) = Posδ(x) = {ε | δ = +}� Posδ((x : U)V ) = 1.Pos−δ(U) ∪ 2.Posδ(V )� Posδ([x : U ]v) = 2.Posδ(v)� Posδ(tu) = 1.Posδ(t) if t 6= f~t� Posδ(f~t) = {1|~t| | δ = +} ∪
⋃
{1|~t|−i2.Posεδ(ti) | ε ∈ {−,+}, i ∈ Monε(f)}� Posδ(Ca~t) = Posδ(C~t) ∪ {1|~t|0 | δ = +}.Posδ(a).where δ ∈ {−,+}, −+ = − and −− = + (usual rule of signs).Lemma 24 (Monotony) Let ≤+=≤; ≤−=≥; ξ ≤x ξ′ i� xξ ≤ xξ′ and, for all

y 6= x, yξ = yξ′; I ≤f I ′ i� If ≤ I ′f and, for all g 6= f , Ig = I ′g; ν ≤α ν′ i�
αν ≤A αν′ and, for all β 6= α, βν = βν′. Assume that Γ ⊢ t : T and ξ, ξ′ |= Γ.� If ξ ≤x ξ′ and Pos(x, t) ⊆ Posδ(t) then [[t]]I,νξ,θ ≤

δ [[t]]I,νξ′,θ.� If I ≤f I ′ and Pos(f, t) ⊆ Posδ(t) then [[t]]I,νξ,θ ≤
δ [[t]]I

′,ν
ξ,θ .� If ν ≤α ν′ and Pos(α, t) ⊆ Posδ(t) then [[t]]I,νξ,θ ≤

δ [[t]]I,ν
′

ξ,θ .� If Γ ⊢ T ≤ T ′ : s, T, T ′ ∈ WN and the interpretation is invariant by redutionthen [[T ]]I,νξ,θ ≤ [[T ′]]I,νξ,θ .8It is de�ned so that Pos(t) ⊆ Pos(t). 12



Proof.� The �rst two properties are proved for CAC in [11℄ and their proofs are stillvalid.� We now prove the third property. It uses the same tehniques. So, we onlydetail the ase t = Ca~t. Let R = [[t]]I,νξ,θ and R′ = [[t]]I,ν
′

ξ,θ . R = IaνC (~tθ, ~S)with ~S = [[~t]]I,νξ,θ , and R′ = Iaν
′

C (~tθ, ~S′) with ~S = [[~t]]I,ν
′

ξ,θ . Let n = |~t| and
i ∈ {1, . . . , n}. If Pos(α, ti) = ∅ then Si = S′

i. Otherwise, sine Pos(α, t) ⊆
Posδ(t), there is εi suh that i ∈ Monεi(f) and Pos(α, ti) ⊆ Posεiδ(ti).Thus, by indution hypothesis, Si ≤εiδ S′

i. Let Qkj = (~tθ, S′
j) if j ≤ k,and Qkj = (~tθ, Sj) if j > k. We have ~Q0 = (~tθ, ~S), ~Qn = (~tθ, ~S′) and, forall k ∈ {1, . . . , n}, ~Qk−1 ≤εkδ

k
~Qk. Thus, IaνC ( ~Qk−1) ≤ε

2
kδ IaνC ( ~Qk), that is,

IaνC ( ~Qk−1) ≤δ IaνC ( ~Qk) sine ε2k = + and symbol interpretations are mono-tone in their monotone arguments and anti-monotone in their anti-monotonearguments. So, R = IaνC ( ~Q0) ≤δ IaνC ( ~Qn). Now, if Pos(α,Ca) = ∅ then
aν = aν′ and R ≤δ R′ = IaνC ( ~Qn). Otherwise, δ = + and aν ≤A aν′sine Pos(α, a) ⊆ Pos+(a). Thus, R ≤ R′ sine symbol interpretations aremonotone funtions on A.� We now prove the last property by indution on T ≤ T ′. Let R = [[T ]]I,νξ,θ and
R′ = [[T ′]]I,νξ,θ ,(re�) Immediate.(symb) Let ~Q = (~tθ, [[~t]]I,νξ,θ ). We have R = IaνC ( ~Q) ≤ R′ = IbνC ( ~Q) sine
aν ≤A bν and symbol interpretations are monotone on A.(prod) Let t ∈ R, u ∈ [[U ′]]I,νξ,θ and S ∈ RU ′ . We must prove that tu ∈
[[V ′]]I,ν

ξS
x ,θ

u
x
. By indution hypothesis, [[U ′]]I,νξ,θ ≤ [[U ]]I,νξ,θ . So, u ∈ [[U ]]I,νξ,θ .Sine RU ′ = RU and t ∈ R, tu ∈ [[V ]]I,νξS

x ,θ
u
x
. Now, by indution hypothesis,

[[V ]]I,νξS
x ,θ

u
x
≤ [[V ′]]I,νξS

x ,θ
u
x
. Therefore, tu ∈ [[V ′]]I,νξS

x ,θ
u
x
.(onv) By indution hypothesis, [[T ′]]I,νξ,θ ≤ [[U ′]]I,νξ,θ . Sine T, U ∈ WN andthe interpretation is invariant by redution, [[T ′]]I,νξ,θ = R and [[U ′]]I,νξ,θ = R′.Therefore, R ≤ R′. �Theorem 25 (Strong normalization) If there is an interpretation I invari-ant by redution and suh that every symbol is omputable then every well-typedterm is strongly normalizable.Proof. One �rst prove by indution that, if Γ ⊢ t : T then, for all ξ, ν and

θ suh that ξ |= Γ and ξ, θ |=ν Γ, then tθ ∈ [[T ]]νξ,θ. Then, one prove that, if
xθ = x and xξ = ⊤xΓ, then ξ |= Γ and ξ, θ |=ν Γ. See [11℄ for details. �6 Construtor-based systemsWe now study the ase of CACSA's whose size algebra ontains the followingexpressions (at least): 13



a ::= α | sa | ∞ | . . .In ase that there is no other symbol, the ordering ≤A on size expressionsis de�ned as the smallest quasi-ordering ≤ suh that, for all a, a < sa and
a ≤ ∞. We interpret size expressions in the set A = Ω + 1, where Ω is the �rstunountable ordinal, by taking:� sA(a) = a + 1 if a < Ω, and Ω otherwise.� ∞A = Ω.One an easily imagine other size expressions like a+ b, max(a, b), . . .De�nition 26 (Construtor-based system) We assume given a preedene
≤F on F , that is, a quasi-ordering whose strit part >F is well-founded, andthat every C ∈ CF2 with C : (~z : ~V )⋆ is equipped with a set Cons(C) ofonstrutors, that is, a set of onstant symbols f : (~y : ~U)Ca~v equipped with aset Acc(f) ⊆ {1, . . . , |~y|} of aessible arguments suh that:
• If there are D =F C and j ∈ Acc(c) suh that Pos(D,Uj) 6= ∅ then V(τf ) =
{α} and a = sα.
• For all j ∈ Acc(c):� For all D >F C, Pos(D,Uj) = ∅.� For all D ≃F C and p ∈ Pos(D,Uj), p ∈ Pos+(Uj) and Uj |p = Dα.� For all p ∈ Pos(α,Uj), p = q0, Uj|q = Dα and D ≃F C.� For all x ∈ FV2(Uj), there is ιx with vιx = x and Pos(x, Uj) ⊆ Pos+(Uj).
• For all F ∈ DF2 and F~l→ r ∈ R:� For all G >F F , Pos(G, r) = ∅.� For all i ∈Monδ(F ), li ∈ X2 and Pos(li, r) ⊆ Posδ(r).� For all x ∈ FV2(r), there is κx with lkx

