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Abstract— A new general representation of algebraic surfaces, curvatures at a regular point. We provide exact algorithms for
called semi-implicit, was introduced in [1]. Here we specialize computing self-intersections of a surface and more generally
this notion in order to apply it in Solid Modeling: we view a ¢ gingular locus. We also present a surface/surface intersec-

surface inR3 as a one-parameter (algebraic) family of algebraic ti 1gorith Vi lized ltant calculati
low-degree curves. We present in more details the case where 1on aigorithm relying on generalized resuitant caiculations.

these curves are planar and the coefficients of the equations of Now we briefly enumerate the content of the following
the family of planes are low-degree polynomials. This provides an sections. In section Il we show that most usual algebraic
algebraic realization with interesting features of the paradigm of g\ faces already enter in the category of algebraic surfaces

active contour We provide examples showing that this definition : . . L .
encapsulates both usual and less known surfaces. The semi\ve study. In section Il we give precise definitions and basic

implicit representation can be used for surface interpolation. The Properties of ours semi-implicit surfaces. We also provide an
aim is to form new models, with diverse geometry, from scattered algorithm to compute their implicit representation. In section
data with extra geometric information, and to be combined with |V we address the approximation and interpolation of a point
other techniques. _ ) cloud by a semi-implicit surface. We illustrate our approach
CAT[?e paper mainly addresses the topic of performing the usual o, o hiace of the classical example of Stanford's bunny. In
operations with semi-implicit representations of surfaces. . . . ..
We derive formulae for computing the normal and the curvatures S€ction V- we give an example of a semi-implicit surface
at a regular point. We provide exact algorithms for computing With a skeleton in the spirit of H. Blum shape descriptor. In
self-intersections of a surface and more generally its singular section VI we provide formulae for computing the equation
locus. We also present a surface/surface intersection algorithm of the tangent plane together with the second fundamental

relying on generalized resultant calculations. form of a semi-implicit surface at a regular point. In section
This new approach is creating opportunities to explore and

analyze rich and complex geometry of algebraic surfaces through V!l We give an algorithm to compute the self—intersgction ?nd
families of models depending on a reduced number of parame- Singularity locus of a semi-implicit surface, and in section
ters. VIII we describe resultant-based methods in order to solve

intersection problems.
. INTRODUCTION

Evolving curves occur in a wide variety of settings and were I
also used to describe boundaries of volumes. This gave rise in
shape description to the natural idea of active contours. ThisBefore writing down a precise definition of what we call a
paradigm has received various mathematical interpretatigémi-implicit representation of an algebraic surface we would
ranging from meshes to level set methods. We aim to develgige to illustrate it through some simple examples. Roughly
an algebraic and geometric interpretation of this paradigm épeaking, a semi-implicit representation of a surface consists in

order to contribute with new models having a rich geometigpresenting the surface aparameterizedamily of implicit
and on which one can perform efficiently the usual CARpace curves.

(Computer Aided Design) operations.

In [1] we introduced a new general representation of algg-
braic surfaces that we called semi-implicit. Here we specializé
this notion in order to apply it in Solid Modeling: we view All algebraic surfacesS in R? can be seen as a family of
a surface inR® as a one-parameter (algebraic) family oturves, i.e. admits a semi-implicit representation. Indeed, if
algebraic low-degree curves. We present in more details théx, y, z) is a polynomial such that corresponds to the zero
case where these curves are planar and the coefficients oflttweis of F' (i.e. F' is an implicit equation ofS) then the map
equations of the family of planes are low-degree polynomials.— F'(z,y, z) defines a family of curves (in the sense that for

The paper mainly addresses the topic of performing tlachz, € R the intersection of5 with the plane of equation
usual CAD operations with semi-implicit representations of = z, is the curve defined by the polynomiél(z,y, o))
surfaces. We derive formulae for computing the normal and tdescribings.

. EXAMPLES

Implicit algebraic surfaces



B. Revolution surfaces independent of, y, z, w. Thus ifdeg(I") = 1 then we deduce

A coneC can be seen “semi-implicitly” by considering it aghat H has a fixed line, and ifleg(I') = 2 then H as a fixed
the union of some lines contained @h Indeed, we can build POINt.

