Adaptive Technology for Mail-Order Form Segmentation

Abdel Belaïd 1 Yolande Belaïd 1 Norbert Valverde 2 Sadok Kébairi 2
1 READ - READ
LORIA - Laboratoire Lorrain de Recherche en Informatique et ses Applications
Abstract : In this paper, an approach for adaptive region segmentation of mail-order forms for high volume application is described. Regions are first identified through a selection of their anchor points described by a constraint graph, illustrating their typographic aspects in the nodes, and their topographical relationships in the arcs. Then the identification of the actual anchor points is performed from a list of textual candidates, using the Arc Consistency Algorithm (AC4). Finally, some contextual heuristics are investigated for properly delimiting the regions. The originality of this approach lies mainly in the absence of a rigid a priori model, replaced by a simply and reliable association of anchor points. The constraint graph used for their description can be easily derived from a general logical definition of their content. Experimental results are overall encouraging and the methodology integration is under execution for commercialization.
Type de document :
Communication dans un congrès
6th International Conference on Document Analysis and Recognition - ICDAR 2001, Jan 2001, Seattle, United States. IEEE, pp.689-693, 2001, Document Analysis and Recognition. 〈10.1109/ICDAR.2001.953878〉
Liste complète des métadonnées

Littérature citée [9 références]  Voir  Masquer  Télécharger

https://hal.inria.fr/inria-00100456
Contributeur : Publications Loria <>
Soumis le : jeudi 8 février 2007 - 14:54:19
Dernière modification le : mardi 24 avril 2018 - 13:36:40
Document(s) archivé(s) le : lundi 5 avril 2010 - 23:53:10

Fichier

IEEE_ICDAR_2001.pdf
Fichiers éditeurs autorisés sur une archive ouverte

Identifiants

Collections

Citation

Abdel Belaïd, Yolande Belaïd, Norbert Valverde, Sadok Kébairi. Adaptive Technology for Mail-Order Form Segmentation. 6th International Conference on Document Analysis and Recognition - ICDAR 2001, Jan 2001, Seattle, United States. IEEE, pp.689-693, 2001, Document Analysis and Recognition. 〈10.1109/ICDAR.2001.953878〉. 〈inria-00100456〉

Partager

Métriques

Consultations de la notice

170

Téléchargements de fichiers

80