= x.A C-onstrutor term is a term of the form f~u with f ∈ Cons, f : (~y : ~U)Ca~v,
|~u| = |~y| and Acc(f) 6= ∅. Let CT (C) be the set of C-onstrutor terms.The onditions involving ιx and κx means that we restrit our attention tosmall indutive types. Strong elimination, that is, prediate-level reursion onbig indutive types may lead to non-termination [18℄. Yet, weak elimination,that is, objet-level reursion on big indutive types is admissible. As shownin [8℄, it is possible to raise this restrition at the prie of not being allowed tomath de�ned symbols.Among onstant prediate symbols, we distinguish the lass of primitivetypes that inludes all �rst-order data type like natural numbers, lists of naturalnumbers, . . . Primitive types are not polymophi but they an have primitivedependanies like the type of arrays of natural numbers.De�nition 27 (Primitive types) A symbol C ∈ CF2 is primitive if τC =

(~z : ~V )⋆, {~z} ⊆ X ⋆ and, for all D ≃F C, for all onstrutor f : (~y : ~U)Dsα~vand for all j ∈ Acc(f), either Uj = E∞~t with E <F C and E primitive, or
Uj = Eα~t with E ≃F C. The size of a term t in a primitive type C is de�ned14



as follows. If t is a onstrutor term f~u with f : (~y : ~U)Csα~v and, for all j ∈
Acc(f) suh that Pos(α,Uj) 6= ∅, Uj = Cαj ~v

j , then |t|C = 1 +max{|uj |Cj
| j ∈

Acc(f),Pos(α,Uj) 6= ∅}. Otherwise, |t|C = 0.We de�ne the interpretation of prediate symbols by indution on >F .De�nition 28 (Interpretation of de�ned prediate symbols) Assumethat F : (~x : ~T )U . We take IF (~t, ~S) = [[r]]Iξ,σ if ~t ∈ WN , ~t↓= ~lσ, F~l → r ∈ Rand xξ = Sκx
. Otherwise, we take IF (~t, ~S) = ⊤U .Thanks to Lemma 24, one an easily hek that I is monotone in its mono-tone arguments. The well-foundedness of the de�nition is a onsequene of theorretness of the termination riterion.We now de�ne the interpretation of a onstant prediate symbols by trans-�nite indution on a ∈ A.De�nition 29 (Interpretation of onstant prediate symbols)� I0

C(~S)9 is the set of u ∈ SN suh that u never redues to a C-onstrutorterm.� Ia+1
C (~S) is the set of terms u ∈ SN suh that, if u redues to a onstrutorterm f~u with f : (~y : ~U)Csα~v then, for all j ∈ Acc(f), uj ∈ [[Uj ]]

I,ν
ξ,θ with

yξ = Sιy , ~yθ = ~u and αν = a.� Ib
C =

∧
τC

({Ia
C | a < b}) if b is a limit ordinal.Let Ka

C(~S) = Ia
C(~S) ∩ CT (C) and, for t ∈ IΩ

C (~S), let oC(~S)(t) be the smallestordinal a suh that t ∈ Ia
C(~S).The interpretation is well de�ned thanks to the assumptions made on Ujwhen j is aessible.Lemma 30 If f~u ∈ KΩ

C(~S) then oC(~S)(f~u) is a suessor ordinal.Proof. Assume that a = oC(~S)(f~u) is a limit ordinal. Then, Ia
C(~S) =

⋃
{Ib
C(~S) | b < a} and tσ ∈ Ib

C(~S) for some b < a, whih is not possible. Now,
a 6= 0 sine K0

C(~S) = ∅. Therefore, a is a suessor ordinal. �Lemma 31 I is monotone.Proof. We prove that a ≤ b⇒ Ia ≤ Ib by indution on a.
• a = 0.� b = 0. Immediate.9We do not write ~t sine the interpretation does not depend on it.
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� b = b′ + 1. By indution hypothesis, I0 ≤ Ib
′ . We now prove that Ib

′

≤
Ib

′+1. Let t ∈ Ib
′

C (~S). Then, t ∈ SN . Assume now that t redues to aonstrutor term f~u with f : (~y : ~U)Csα~v. By Lemma 30, t ∈ Ic+1
C (~S) forsome c < b′. Let j ∈ Acc(f). Then, uj ∈ [[Uj ]]

ν
ξ,θ with yξ = Sιy , ~yθ = ~uand αν = c. After the onditions on Uj , by Lemma 24, [[Uj ]]

ν
ξ,θ ⊆ [[Uj ]]

µ
ξ,θwhere αµ = b′. Thus, t ∈ Ib

′+1
C (~S).� b is a limit ordinal. By indution hypothesis, I0 ≤ Ib

′ for all b′ < b. Thus,
I0 ≤ Ib.

• a = a′ + 1.� b = 0. Not possible.� b = b′ + 1. Then, a′ ≤ b′. Let t ∈ Ia
C(~S). Then, t ∈ SN . Assume now that

t redues to a onstrutor term f~u with f : (~y : ~U)Csα~v and let j ∈ Acc(f).Then, uj ∈ [[Uj ]]
ν
ξ,θ with yξ = Sιy , ~yθ = ~u and αν = a′. After the onditionson Uj , by Lemma 24, [[Uj ]]

ν
ξ,θ ⊆ [[Uj ]]

µ
ξ,θ where αµ = b′. Thus, t ∈ Ib

C(~S).� b is a limit ordinal. Then, a′ < b′ for some b′ < b and we an onlude byindution hypothesis.
• a is a limit ordinal.� b = 0. Not possible.� b = b′ + 1. Then, a ≤ b′ and we an onlude by indution hypothesis.� b is a limit ordinal. Then, for all a′ < a, a′ < b, and we an onlude byindution hypothesis. �Lemma 32 (Primitive types) Let C be primitive type. If a ≥ ω then Ia

C =

⊤τC
. Otherwise, Ia

C(~S) = {t ∈ SN | |t↓|C ≤ a}, that is, oC(~s)(t) = |t↓|C .Proof. We proeed by indution on C with >F as well-founded ordering.Let Ja
C = {t ∈ SN | |t↓ |C ≤ a}. Sine primitive types are not polymorphi,every Si = ∅. So, we an drop the arguments ~S. Note also that |t|C ≤ |t′|Cwhenever t→ t′ (sine Cons ⊆ CF).We �rst prove that, for all a < ω, if oC(t) = a then |t↓|C = a.� a = 0. If oC(t) = 0 then t ∈ I0