C by rotating the line intersection of both planes= 2z and  Of course all the surfaces are not obtained as linear families
y = 0; thus we have a family of lines parameterized by apf conics. To consider more general surfaces we have to
angled € [0; 2(: increase the number of parameters, i.e. the degree of the
algebraic families considered; e.g linear families of cubics in
P3 should be the next case after the families of plane conics.
We can then move to an algebraic system by introducing the
parametert = tan(g). Both equations defining are then

linear inz, y, » (because they are planes) and of degree 2 inAn implicit representation of a surfac in P* consists
L in viewing it as a closed subvariety df, i.e. described

Given a revolution surface (with axe = 0) represented @S the zero locus of a non-zero homogeneous polynomial

implicitly by a polynomial F(z, y, z), we can obtain a semi- N (C[x,y,z,w]. In this section we give the definition (iq a
implicit representation by cutting it with plangs= ¢z, where 'estricted case) of another way to represent surface®’jn

cos(0)y + sin(f)x = 0, cos(f)x — sin(f)y — z = 0.

IIl. DEFINITION AND FIRST PROPERTIES

¢ is a parameter; the family is given by we represent them aparameterizedfamilies of implicitly
represented space curves. We call such a representation a
y—tx =0, F(z,2t,2) = 0. semi-implicit representation. It basically consists in viewing

%gurfaces C P? as the projection on the second factor of a

For instance our previous cone can be represented b . .
P b Y C&tain closed subvarietg of P3 x P!,

family

y—tr=0, (1+t)z? —22=0. Definition 3.1: We call a semi-implicit representation of

L L __an algebraic surfac& c P3 a couple of bi-homogeneous
Similarly we can semi-implicitly represent a torus using 'tﬁolynomialsF(m y, z,w; s,t) and G(x, y, 2, w; s,t) defining
implicit representation a closed subvariety c P3 x P! such that its projection on
(22 + 2 + 22 — (R2+1))2 = AR2(r? — 2?), the first factor is surjective and i§ on the first factor. If

F is linear in the homogeneous variablegy, z, w then the
where R andr are respectively the radius of the major andemi-implicit representation is called linear.

minor circles. . . . _
Remark 3.2:It is possible to give more general definition of

C. Linear families of plane conics semi-implicit representations involving more than two equa-

A linear family of conics is a surface obtained as the imaéjéms- Here we prefer to restrict ourselves to the setting of the

of a regular map (withoubase points previous definition. _ . ,
Also observe that the hypothesis requiring thatis a

Pl x Pl 2 p3 surface inP? x P! is very important whereas the hypothesis
(s:t)x (u:v) — (fols,t;u,v): - fa(s, t;u,v)), asking that its projection of? is onto can be avoid. Indeed,
the projection ofZ on P2 is always a surface which is the
union of S and other surfaces corresponding to parameters
(s :t) € P! such thatF and G equals (up to a multiplicative
constant) as homogeneous polynomialsciy, z, w (actually
asking thatZ projects ontaS means that we assume that such
other surfaces do not exist).

where polynomialsf;(s,¢;u,v) are bi-homogeneous of bi-
degree(1,2). For all fixed (s : to) € P! the image of
D|(so:to) 1S @ CONICC4,.1,) IN P Which is, as all conic irP?,
contained in a plane that we denatg, .,.). We thus have
a family H of planes parameterized 4§'; it corresponds
to a bi-homogeneous polynomidl(x, y, z, w; s, t), linear in
z,y,z w and of degree< 3 in s,¢ (this follows immediately ~ Going from a semi-implicit representation to an implicit
from the definition of¢). representation of is a useful operation, especially for inter-
Consequently linear families of conics are contained in $gction algorithms. One can complete it as follows.
larger class of surfaces which are semi-implicitly representedProposition 3.3:Let S be a surface semi-implicitly repre-
by a family of planesH and a family of surfaces of degreesented by both bi-homogeneous polynomials:, y, z, w; s, t)
2 given by a bi-homogeneous polynom@|z, y, z, a; s, t) of andG(z,y, z,w; s, t), then the Sylvester resultant 6fand
bi-degree (2,2). Observe th@,,..,) = C(z,y, 2, w; s0, to) N with respect to the homogeneous variables is an implicit
L(z,y, z,w; so, to) (set-theoretically at least). Let us commenf€presentation of.

