Curvature-Constrained Shortest Paths in a Convex Polygon

Abstract : Let B be a point robot moving in the plane, whose path is constrained to have curvature at most 1, and let P be a convex polygon with n vertices. We study the collision-free, optimal path-planning problem for B moving between two configurations inside P (a configuration specifies both a location and a direction of travel). We present an O(n2 log n) time algorithm for determining whether a collision-free path exists for B between two given configurations. If such a path exists, the algorithm returns a shortest one. We provide a detailed classification of curvature-constrained shortest paths inside a convex polygon and prove several properties of them, which are interesting in their own right. Some of the properties are quite general and shed some light on curvature-constrained shortest paths amid obstacles.
Type de document :
Article dans une revue
SIAM Journal on Computing, Society for Industrial and Applied Mathematics, 2002, 31 (6), pp.1814-1851. 〈10.1137/S0097539700374550〉
Liste complète des métadonnées

https://hal.inria.fr/inria-00100887
Contributeur : Sylvain Lazard <>
Soumis le : mardi 15 décembre 2009 - 13:58:43
Dernière modification le : jeudi 11 janvier 2018 - 06:19:48
Document(s) archivé(s) le : lundi 5 avril 2010 - 23:54:00

Fichier

paper.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

Collections

Citation

Pankaj K. Agarwal, Thérèse Biedl, Sylvain Lazard, Steve Robbins, Subhash Suri, et al.. Curvature-Constrained Shortest Paths in a Convex Polygon. SIAM Journal on Computing, Society for Industrial and Applied Mathematics, 2002, 31 (6), pp.1814-1851. 〈10.1137/S0097539700374550〉. 〈inria-00100887〉

Partager

Métriques

Consultations de la notice

252

Téléchargements de fichiers

176