C ⊆ J
0
C . Thus, |t↓|C = 0.� a = a′ + 1. If oC(t) = a′ + 1 then t ∈ Ia

′+1
C \ Ia

′

C . Sine t /∈ I0
C , t redues to aonstrutor term f~u with f : (~y : ~U)Csα~v. Let j ∈ Acc(f). Then, uj ∈ [[Uj ]]

ν
ξ,θwith yξ = Sιy , ~yθ = ~u and αν = a′. Moreover, either Uj = Cαj ~v

j with
Cj ≃F C, or Uj = C∞

j ~v
j with Cj <F C. In the former ase, uj ∈ Ia

′

Cj
. Thus,

oCj
(uj) ≤ a

′ and, by indution hypothesis, oCj
(uj) = |uj ↓ |Cj

. Therefore,
oC(t) = |t↓|.Thus oC(t) = |t ↓ |C and, for all a < ω, Ia

C = Ja
C . We now prove that

Iω+1
C = IωC = SN . Let t ∈ Iω+1

C \ IωC . Sine t /∈ I0
C , t redues to a onstru-tor term f~u with f : (~y : ~U)Csα~v and, for all j ∈ Acc(f), uj ∈ [[Uj ]]

ν
ξ,θ with

yξ = Sιy , ~yθ = ~u and αν = ω. Thus, for all j ∈ Acc(f), there is aj < ω suhthat uj ∈ [[Uj ]]
νj

ξ,θ with ανj = aj. a = max{aj | j ∈ Acc(f) is well de�ned sine16



Acc(f) 6= ∅ and a < ω sine Acc(f) is �nite. Thus, t ∈ Ia+1
C ⊆ IωC . �We now give general onditions for every symbol to be omputable, based onthe fundamental notion of omputability losure. The omputability losure of aterm t is a set of terms that an be proved omputable whenever t is omputable.If, for every rule f~l → r, r belongs to the omputability losure of ~l, then rulespreserve omputability, hene strong normalization.In [11℄, the omputability losure is indutively de�ned as a typing relation

⊢c similar to ⊢ exept for the (symb) ase whih is replaed by two new ases:(symb<) for symbols stritly smaller than f , and (symb=) for symbols equivalentto f whose arguments are struturally smaller than ~l.Here, we propose to add a new ase for symbols equivalent to f whosearguments have sizes stritly smaller than those of ~l. For omparing the sizes,one an use metris like in [42℄.De�nition 33 (Ordering on symbol arguments) For every symbol f : (~x :
~T )U , we assume given two well-founded domains, (DA

f , >
A
f ) and (DA

f , >
A

f ), andtwo measure/metri funtions ζAf : An → DA
f and ζA

f : An → DA
f (n = |~x|) suhthat (DX

f , >
X
f ) = (DX

g , >
X
f ) (X ∈ {A,A}) whenever f ≃F g, and we de�ne:� aif = a if Ti = Ca~v, and aif =∞ otherwise.� (f, ϕ) >A (g, ψ) i� f >F g or f ≃F g and ζAf (~afϕ) >A

f ζAg (~agψ).� (f, ν) >A (g, µ) i� f >F g or f ≃F g and ζA

f (~afν) >
A

f ζ
A
g (~agµ).Then, we assume that >A is deidable and that (for all ν) (f, ϕν) >A (g, ψν)whenever (f, ϕ) >A (g, ψ).Example 2 (Lexiographi and multiset status) A simple metri is givenby assigning a status to every symbol, that is, a non-empty sequene of �nitemultisets of stritly positive integers, desribing a simple ombination of lexi-ographi and multiset omparisons. Given a set D and a status ζ of arity n(biggest integer ourring in it), we de�ne [[ζ]]D on Dn as follows:� [[M1 . . .Mk]]D(~x) = ([[M1]]

m
D(~x), . . . , [[Mk]]

m
D(~x))� [[{i1, . . . , ip}]]mD(~x) = {xi1 , . . . , xip} (multiset)Now, take ζXf = [[ζf ]]X , DX

f = ζXf (Xn) and >Xf = ((>X)mul)lex.For building the omputability losure, one must start from the variablesof the left hand-side. However, one annot take any variable sine not everysubterm of a omputable term is omputable a priori. To this end, based onthe de�nition of the interpretation of onstant prediate symbols, we introduethe notion of aessibility.De�nition 34 (Aessibility) We say that u : U is a-aessible10 in t : T ,written t : T �a u : U , i� t = f~u, f ∈ Cons, f : (~y : ~U)Csα~v, |~u| = |~y|,10We may not indiate a if it is not relevant.17



u = uj , j ∈ Acc(f), T = Csαϕ~vγ, U = Ujγϕ, γ = {~y 7→ ~u}, ϕ = {α 7→ a} and
Pos(α, ~u) = ∅.A onstrutor c : (~y : ~U)Ca~v is �nitely branhing11 i�, for all j ∈ Acc(c),either Pos(α,Uj) = ∅ or there exists D suh that Uj = Dα~u. We say that u : Uis strongly a-aessible in t : T , written t : T �· a u : U , i� t : T �a u : U , f is a�nitely branhing onstrutor and Pos(α,Uj) 6= ∅.We say that u : U is ∗-aessible modulo ϕ in t : T , written t : T ≫ϕ u : U ,i� either t : Tϕ = u : U and ϕ|V(T ) is a renaming, or t : Tϕ�· ∗ �ǫ u : U for somesize variable ǫ.De�nition 35 (Termination riterion) Let (f~l → r,Γ, ϕ) ∈ R with f :

(~x : ~T )U and γ = {~x 7→ ~l}. The omputability losure assoiated to this ruleis given by the type system of Figure 5 on the set of terms TA(F ′,X ′) where
F ′ = F ∪ dom(Γ), X ′ = X \ dom(Γ) and, for all x ∈ dom(Γ), τx = xΓ and
x <F f . The termination onditions are:
• Well-typedness: for all x ∈ dom(Γ), ⊢c li : Tiϕγ.
• Linearity: Γ is linear w.r.t. size variables.
• Aessibility: for all x ∈ dom(Γ), there are i and β suh that li : Tiγ ≫ϕ x :
xΓ,12 Ti = Cβ~t and V(~t) = ∅.
• Computability losure: ⊢c r : Uϕγ.
• Positivity: for all α ∈ V(~T ), Pos(α,U) ⊆ Pos+(U).
• Safeness: γ is an injetion from dom2(Γf ) to dom2(Γ).Note that, if ∆ ⊢c t : T then Γ,∆ ⊢ t : T . Hene, the well-typednessondition implies that γ : Γfϕ ; Γ and thus that the left hand-side is well-typed: Γ ⊢ f~l : Uϕγ.The positivity ondition on the output type of f w.r.t. size variables appearsin the previous works on sized types too. In [3℄, Abel gives an example of afuntion whih is not terminating beause it does not satisfy suh a ondition.This an be extended to more general ontinuity onditions [28, 1℄ and is indeedneessary (see Example 8).As for the safeness ondition, it simply says that one annot do mathingor have non-linearities on prediate variables, whih is known to lead to non-termination [27℄. It is also part of other works on the Calulus of Construtionswith indutive types [36℄ and rewriting [40℄.The positivity, safeness and aessibility onditions are deidable. For theonditions based on the omputability losure, we prove the strong normaliza-tion in Setion 7.Let us now see some examples.Example 3 (Division on natural numbers, Figure 1) Take the types nat :
⋆, 0 : nat0, s : natα ⇒ natsα, − : natα ⇒ natβ ⇒ natα and / : natα ⇒ natβ ⇒11Primitive types are �nitely branhing.12This implies in partiular that every xΓ is of the form Cǫ~t with ǫ ∈ Z.18