how the degree of the family in variabless, ¢ affects the | gt ys recall how the Sylvester matrix, whose determinant

geometry of the associated surface. We have a map is the so-called Sylvester resultant, is constructed. First write
0. P! _ p3* . (s 4) = Higyuo) polynomialsF' andG as
dy
whose image is a curv& in P3* (where* stands for the F(z,y, 2 w;s,t) = chi(x7y’z7w)sitd1—i7

dual), assuming thal. does not have an irreducible factor pat



da

G(:Ev Y, 2, w; s, t) = Z cQ,i(xv Y, 2, w)sitdQ_iv
=0

They correspond to the choice of valuest,,...,t, of the

parameter; we denote thenf,,, ..., Hy, .

Step 2.Project each point on the nearest pldidg, Hi,, ...,

where the “coefficients”c; j(x,y,z,w) are homogeneousor H,, .

polynomials in =,y,z,w. The entries of the Step 3.In each planeH;,, i = 1,...,n, approximate all

Sylvester matrix are either O or a coefficient; ;, the projected points by an implicit cun;. In order to be

i.e. a homogeneous polynomial in the variablesble to put all these implicit plane curvés is an algebraic

x,y,z,w. This matrix is constructed as follows:family we require that they have the sarsieape i.e. a fixed
e monomial support in a given degrek It follows that each

s f‘“’lﬁ’ s270G - f/d";’lG curve C;, which is contained in the plan#,,, has equation

[ C1,0 €2,0 1 _ P :
QZ:Z;; Ditjih=d amﬂ?jy]wk- .
s ¢ Step 4.Approximate (or interpolate) all the plane curves

1o : o | i=1,...,n, in a parameterized algebraic family. To do this,
shimlytz=t 0 ditde choose a degrdeand then interpolate all the coefficients;, j
Crdy ©| C2d2 : : fixed andi = 1,...,n, by a homogeneous polynomia)(s, t)
- : R IR of degreel.
0 C1,dq 0 C2,dy 4

The Sylvester resultant is hence a homogeneous polynomial iryve thus obtain a family of surfaces

x,y, z,w and we know that it vanishes at a point : yo : 2o : Clz,y,zt) = Z a;(s, )ty w®
wp) € P? if and only if there exists a poirftsy : o) € P* such i ih=d
that F(zo, yo, 20, wos so, fo) = G20, Y0, 20, wos 50, f0) = 0. of bi-degree (d,!). This family and the family of planes
As a corollary we are able to compute the degree of @(z,y,z,w;s,t) = sz — tw gives anapproximate semi-
surface, an important invariant, from any of its semi-impliciimplicit representation of the given point cloud. Note that
representation. the choice of the family of planes is very important, at

Corollary 3.4: Suppose thatS is semi-implicitly repre- least to well distribute all the points on the different planes
y 2.4, Supp plcttly rep H,, i1 = 1,...,n. Also the choice of the degrees and

