The stability of saturated linear dynamical systems is undecidable

Abstract : We prove that several global properties (global convergence, global asymptotic stability, mortality, and nilpotence) of particular classes of discrete time dynamical systems are undecidable. Such results had been known only for point-to-point properties. We prove these properties undecidable for saturated linear dynamical systems, and for continuous piecewise affine dynamical systems in dimension three. We also describe some consequences of our results on the possible dynamics of such systems.
Type de document :
Article dans une revue
Journal of Computer and System Sciences, Elsevier, 2001, 62 (3), pp.442-462
Liste complète des métadonnées

https://hal.inria.fr/inria-00100924
Contributeur : Publications Loria <>
Soumis le : mardi 26 septembre 2006 - 14:52:56
Dernière modification le : jeudi 11 janvier 2018 - 06:19:57

Identifiants

  • HAL Id : inria-00100924, version 1

Collections

Citation

Vincent D. Blondel, Olivier Bournez, Pascal Koiran, John N. Tsitsiklis. The stability of saturated linear dynamical systems is undecidable. Journal of Computer and System Sciences, Elsevier, 2001, 62 (3), pp.442-462. 〈inria-00100924〉

Partager

Métriques

Consultations de la notice

81