Figure 5: Computability losure of f~l→ r with f : (~x : ~T )U and γ = {~x 7→ ~l}(ax)
⊢c ⋆ : 2(size) ⊢c τC : 2

⊢c Ca : τC
(C ∈ CF2)(symb) ⊢c τg : sg (∀i)∆ ⊢c yiδ : Uiψδ

∆ ⊢c g~yδ : V ψδ
(g /∈ CF2, g : (~y : ~U)V,

(g, ψ) <A (f, ϕ))(var) ∆ ⊢c T : sx

∆, x : T ⊢c x : T
(x /∈ dom(∆))(weak) ∆ ⊢c t : T ∆ ⊢c U : sx

∆, x : U ⊢c t : T
(x /∈ dom(∆))(prod) ∆, x : U ⊢c V : s

∆ ⊢c (x : U)V : s(abs) ∆, x : U ⊢c v : V ∆ ⊢c (x : U)V : s

∆ ⊢c [x : U ]v : (x : U)V(app) ∆ ⊢c t : (x : U)V ∆ ⊢c u : U

∆ ⊢c tu : V {x 7→ u}(onv) ∆ ⊢c t : T ∆ ⊢c T : s ∆ ⊢c T ′ : s

∆ ⊢c t : T ′
(T ≤ T ′)

natα, with Acc(s) = {1}. All positivity onditions are learly satis�ed. Safenessis immediate (there is no prediate variables). For the other onditions, we onlydetail (3) and (5).
• For (3), take Γ− = p : natα, q : natβ , ζ−(α, β) = α, Γ = x : natδ, y : natǫ,
γ = {p 7→ sx, q 7→ sy}, ϕ = {α 7→ sδ, β 7→ sǫ} and s <F −.� Well-typedness: By (symb), ⊢c x : natδ and ⊢c y : natǫ. Thus, by (symb),
⊢c sx : natsδ and ⊢c sy : natsǫ.� Aessibility: One an easily hek that sx : natsδ ≫ϕ x : natδ and sysǫ ≫ϕ

y : natǫ.� Computability losure: By (symb), ⊢c x : natδ and ⊢c y : natǫ. By (symb),
⊢c −xy : natδ sine ζ−(δ, ǫ) = δ < ζ−(sδ, sǫ) = sδ. Thus, by (sub), ⊢c −xy :
natsδ.

• For (5), take Γ/ = p : natα, q : natβ, ζ/(α, β) = α, Γ = x : natδ, y : natǫ,19



γ = {p 7→ sx, q 7→ y}, ϕ = {α 7→ sδ, β 7→ ǫ} and − <F /.� Well-typedness: By (symb), ⊢c x : natδ and ⊢c y : natǫ. Thus, by (symb),
⊢c sx : natsδ.� Aessibility: One an easily hek that sx : natsδ ≫ϕ x : natδ and y :
natǫ ≫ϕ y : natǫ.� Computability losure: By (symb), ⊢c x : natδ and ⊢c y : natǫ. By (symb),
⊢c −xy : natδ. By (symb), ⊢c /(−xy)y : natδ sine ζ/(δ, ǫ) = δ < ζ/(sδ, ǫ) =

sδ. Thus, by (symb), ⊢c s(/(−xy)y) : natsδ.Example 4 (Addition on Brouwer's ordinals, Figure 2) Take the types
ord : ⋆, 0 : nat0, s : natα ⇒ natsα, lim : (nat ⇒ ordα) ⇒ ordsα and + :
natα ⇒ natβ ⇒ nat∞, with Acc(s) = Acc(lim) = {1}. All positivity onditionsare learly satis�ed. We only detail rule (3). Take Γ+ = p : ordα, q : ordβ ,
ζ+(α, β) = α, Γ = f : nat∞ ⇒ ordδ, y : ordǫ, γ = {p 7→ limf, q 7→ y},
ϕ = {α 7→ sδ, β 7→ ǫ} and s, lim <F +.� Well-typedness: By (symb), ⊢c f : nat∞ ⇒ ordδ and ⊢c y : ordǫ. Thus, by(symb), ⊢c limf : ordsδ .� Aessibility: One an easily hek that limf : ordsδ ≫ϕ f : nat∞ ⇒ ordδand y : ordǫ ≫ϕ y : ordǫ.� Computability losure: By (symb), ⊢c f : nat∞ ⇒ ordδ and ⊢c y : ordǫ. Let

∆ = x : nat∞. By (var), ∆ ⊢c x : nat∞. By (weak), ∆ ⊢c f : nat∞ ⇒ ordδand ∆ ⊢c y : ordǫ. By (app), ∆ ⊢c fx : ordδ . By (symb), ∆ ⊢c +(fx)y : ord∞sine ζ+(δ, ǫ) = δ < ζ+(sδ, ǫ) = sδ. By (abs), ⊢c [x : nat∞](+(fx)y) : (x :
nat∞)ordδ . Thus, by (symb), ⊢c lim([x : nat∞](+(fx)y)) : ordsδ .Example 5 (Quik sort, Figure 6) Take the types bool : ⋆, true : bool∞,

false : bool∞, list : ⋆, nil : list0, cons : nat∞ ⇒ listα ⇒ listsα, blist : ⋆,
pair : listα ⇒ listβ ⇒ blistmax(α,β), fst : blistα ⇒ listα, snd : blistα ⇒ listα,
≤: nat∞ ⇒ nat∞ ⇒ bool∞, pivot : nat∞ ⇒ listα ⇒ blistα, qs : list∞ ⇒
list∞ ⇒ list∞ and qsort : list∞ ⇒ list∞. We only detail the omputabilitylosure ondition of rule (11).Take ζqs(α, β) = α, Γ = x : nat∞, l : listδ, l′ : listǫ, ϕ = {α 7→ sδ, β 7→ ǫ}and qs >F pivot >F cons, pair, fst , snd. By (symb), ⊢c x : nat∞, ⊢c l : listδ and
⊢c l′ : listǫ. By (symb), ⊢c pivot x l : blistδ. By (symb), ⊢c u : listδ and ⊢c v :
listδ. By (symb), ⊢c qs v l′ : list∞. By (symb), ⊢c cons x (qs v l′) : list∞. Thus,by (symb), ⊢c qs u (cons x (qs v l′)) : list∞ sine ζqs(δ,∞) = δ < ζqs(sδ, ǫ) = sδ.Note that we annot take qs : listα ⇒ listβ ⇒ listα+β and thus qsort :
listα ⇒ listα sine too muh information is lost by taking pair : listα ⇒
listβ ⇒ blistmax(α,β). Even though we take pair : listα ⇒ listβ ⇒ blist〈α,β〉with 〈α, β〉 interpreted as a pair of ordinals, the urrent setting does not allowus to say that pivot has type nat∞ ⇒ listα ⇒ blist〈β,γ〉 for some β and γ suhthat β + γ = α, as it an be done in Xi's framework [42℄.The following examples are taken from [25℄.20