sented by two bi-homogeneous polynomials of respective [f"ére key-ingredients for the quality of the approximation
degree(k,,d;) and(ko, ds), thenS is of degreekds + kad; . h infl directly th lexity and tr;e
Proof: This follows from standard properties of thet ese parameters in uence directly the complextty
performance of the algorithm.
Sylvester resultant (see e.g. [2]).
The third step of the previous algorithm requires to ap-
roximate, or interpolate, a 2D point cloud (since points are
ssumed to be projected in a plane at this step) by an implicit
ane curve. Also the last step requires to approximate, or
Eerpolate, a 1D point cloud. Algorithms for solving such
problems have been studied a lot, however especially in the
case of parametrically represented curves and surfaces. A
recent overview on this topic can be found in [3] and also
In this section we focus on the problem of approximating [4]. A more particular study in the case of implicitly
a 3D point cloud by a semi-implicit surface. Our approactepresented curves and surfaces may be found in [5] and in [6]
can also be used to interpolate a 3D point cloud but seems(dnd also in [7] where the author starts from a parametrically
be less adapted for this purpose. Consequently we are goisgresented surface).
to describe the approximation process. The main idea is to o . . .
decompose a 3D-data approximation problem into a 2D-dataE*@mple 4.1:As an application of this previous interpo-
followed by a 1D-data approximation problems. To do thi@tion method we were interested in a semi-implicit repre-
we consider particular semi-implicit surfaces, thear ones. ;entanon of a rabbit ear. The ear we took is illustrated by
The following algorithm basically consists in approximatind/dure 1 where one can see a meshed and a scattered data
a 3D point cloud by a finite number of plane curves whicFepresentation. Late is obtained with 927 points. Cutting by

are approximated (or interpolated) by a linear semi-implicitorizontal planes, that is to say of equations= c wherec
surface. is constant we formed 20 sets of 45 points, each set being

include in a horizontal plane. Notice that we choose, at a first
We start from a 3D point cloud if*® and e.g. we choose theattempt to this problem, to take equally distributed planes.
family H of planes parallel to théz, y)-coordinate plane; it Now in every plane we have a “slice” of the rabbit’s ear (this
corresponds to the polynomidl(z,y, z, w; s,t) = sz — tw. is not really a slice since we have projected some points which
Step 1.Choose a finite numben of planes in the family were near this slice) which we have to interpolate. The slices
H well distributed with respect to the given point cloudnumber9 and17 are showed in figure 2 below.

Remark 3.5:In R3 one obtains all algebraic surfaces bu
with different degrees. However only rational surfaces m
be parameterized (that is only surfaces with zero genu
Thus we can handle more general surfaces with semi-impli
representations than parameterized representations.

IV. POINT DATA APPROXIMATION



The next step in the previous algorithm is to approximate33 2%t +y%z? —5/2t> +10 2t — 10 2% — xt* + 3 2%t — 4 2342
the 45 points in each “slice” by an algebraic curve implicitly 4 o 9
represented. This is the more time-consuming step of the 212 +y7t =2y + 3/2yt — 3ya.

process. A way to perform it is to use a particular family For s — ( we recover the curve whose equationfis= 0.

of planar quartic curves calledinoid which are studied in [8]  The spanned surfacg is drawn in the following picture.
and that we are going to see in the sequel. _

V. AN EXAMPLE OF SURFACE WITH SKELETON

We consider a special kind of semi-implicit surfaces which
could be useful to provide simple models for compression or
animation.

We choose a semi implicit surface represented by a family
of planar curves whose real part is formed by a multiple point
and an oval. In [8], we call such a curve a dinoid. The oval will
modelize an active contour and the multiple point its skeleton
following the general idea of Blum [9].

To illustrate this approach, we consider a family of quartic
dinoid. First we give the equatiorf(z,y) = 0 of such a
curve when the singular point is at the origin.This imposes In this case the skeleton & is given by the parametric
3 conditions: the vanishing at the origin ¢fand of its two equations:
partial derivatives, s¢f must be the sum of 3 homogeneous T=1/2 y=0 z=1t>+ Et.
polynomials of degree 2, 3 and 4. Setting= sz, we get: 2

0(2,8) = F(z,52) = 22(fa(5)22 + f3(s)2 + fals)) = 0, YI. USUAL.D.IFFE.R.ENTIAL GEOMETRIC INVA-RI.ANTS .

Given a semi-implicitly represented surface, it is possible to

where f; are univariate polynomials of degrée Then we compute at any regular point the usual differential geometric
see that for each value of the slope= y/x such that invariants such as :

fa(s)fa(s) < 0, f(2,y), g(x,s) admits only two solutions | The equation of the tangent plane thus the normal,
surrounding the origin. For instance for « The second fundamental form thus the curvatures.

