Neural Network and Information Theory In Automatic Speech Understanding

Salma Jamoussi 1 Kamel Smaïli 1 Jean-Paul Haton 1
1 PAROLE - Analysis, perception and recognition of speech
INRIA Lorraine, LORIA - Laboratoire Lorrain de Recherche en Informatique et ses Applications
Abstract : In this paper, we present two methods for speech understanding : an artificial neural network and an information theory based method. For both methods we have to index input sentences using semantic classes (or concepts). In the first method, we perform supervised learning and we obtain very good indexing results. In the second one, we propose a new method based on mutual information statistical measure to retrieve concepts, and also to tag each sentence by its concepts. Both methods have been tested on a tourist information corpus. The information theory method yields better recall, whereas the neural network achieves a better precision. Better performance has been obtained by the neural network method (about 4%).
Type de document :
Communication dans un congrès
SPECOM 2002 - International Workshop Speech and Computer, 2002, St-Petersburg, Russia. pp.1-4, 2002
Liste complète des métadonnées

https://hal.inria.fr/inria-00100827
Contributeur : Publications Loria <>
Soumis le : mardi 21 novembre 2017 - 11:04:08
Dernière modification le : jeudi 11 janvier 2018 - 06:19:57

Fichier

specom.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

  • HAL Id : inria-00100827, version 1

Collections

Citation

Salma Jamoussi, Kamel Smaïli, Jean-Paul Haton. Neural Network and Information Theory In Automatic Speech Understanding. SPECOM 2002 - International Workshop Speech and Computer, 2002, St-Petersburg, Russia. pp.1-4, 2002. 〈inria-00100827〉

Partager

Métriques

Consultations de la notice

141

Téléchargements de fichiers

7