Figure 6: Quik sort
(1) fst (pair x y) → x
(2) snd (pair x y) → y

(3) ≤ 0 x → true
(4) ≤ (s x) 0 → false
(5) ≤ (s x) (s y) → ≤ x y

(6) if true x y → x
(7) if false x y → y

(8) pivot x nil → pair nil nil
(9) pivot x (cons y l) → if (≤ y x) (pair (cons y u) v) (pair u (cons y v))where u = fst (pivot x l) and v = snd (pivot x l)

(10) qs nil l → l
(11) qs (cons x l) l′ → qs u (cons x (qs v l′))where u = fst (pivot x l) and v = snd (pivot x l)

(12) qsort l → qs l nilFigure 7: Paulson's normalization of if -expressions
(1) nm at → at
(2) nm (if at y z) → if at (nm y) (nm z)
(3) nm (if (if u v w) y z) → nm (if u (nm (if v y z)) (nm (if w y z)))Example 6 (Paulson's normalization of if -expressions, Figure 7) Takethe types expr : ⋆, at : expr1, if : exprα ⇒ exprβ ⇒ exprγ ⇒ exprα(1+β+γ) and
nm : exprα ⇒ exprα. We only detail the omputability losure ondition of rule(3). Take ζnm(α) = α, Γ = u : exprα, v : exprβ , w : exprγ , y : exprδ, z : exprǫ,
υ = α(1 + β + γ)(1 + δ + ǫ), ϕ = {α 7→ υ} and nm >F at, if . Then,one an hek that υ is stritly greater than β(1 + δ + ǫ), γ(1 + δ + ǫ) and
α(1 + β(1 + δ+ ǫ) + γ(1 + δ+ ǫ)) if variables are interpreted by stritly positiveintegers.Example 7 (Huet and Hullot's reverse funtion, Figure 8) Take the types
rev1 : nat∞ ⇒ list∞ ⇒ nat∞, rev2 : nat∞ ⇒ listβ ⇒ listβ and rev :
listα ⇒ listα. We only detail the omputability losure ondition of rule (4).Take ζrev(α) = 2α, ζrev2(α, β) = 2β + 1, Γ = x : nat∞, y : nat∞, l : listδ,
ϕ = {β 7→ δ + 1} and rev ≃F rev2 >F rev1 >F cons, nil. Then, one anhek that ζrev2(∞, δ+ 1) = 2δ+ 3 is stritly greater than ζrev2(∞, δ) = 2δ+1,21



Figure 8: Huet and Hullot's reverse funtion
(1) rev1 x nil → x
(2) rev1 x (cons y l) → rev1 y l

(3) rev2 x nil → nil
(4) rev2 x (cons y l) → rev (cons x (rev (rev2 y l)))

(5) rev nil → nil
(6) rev (cons x l) → cons (rev1 x l) (rev2 x l)

ζrev(δ) = 2δ and ζrev(1 + δ) = 2δ + 2.Figure 9: Ma Carthy's �91� funtion
(1) f x → f (f (+ x 11)) if ≤ x 100 = true
(2) f x → − x 10 if ≤ x 100 = falseExample 8 (Ma Carthy's �91� funtion, Figure 9) Ma Carthy's �91�funtion f is de�ned by the following equations: f(x) = f(f(x+11)) if x ≤ 100,and f(x) = x − 10 otherwise. In fat, one an prove that f is equal to thefuntion F suh that F (x) = 91 if x ≤ 100, and F (x) = x − 10 otherwise.A way to formalize this in CACSA would be to use onditional rewrite rules(see Figure 9) and take13 f : natα ⇒ natF (α) and ζXf (x) = max(0, 101− x) asmeasure funtion, as it an be done in Xi's framework. Then, by taking intoaount the rewrite rule onditions, one ould prove that, if Γ = x : natδ and

≤ x 100 = true, then δ ≤ 100, ζf (δ + 11) < ζf (δ) and ζf (F (δ)) < ζf (δ).7 Termination proofWe �rst prove some lemmas for proving the orretness of aessibility w.r.t.omputability (aessible subterms of a omputable term are omputable). Then,we prove the orretness of the omputability losure (every term of the om-putability losure is omputable) and the omputability of every symbol, henethe strong normalization of every well-typed term.Lemma 36 (Aessibility properties)(1) If t : T �· k u : De~u then T = Cs
ke~t.(2) If t : Cβ~t≫ϕ u : U then there are ǫ ∈ Z and k ≥ 0 suh that βϕ = skǫ.13Note that F (α) is monotone w.r.t. α. 22



(3) If t : T � u : U , tσ ∈ Kb
C(~S) then oC(~S)(t) is a suessor ordinal.(4) If t : T �· u : U and tσ ∈ Ib

C(~S) then uσ ∈ Ib
D(~S′) for some D and ~S′.(5) Let f : (~y : ~U)Csα~v be a �nitely branhing onstrutor suh that, if

j ∈ Acc(f) and Pos(α,Uj) 6= ∅ then Uj = Cαj ~v
j . If f~u ∈ Ka

C(~S) then
oC(~S)(f~u) = max{oCj(~Sj)(uj) | j ∈ Acc(f),Pos(α,Uj) 6= ∅} + 1, where
~Sj = [[~vj ]]νξ,θ, yξ = Sιy , ~yθ = ~u and αν = a.(6) If t : T �· k � u : U and tσ ∈ Kb

C(~S) then oC(~S)(t) = a + k + 1 for some a.(7) If t : T �
∗ u : U and tσ ∈ [[T ]]µξ,σ then uσ ∈ [[U ]]µξ,σ.Proof.(1) By indution on k. For k = 0, this is immediate. Assume now that t :

T �· k v : V �· a u : De~u. Then, a = e and V = Ese~vγ. Therefore, byindution hypothesis, T = Cs
k+1e~t.(2) There are two ases.� t : Cβϕ = u : U and ϕ|V(T ) is a renaming. Take ǫ = βϕ and k = 0.� t : Cβϕ�· k v : V �ǫ u : U . Then, V = Dsǫ~v and, by (1), βϕ = sk+1ǫ.(3) By Lemma 30.(4) By (3), we an assume that tσ ∈ Ia+1

