Actual arithmetic and feasibility

Jean-Yves Marion 1
1 CALLIGRAMME - Linear logic, proof networks and categorial grammars
INRIA Lorraine, LORIA - Laboratoire Lorrain de Recherche en Informatique et ses Applications
Abstract : This paper presents a methodology for reasoning about the computational complexity of functional programs. We introduce a first order arithmetic $\StrictTa$ which is a syntactic restriction of Peano arithmetic. We establish that the set of functions which are provably total in $\StrictTa$, is exactly the set of polynomial time functions.The cut-elimination process is polynomial time computable. Compared to others feasible arithmetics, $\StrictTa$ is conceptually simpler. The main feature of $\StrictTa$ concerns the treatment of the quantification. The range of quantifiers is restricted to the set of {\em actual terms} which is the set of constructor terms with variables. The inductive formulas are restricted to conjunctions of atomic formulas.
Document type :
Conference papers
Complete list of metadatas

https://hal.inria.fr/inria-00100424
Contributor : Publications Loria <>
Submitted on : Tuesday, September 26, 2006 - 2:43:37 PM
Last modification on : Thursday, January 11, 2018 - 6:19:48 AM

Identifiers

  • HAL Id : inria-00100424, version 1

Collections

Citation

Jean-Yves Marion. Actual arithmetic and feasibility. International Workshop on Computer Science Logic - CSl'2001, 2001, Paris, France, pp.115--129. ⟨inria-00100424⟩

Share

Metrics

Record views

83