2

/
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72
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flz,y) =162 + 22y +y* + 223 — 2292 Let us do it for a surfaceS passing by the origin and
5 ) ) represented by a family of plane curves parameterized by
+y° — 1027 —3zy — 25y (the origin being obtained fot = 0). S is given by the
we have two equations:L(t,z,y, z) of degree one inc,y,z and of

possibly higher degree im; F(t,z,y,z) of any degree in
9(z,s) = (s*+ 57 +16)2” =255 + (s* —25* +2)2 —35s—10. 2, y, z,t. With our hypothesis they satisfi(0,0,0,0) = 0
, and F'(0,0,0,0) = 0.

The tangent space of at the origin is generically the
projection of the tangent space at the surface defined. by
. TN andF at(0,0,0,0) in R%. So in order to compute the tangent
/ | space we can truncaté and ' and keep only their affine
> / Taylor expansions, that we call; and F;.

\ B To be more specific let

In that case the curve defined Byis drawn in the following
picture.

Li:=lx+my+nz+pt, Fi:=ax+by+ cz+dt,
/ ) then the equation of the tangent space is:

\ “ ) Tg = (—pa+dl)x + (—pb + dm)y + (dn — pc)z.

If p and d are both zero, thenl; and F} should be
We now consider a family of such curves, its semi-impliciproportional in order that the origin is non singular 6

equations are: in that case we keep either equation.
1 The 3 coefficients of g define the coordinates of the normal
L(x,y,2,t) = 2 = 5t + (1 + 2t)z — —y, at S at the origin.

40 The computation of the second fundamental form is more
F(z,y,t) = 259" +y* +y° +16 2" =yt +1/4y°t* +22°  complicated. It amounts to compute an implicit equatior§of

31 5 5 5 5o , 63 , near by the origin, truncated at orders greater than three. We

- bt 1/8¢% —8at® + 24 27t° — 322°t + 5 ot take the Taylor expansions df and F' at order 3 inz, y, z



(a) mesh (b) scattered data

Fig. 1. A rabbit ear

(a) “slice” number9 (b) “slice” number17

Fig. 2. “Slices” of a rabbit ear

(we should not truncate also it). Let us call themL, and —222 + 5y® + 222 + 3xy + 2x2 + Syz + 323,
F5. They are two polynomials i, y, z, t.

We use a resultant to eliminatdetweenl, and F;, and we Then the equation of the tangent plane at the origin is
get a polynomialG(z,y, z) in z,y,z whose degree depends
on the degrees ih of L, and F,. Then we compute a Taylor 6r —y+ 72z =0.
expansion at order 3 af at the origin and get a polynomial
of degree 2 which write§'g + @1, with Q; a quadratic form After formal computations described above we obtain the
in z,y, z. This provides a local equation ¢f at the origin. ~ following local equation of S at the origin:

Then it suffices to perform a change of coordinates (which
preserves the metric), calkl,Y,Z the new coordinates, so7z + 6z —y — 27yz +122% — 23y + 692% 4 90z + 3y* = 0.
that the previous local equation ¢f at the origin becomes
Z 4+ Q(X,Y,Z) = 0, whereQ is a quadratic form. Finally We note that without the®z term in the equatiornL the
the second fundamental form fcf at the origin is simply local equation would have been different, namely:
QX Y,0). 6 37

Example 6.1:Let 6 —y + 72+ 3y? — 2Tyz + 3% Y +122% + 522

6
L=Q+2)z—y+1+5t)z+(-1+2)t+ 1w, This shows that the intermediate resultant computation was
F=(-24tz+(-34+4t)y+ (-3 —2t)z+ (-4 +2¢)t  actually useful.