C (~S). By De�nition 29, uj ∈ [[Uj ]]
ν
ξ,θwith yξ = Sιy , ~yθ = ~u and αν = a. By de�nition of �· , Uj = Dα~u. Thus,

uj ∈ Ia
D(~S′) with ~S′ = [[~u]]νξ,θ.(5) By (3), we an assume that f~u ∈ Ia+1

C (~S). By (4), for all j ∈ Acc(f) suhthat Pos(α,Uj) 6= ∅, uj ∈ Ia
Cj

(~Sj). Let aj = oCj(~Sj)(uj). Sine a is as smallas possible, we must have max{aj | j ∈ Acc(f),Pos(α,Uj) 6= ∅} = a.(6) By indution on k. For k = 0, this is (3). Assume now that t : T �· u :

U �· k � v : V . By (4), for all j ∈ Acc(f), ujσ ∈ Ia
Dj

(~Sj). Let aj =

oCj(~Sj)(ujσ). By indution hypothesis, aj = bj + k + 1. Therefore, by (5),
oC(~S)(tσ) = bj + k + 2 for some bj .(7) By indution on the number of �-steps. If there is no step, this is immedi-ate. Assume now that t : T�au : U�

∗v : V and αϕ = a. Sine T = Csαϕ~vγ,
[[T ]]µξ,σ = Iαϕµ+1

C (~S) with ~S = [[~vγ]]µξ,σ. Therefore, uσ ∈ [[Uj ]]
ϕµ
η,γσ with

yη = Sιy . Sine vιy = y, yη = [[yγ]]ϕµξ,σ = [[yγ]]µξ,σ sine Pos(α, γ) = ∅. So,by andidate substitution, [[Uj ]]
ϕµ
η,γσ = [[Ujγ]]

ϕµ
ξ,σ = [[U ]]µξ,σ. Therefore, byindution hypothesis, vσ ∈ [[V ]]µξ,σ. �Theorem 37 (Aessibility orretness) If t : T ≫ϕ u : U , T = Cβ~t,

V(~t) = ∅ and tσ ∈ [[T ]]µξ,σ then there exists ν suh that βϕν ≤ βµ and
uσ ∈ [[U ]]νξ,σ.Proof. There are two ases:
• t : Tϕ = u : U and ϕ|V(T ) is a renaming. Let ν = ϕ−1

|V(T )µ. βϕν = βµ and
uσ = tσ ∈ [[T ]]µξ,σ = [[Tϕ]]νξ,σ. 23



• t : Tϕ�· ∗u : U �ǫ v : V . By de�nition of �ǫ, U = Dsǫ~u. By Lemma 36(1), βϕ = sk+1ǫ. By (6), there exists a suh that a + k + 1 ≤ βµ and
tσ ∈ Ia+k+1

C (~S). Let ǫν = a. Then, βϕν = sk+1ǫν = a + k + 1 ≤ βµ,
tσ ∈ [[Tϕ]]νξ,σ and, by (7), uσ ∈ [[Tϕ]]νξ,σ. �Theorem 38 (Corretness of the omputability losure) Let (f~l → r,Γ,

ϕ) ∈ R, f : (~x : ~T )U and γ = {~x 7→ ~l}. Assume that, for all (g, µ) <A (f, ϕν),
g ∈ [[τg]]

µ. If ∆ ⊢c t : T and ξ, σ |=ν Γ,∆ then tσ ∈ [[T ]]νξ,σ.Proof. By indution on ∆ ⊢c t : T . We only detail the ase (symb). Sine
(g, ψ) <A (f, ϕ), (g, ψν) <A (f, ϕν). Hene, by assumption, g ∈ [[τg]]

ψν . Now,by indution hypothesis, ~yδσ ∈ [[~Uψδ]]νξ,σ. By andidate substitution, thereexists η suh that [[~Uψδ]]νξ,σ = [[~Uψ]]νη,δσ. By size substitution, [[~Uψ]]νη,δσ =

[[~U ]]ψνη,δσ. Therefore, g~yδσ ∈ [[V ]]ψνη,δσ = [[V ψδ]]νξ,σ.Lemma 39 (Computability of symbols) For all f and µ, f ∈ [[τf ]]
µ.Proof. Assume that τf = (~x : ~T )U with U distint from a produt. f ∈

[[τf ]]
µ i�, for all η, θ suh that η, θ |=µ Γf , f~xθ ∈ [[U ]]µη,θ. We prove it by indutionon ((f, µ), θ) with (>A,→)lex as well-founded ordering. Let ti = xiθ and t = f~t.By assumption, for every rule f~l → r ∈ R, |~l| ≤ |~t|. So, if f /∈ Cons then t isneutral and it su�es to prove that →(t) ⊆ [[U ]]µη,θ. Otherwise, [[U ]]µη,θ = IaµC (~S)with ~S = [[~v]]µη,θ. Sine η, θ |=µ Γf , tj ∈ [[Tj ]]

µ
η,θ. Therefore, in this ase too, itsu�es to prove that →(t) ⊆ [[U ]]µη,θ.If the redution takes plae in one ti then we an onlude by indutionhypothesis. Assume now that there exist (l → r,Γ, ϕ) ∈ R and σ suh that

t = lσ. Then, l = f~l and θ = γσ with γ = {~x 7→ ~l}.We now de�ne ξ suh that [[U ]]µη,γσ = [[Uγ]]µξ,σ and [[~T ]]µη,γσ = [[~Tγ]]µξ,σ. Bysafeness, γ is an injetion from dom2(Γf ) to dom2(Γ). Let y ∈ dom2(Γ).If there exists x ∈ dom(Γf ) (neessarily unique) suh that y = xγ, we take
yξ = xη. Otherwise, we take yξ = ⊤yΓ.We hek that ξ |= Γ. If y 6= xγ, yξ = ⊤yΓ ∈ RyΓ. If y = xγ then yξ = xη.Sine η |= Γf , xη ∈ RxΓf

. Sine γ : Γfϕ ; Γ, Γ ⊢ y : xΓfϕγ. Therefore,
yΓ ≤ xΓfϕγ and RyΓ = RxΓfϕγ = RxΓf

. So, ξ |= Γ.Now, by andidate substitution, [[Uγ]]µξ,σ = [[U ]]µη′,γσ with xη′ = [[xγ]]ξ,σ. Let
x ∈ FV(~TU). By safeness, xγ = y ∈ dom2(Γ) and xη′ = yξ = xη. Therefore,
η′ = η.We now prove that ξ, σ |=ν Γ for some valuation ν suh that ϕν ≤ µ. Let
x ∈ dom(Γ). By assumption, there exists i suh that li : Tiγ ≫ϕ x : xΓ,
Tiγ = Cβx~u and V(~u) = ∅. By Lemma 36 (2), there is ǫx and kx suh that
βxϕ = skxǫx. Sine liσ ∈ [[Tiγ]]ξ,σ, by Theorem 37, there exists νx suh that
xσ ∈ [[xΓ]]νx

