Solvability by radicals from an algorithmic point of view

Abstract : Any textbook on Galois theory contains a proof that a polynomial equation with solvable Galois group can be solved by radicals. From a practical point of view, we need to find suitable representations of the group and the roots of the polynomial. We first reduce the problem to that of cyclic extensions of prime degree and then work out the radicals, using the work of Girstmair. We give numerical examples of Abelian and non-Abelian solvable equations and apply the general framework to the construction of Hilbert Class fields of imaginary quadratic fields.
Type de document :
Communication dans un congrès
Bernard Mourrain. International Symposium on Symbolic and Algebraic Computation - ISSAC'2001, 2001, London, Ontario, Canada, ACM, 18 p, 2001
Liste complète des métadonnées

https://hal.inria.fr/inria-00100542
Contributeur : Publications Loria <>
Soumis le : mardi 26 septembre 2006 - 14:46:51
Dernière modification le : jeudi 11 janvier 2018 - 06:20:00

Identifiants

  • HAL Id : inria-00100542, version 1

Collections

Citation

Guillaume Hanrot, François Morain. Solvability by radicals from an algorithmic point of view. Bernard Mourrain. International Symposium on Symbolic and Algebraic Computation - ISSAC'2001, 2001, London, Ontario, Canada, ACM, 18 p, 2001. 〈inria-00100542〉

Partager

Métriques

Consultations de la notice

114