Deciding stability and mortality of piecewise affine dynamical systems

Abstract : We show that several global properties (attractivity, global asymptotic stability and mortality) of discrete time dynamical systems defined by iteration of piecewise-affine maps are undecidable. Such results had been known only for local properties (e.g., point-to-point reachability). These three properties are undecidable in dimension at least two, but turn out to be decidable in one dimension for continuous maps. This gives a partial answer to a question of Sontag on the decidability of the stability of saturated linear dynamical systems.
Type de document :
Article dans une revue
Theoretical Computer Science, Elsevier, 2001, 255 (1-2), pp.687-696
Liste complète des métadonnées

https://hal.inria.fr/inria-00100820
Contributeur : Publications Loria <>
Soumis le : mardi 26 septembre 2006 - 14:51:37
Dernière modification le : jeudi 17 mai 2018 - 12:52:03

Identifiants

  • HAL Id : inria-00100820, version 1

Collections

Citation

Vincent D. Blondel, Olivier Bournez, Pascal Koiran, Christos Papadimitriou, John N. Tsitsiklis. Deciding stability and mortality of piecewise affine dynamical systems. Theoretical Computer Science, Elsevier, 2001, 255 (1-2), pp.687-696. 〈inria-00100820〉

Partager

Métriques

Consultations de la notice

226