ξ,σ and βxϕνx ≤ βxµ. Sine Γ is linear w.r.t. size variables, ǫx 6= ǫywhenever x 6= y. So, we an de�ne ν by taking ǫxν = ǫxνx. Then, βxϕν =
skxǫxν = skxǫxνx = βxϕνx ≤ βxµ. 24



Therefore, sine ⊢c r : Uϕγ, by orretness of the omputability losure, rσ ∈
[[Uϕγ]]νξ,σ = [[Uϕ]]νη,θ = [[U ]]ϕνη,θ ≤ [[U ]]µη,θ sine, for all α, Pos(α,U) ⊆ Pos+(U).�Theorem 40 (Strong normalization) Every well-typed term is strongly nor-malizable.Proof. The invariane by redution is proved in [11℄. Hene, we an on-lude by Theorem 25 and Lemma 39. �8 ConlusionThe notion of omputability losure, �rst introdued in [12℄ and further extendedto higher-order pattern-mathing [10℄, higher-order reursive path ordering [29℄,type-level rewriting [7℄ and rewriting modulo equational theories [9℄, again showsto be essential for extending to rewriting and dependent types type-based termi-nation riteria for (polymorphi) λ-aluli with indutive types and ase analysis[28, 42, 5, 2℄. In ontrast with what is suggested in [5℄, this notion, whih isexpressed as a sub-system of the whole type system (by restriting the size ofarguments in funtion alls in some omputability-preserving way, see Figure5), allows pattern-mathing and does not su�er from limitations one ould �ndin systems relying on external guard prediates for reursive de�nitions.Moreover, we allow a riher size algebra than the one in [28, 5, 2℄ (see Setion6). But, we do not allow existential size variables and onditional rewriting thatare essential for apturing for instane the size-preserving property of quiksort(Example 5) and Ma Carty's �91� funtion (Example 8) respetively, as it anbe done in Xi's work [42℄. Suh extensions should allow us to subsume Xi's workompletely. More generally, it is important to have a better understandingof the di�erenes between Xi's work whih does not use subtyping (but hasexistential size variables and singleton types) and the other works that are basedon subtyping.In this work, we assume that users provide appropriate sized types for fun-tion symbols and then hek by our tehnique that the rewrite rules de�ningthese funtion symbols are ompatible with their types. An important exten-sion would be to infer these types. Works in this diretion for ML-like languagesare [32, 43, 17℄. The exat relations between these works and with re�nementtypes also [33, 22℄ still have to be investigated. Note also that deiding thenon-size-inreasing property of some funtions is investigated in [23, 24℄.We made two important assumptions that also need further researh. First,the on�uene of β ∪ R, whih is still an open problem when R is on�uent,terminating, non left-linear and ontains type-level rewrite rules. Seond, thepreservation of typing under rewriting (subjet redution for R), for whih weneed to �nd deidable su�ient onditions (see Example 1).Finally, by ombining rewriting and subtyping in the Calulus of Constru-tions, this work may also be seen as an important step towards the integration ofmembership equational logi [13℄ and dependent type systems. Previous works25
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Ca~t ≤ T
(a ≤A b)Proof. ≤⊆≤′: Assume that a ≤A b. By (re�), Cb~t ≤′ Cb~t. Hene, by(symb'), Ca~t ≤′ Cb~t. ≤′⊆≤: Assume that Ca~t ≤′ T sine Cb~t ≤′ T and a ≤A b.By indution hypothesis, Cb~t ≤ T . By (symb), Ca~t ≤ Cb~t. Therefore, by(trans), Ca~t ≤ T . �Note that the following two subtyping rules are learly admissible:(left) T ↓ T ′ T ′ ≤ U

T ≤ U(right) T ≤ U ′ U ′ ↓ U

T ≤ UFor representing the subtyping dedutions, we introdue the following termalgebra:
d ::= ⊥ | I | Sd | Cd | Ld | Rd | Pdd | Tddwhere⊥ stands for some impossible ase, I for (re�), S for (symb'), C for (onv),

L for (left), R for (right), P for (prod), and T for (trans).We now prove that the transformation rules of Figure 10 are valid, that is, adedution mathing a left hand-side an be replaed by the orresponding righthand-side.(a) Cx→ R(Lx)

T ↓ T ′ T ′ ≤ U ′ U ′ ↓ U
C

T ≤ U29



an be transformed into:
T ↓ T ′ T ′ ≤ U ′

L
T ≤ U ′ U ′ ↓ U

R
T ≤ U(b) R(Rx)→ Rx

T ≤ U ′ U ′ ↓ U
R

T ≤ U U ↓ U ′′

R
T ≤ U ′′an be transformed into:

T ≤ U ′ U ′ ↓ U ′′

R
T ≤ U ′′by on�uene of →.() L(Lx)→ LxLike (b).(d) L(Rx)→ R(Lx)

T ↓ T ′

T ′ ≤ U ′ U ′ ↓ U
R

T ′ ≤ U
L

T ≤ Uan be transformed into:
T ↓ T ′ T ′ ≤ U ′

L
T ≤ U ′ U ′ ↓ U

R
T ≤ UNote that the inverse transformation R(Lx)→ L(Rx) is valid too.(e) TIx→ x

I
T ≤ T T ≤ U

T
T ≤ Uan be transformed into:
T ≤ U(f) T (Sx)y → S(Txy)

Cb~t ≤ T
S

Ca~t ≤ T T ≤ U
T

Ca~t ≤ Uan be transformed into:
Cb~t ≤ T T ≤ U

T
Cb~t ≤ U

S
Ca~t ≤ U30



(g) T (Lx)y → L(Txy)

T ↓ T ′ T ′ ≤ U
L

T ≤ U U ≤ V
T

T ≤ Van be transformed into:
T ↓ T ′

T ′ ≤ U U ≤ V
T

T ′ ≤ V
L

T ≤ V(h) T (RI)x→ Lx

I
T ≤ T T ↓ T ′

R
T ≤ T ′ T ′ ≤ U

T
T ≤ Uan be transformed into:

T ↓ T ′ T ′ ≤ U
L

T ≤ U(i) T (R(Sx))y → S(T (Rx)y)

Cb~t ≤ T
S

Ca~t ≤ T T ↓ T ′

R
Ca~t ≤ T ′ T ′ ≤ U

T
Ca~t ≤ Uan be transformed into:

Cb~t ≤ T T ↓ T ′

R
Cb~t ≤ T ′ T ′ ≤ U

T
Cb~t ≤ U

S
Ca~t ≤ U(j) T (R(Lx))y → L(T (Rx)y)By ombination of (g) and the inverse of (d).(k') TxI → xLike (e).(l) T (R(Pxy))(Sz)→ ⊥

U ′ ≤ U V ≤ V ′

P
(x : U)V ≤ (x : U ′)V ′ (x : U ′)V ′ ↓ Ca~t

R
(x : U)V ≤ Ca~t

Cb~t ≤ T
S

Ca~t ≤ T
T

(x : U)V ≤ Tis not possible sine (x : U ′)V ′ and Ca~t have no ommon redut sine C isonstant. 31