VII. SINGULARITIES AND SELF-INTERSECTION POINTS HereafterS denote a surface semi-implicitly represented by

An important problem in Computer Aided Geometric DePOth polynomialsF'(z, y, z,w; s,t) and G(z,y, z,w; s, ) of
sign is the detection of singularities and self-intersection poirgSPective bi-degregk:, di) and (kz, d2).
of a 3D-surface. We describe a method to complete sugh

a detection in case the considered surface is semi-implicitly _ )
represented. Let go,91,92,93, be four homogeneous polynomials in

Let S be a surface semi-implicitly represented by both pol20th variabless, t of the same degre€, and letC' be the
nomials F'(z, y, z, w: s, ) and G(z, y, z,w; s, £) of respective Parameterized curve (we write here, for simplicity, the affine
bi-degree(ks, d;) and (k2,d»). A given point(zo : yo : zo :  VErSION of this parameterization, i.e. set 1 andw = 1)
w'o).of S - P3is a self—intersectio_n point if there exist two . Cai(s)  ga(s)  gs(s)
distinct points(s; : 1) and (sz : t2) in P! such that: (33 0 T )T 90(5)>

F(z0,y0, 20, wo; 51,t1) = G(x0, Yo, 20, wo; 51,11) =0, and We assume w.l.o.g. that there is no base point, i.e. that

ged(go, 91,92, g3) 1S @ constant. Our goal is to compute the

intersection ofC' andSS. First by proposition 3.3 we know that
By proposition 3.3 we know that an implicit equation othere exists a resultant matri(x, y, z) whose determinant is

S can be obtained as the determinant of the Sylvester matéi implicit representation of. Now substituting respectively

of F and G with respect to the homogeneous variables  z,y,z by Z;Ezg, ;’ig;; and gi(j) we obtain a matrixR(s)

We denote byR(z,y,z,w) this Sylvester matrix and take depending on the alone variablethat we can decompose

a given pointp = (x¢,vo0,wo,20) € P2 If p is not on as

S then clearly the kernel of?(p) is reduced to O since its R(s) = Rgs’ + - + Ry,

determinant is non-zero. Now jf is on S then obviously the

kernel of R(p)! (wheret stands for transpose) is no reduce

to zero since it contains a multiple of the vector of monomia

(s0,t0)1 7421 where (s : t9) € P! is such that

With a parameterized space curve

F(l‘07y07Z07w0;327t2) = G(x()ayOVZOawO;SQ;tQ) =0.

&vhere the coefficient®,; are numerical matrices of the same

ze thanR(s). Now we are looking for the values afsuch
that this surface and the curve intersectCdk), that is such
that the determinant dk(s) vanishes. This is relate to known
F(zo, Yo, 20, Wo; S0, to) = G(x0, Yo, 20, Wo; So, to) = 0 methods to solve such “equation” [10], [11]. We have to
compute the vectorg (indexed by monomials in) such that
R(s)'v = 0. The intersection problem can thus be transformed
into the following generalized eigenvector problem (solved by
2fficient and stable numerical algorithms):

(observe that we can consequently compg : t)). If
now p is a self-intersection point of then the dimension
of the kernel ofR(p)* is at least 2 since this kernel contain
both non collinear vector of monomials,,t;)%+42~! and
(s2,t2)1T42=1 Thus a necessary condition for a pojnto o 1 I
be a self-intersection point is thaink(R(p)) < d; + d3 — 3.

Similarly, if (p; so,to) is a singular point of the semi-implicit (')' I - T w=0
representation such that B —RY_, R},
F(p; so,to) = G(p; so,to) = 0 and where I is the identity matrix andw denote the vector
(v,sv,--, 5971yt
aGF(p7 507t0) :8€G(pa SOatO) = 07 ’ ’ ’ '

Such a tool can be useful in ray tracing techniques which
then both non-collinear monomial vectds), to)* 7% ~! and involve the intersection of a surface with a line, and similarly
ds((s0, o)™ T¥2~1) and in the kernel of?(p). In other words, to inside/outside positioning of a point with respect to a semi-
singularities and self-intersection points of the semi-implicilnplicit surface.
representation ofS are located on the zero locus of the _ )