(n') Tx(Ry)→ R(Txy)

T ≤ U

U ≤ V ′ V ′ ↓ V
R

U ≤ V
T

T ≤ Van be transformed into:
T ≤ U U ≤ V ′

T
T ≤ V ′ V ′ ↓ V

R
T ≤ V(m') T (Rx)(Ly)→ Tx(Ly)

T ≤ U U ↓ U ′

R
T ≤ U ′

U ′ ↓ U ′′ U ′′ ≤ V
L

U ′ ≤ V
T

T ≤ Van be transformed into:
T ≤ U

U ↓ U ′′ U ′′ ≤ V
L

U ≤ V
T

T ≤ Vby on�uene of →.(p) T (R(Pxy))(Pzt)→ P (Tz(Lx))(Ty(Lt))

U2 ≤ U1 V1 ≤ V2
P

(x : U1)V1 ≤ (x : U2)V2 (x : U2)V2 ↓ (x : U3)V3
R

(x : U1)V1 ≤ (x : U3)V3

U4 ≤ U3 V3 ≤ V4
P

(x : U3)V3 ≤ (x : U4)V4
T

(x : U1)V1 ≤ (x : U4)V4an be transformed into:
U4 ≤ U3

U3 ↓ U2 U2 ≤ U1
L

U3 ≤ U1
T

U4 ≤ U1

V1 ≤ V2

V2 ↓ V3 V3 ≤ V4
L

V2 ≤ V4
T

V1 ≤ V4
P

(x : U1)V1 ≤ (x : U4)V4(r) T (Pxy)(Sz)→ ⊥Like (l).(s') Tx(LI)→ RxLike (h).(t) T (Pxy)(L(Sz))→ ⊥Like (l).(u) T (Pxy)(L(Pzt))→ P (Tz(Lx))(Ty(Lt))Like (p).(w) T (Pxy)(Pzt)→ P (Tzx)(Tyt)Like (p). 32



The above rules form a terminating rewrite system. For L and R, the reur-sive alls are stritly smaller (take L < R). For Tuv, the measure (|u|+ |v|, |v|),where |u| is the size of u, stritly dereases lexiographially. Now, it is easy tosee that T ours in no normal form of Tuv if u and v are losed terms (T is om-pletely de�ned). We proeed by indution on the measure. The only unde�nedases for T are T (R(Pxy))(Tzt), T (Pxy)(L(Tzt)), T (Pxy)(Tzt) and T (Txy)z.By indution hypothesis, T ours in no normal form of Tzt or Txy. Therefore,we fall in the de�ned ases and we an onlude by indution hypothesis.10 Expansion eliminationIn this setion, we prove Theorem 5 by following Chen's tehnique [15℄. Weintrodue the following term algebra for representing the subtyping dedutions:
d ::= I | S | Ed | Rd | Pddwhere ⊥ stands for some impossible ase, I for (re�), S for (symb), C for (onv),

E for (exp), R for (red), and P for (prod).We now prove that the following transformation rules are valid, that is, adedution mathing a left hand-side an be replaed by the orresponding righthand-side.
(a) E(Rx) → R(Ex)
(b) E(Pxy) → P (Ex)(Ey)
(c) EI → RI
(d) ES → RS
(e) E(Ex) → Ex(a) E(Rx)→ R(Ex)Assume that we have the following dedution:

T ′ →∗ T ′′ ≤ U ′′ ∗← U ′

R
T ∗← T ′ ≤ U ′ →∗ U

E
T ≤ UBy on�uene, there exist T ′′′ and U ′′′ suh that T →∗ T ′′′ ∗← T ′′ and

U →∗ U ′′′ ∗← U ′′. So, the dedution an be transformed into:
T ′′′ ∗← T ′′ ≤ U ′′ →∗ U ′′′

E
T →∗ T ′′′ ≤ U ′′′ ∗← U

R
T ≤ U(b) E(Pxy)→ P (Ex)(Ey)Assume that we have the following dedution:

C ≤ A B ≤ D
P

T ∗← (x : A)B ≤ (x : C)D →∗ U
E

T ≤ U33



Then, T = (x : A′)B′ with A →∗ A′ and B →∗ B′, and U = (x : C′)D′with C →∗ C′ and D →∗ D′. So, the dedution an be transformed into:
C′ ∗← C ≤ A→∗ A′

E
C′ ≤ A′

B′ ∗← B ≤ D →∗ D′

E
B′ ≤ D′

P
T ≤ U() EI → RIBy on�uene, as in (a) but with T ′ = T ′′ = U ′′ = U ′.(d) ES → RSAssume that we have the following dedution:
a ≤A b

S
T ∗← Ca~t ≤ Cb~t→∗ U

E
T ≤ UThen, T = Ca~u with ~t →∗ ~u and U = Cb~v with ~t →∗ ~v. By on�u-ene, there exists ~w suh that ~u →∗ ~w ∗← ~v. So, the dedution an betransformed into:
a ≤A b

S
T →∗ Ca ~w ≤ Cb ~w ∗← U

R
T ≤ U(e) E(Ex)→ ExImmediate.Now, the rewrite system de�ned by these transformation rules is learly ter-minating and on�uent (there is no ritial pair). Sine it de�nes E ompletely,no normal form of a losed term may ontain E.
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Figure 10: Transformation rules for eliminating transitivity
(a) Cx → R(Lx)
(b) R(Rx) → Rx
(c) L(Lx) → Lx
(d) L(Rx) → R(Lx)

(e) TIx → x

(f) T (Sx)y → S(Txy)

(g) T (Lx)y → L(Txy)

(h) T (RI)x → Lx
(i) T (R(Sx))y → S(T (Rx)y)
(j) T (R(Lx))y → L(T (Rx)y)
(k) T (R(Pxy))I → R(Pxy)
(l) T (R(Pxy))(Sz) → ⊥

(m) T (R(Pxy))(Lz) → T (Pxy)(Lz)
(n) T (R(Pxy))(Rz) → R(T (R(Pxy))z)
(p) T (R(Pxy))(Pzt) → P (Tz(Lx))(Ty(Lt))

(q) T (Pxy)I → Pxy
(r) T (Pxy)(Sz) → ⊥
(s) T (Pxy)(LI) → R(Pxy)
(t) T (Pxy)(L(Sz)) → ⊥
(u) T (Pxy)(L(Pzt)) → P (Tz(Lx))(Ty(Lt))
(v) T (Pxy)(Rz) → R(T (Pxy)z)
(w) T (Pxy)(Pzt) → P (Tzx)(Tyt)

(1) S⊥ → ⊥
(2) L⊥ → ⊥
(3) R⊥ → ⊥
(4) P⊥x → ⊥
(5) Px⊥ → ⊥
(6) T⊥x → ⊥
(7) Tx⊥ → ⊥Some of these rules are partiular instanes of the following more general trans-formations:

(k′)(q′) TxI → x
(n′)(v′) Tx(Ry) → R(Txy)

(m′) T (Rx)(Ly) → Tx(Ly)
(s′) Tx(LI) → Rx
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