(dy + dy — 2) x (dy + dy — 2) minors of the Sylvester matrix B- With a parameterized surface
R(z,y,z, w) in P3. Let fo, f1, f2, f3 be four homogeneous polynomials of the
same degred in the homogeneous variableg, t1,t,. They

define a parameterized surfaceltd (here again we present
In this section we investigate the intersection problemge affine point of view, setting, = 1 andw = 1):

between different curves and surfaces. Our aim is to show

that s¢m|-|.mpl!0|t representations are well ad_apted to these , ( CAtnt) faltnt) fs(t1,tz)>
operations; being an intermediate representation between pas’ : = RVES 2= .
rameterized and implicit representations, they gather their folts, t2) folts, t2) folts, t2)
advantages. We illustrate it on the three main configuratior@ur goal is here again to represent the intersection afirek
say the intersection between a semi-implicit surface andSaandS’. We assume for simplicity that the parameterization
parameterized curve, a parameterized surface a semi-implafitS’ is without base point (i.ef — 0, f1, f2, f3 have no
surface. common root inP?), and hence tha$’ is of degreed?. By

VIII. | NTERSECTING A SEM+IMPLICIT SURFACE




Bezout's theorem we deduce th@tis of degreed?(k;d, + a complex shape in our context we will decompose it into
kady). smaller parts. Each of these parts should be sliced in order to
By proposition 3.3 we know that there exists a resultant mget a family of curves having similar shapes. Therefore there
trix R(x,y, z) whose determinant is an implicit representatioare at least two main next tasks : one is a detection/recovery
of S. Substituting respectively, y, = by £.4142} L0142} ang  problem, and the other one is to reconstruct a model from

; ; ot 1) Jolt t2) f such parts. In a future work we will compare our

;3&2; we obtain a matrixi(t,, t2) depending only on both & S€t of such parts. In a future omp

variablest, andt,. Its determinant define a curve (implicitly2/9ebraic approach which is rigid by nature (this allows to
handle complex shapes with few parameters) with other more

represented) which is of degre&k,d. + kad;), that is to
say of lower degree thaf. This curve is arepresentation
of the intersection curv€ since every pointy, ¢, such that
R(t1,t2) = 0 can be sent of by the parameterization &f’. o
This method consisting of representing an intersectjmce
curve by a birationaplane curve is very useful in practice. [2]
It has been widely studied in the works of D. Manocha [10]
[11] in the context of the intersection of two parameterize
surfaces. We thus show here that we can also represent in
this process one of the surface semi-implicitly instead of4l
parametrically.

3]

C. With a semi-implicit surface Bl

In the case of the intersection of two semi-implicit surfac%
we can, as in the previous paragraph, obtain a plane curvé
which is birational to the intersection curve. To be more
precise letS’ be a semi-implicit surface defined by both "]
polynomials F'(x,y, z,w;s',t') and G'(x,y, z,w;s',t') of
respective bi-degreék],d|) and (k},d}). We are interesting [8]
in the intersection (space) curve &f and S’ in P3 (with (0]
homogeneous variables y, z, w).

As previously we are going to use a resultant. However we
need a more general resultant that the Sylvester one. We [&Pé
going to use the resultant of four homogeneous polynomials
in four homogeneous variables. This resultant was introducigd]
by Macaulay [12] and has been since widely studied [13]-[15]
being very useful in a wide range of applications (see e.g. [15}
for applications in Computer Aided Geometric Design). For a
nice introduction to this topic we refer the reader to [2]. (13]

It appears that the resultants BfG, I’ andG’ with respect [14]
to the homogeneous variablesy, z, w is a polynomial ins
ands’. It vanishes at a given poiny, s{, if and only if both 15

" . . ]

surfacesS and S’ intersect with these parameters, i.e. therle
exists (at least) a point € P? such that

F(x;80) = G(x;50) = F'(x; 85) = G'(x; 50)-

Let us denote byR(s,s’) this polynomial. It defines a plane
curve in the plane of coordinatés, s’) which is in correspon-
dence with the intersection (space) curveSoéind S’. We can
therefore, as in the previous paragraph, apply all the techniques
developed by many authors on such a representation of the
intersection curve.

IX. CONCLUSION

In this paper we explained how one can develop new
algebraic models for representing shapes together with effi-
cient algorithms to compute their local differential geometric
invariants, their singularity locus and their intersections. We
illustrated our approach with simple examples. To represent

flexible techniques.
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