Contribution to Topic Identification by Using Word Similarity

Armelle Brun 1 Kamel Smaïli 1 Jean-Paul Haton 1
1 PAROLE - Analysis, perception and recognition of speech
INRIA Lorraine, LORIA - Laboratoire Lorrain de Recherche en Informatique et ses Applications
Abstract : In this paper, a new topic identification method, WSIM, is investigated. It exploits the similarity between words and topics. This measure is a function of the similarity between words, based on the mutual information. The performance of WSIM is compared to the cache model and to the well-known SVM classifier. Their behavior is also studied in terms of recall and precision, according to the training size. Performance of WSIM reaches 82.4 % correct topic identification. It outperforms SVM (76.2%) and has a comparable performance with the cache model (82.0\%).
Type de document :
Communication dans un congrès
7th International Conference on Spoken Language Processing - ICSLP'2002, Sep 2002, Denver, Colorado, USA, 4 p, 2002
Liste complète des métadonnées

https://hal.inria.fr/inria-00100947
Contributeur : Publications Loria <>
Soumis le : mardi 26 septembre 2006 - 14:53:04
Dernière modification le : jeudi 11 janvier 2018 - 06:19:55

Identifiants

  • HAL Id : inria-00100947, version 1

Collections

Citation

Armelle Brun, Kamel Smaïli, Jean-Paul Haton. Contribution to Topic Identification by Using Word Similarity. 7th International Conference on Spoken Language Processing - ICSLP'2002, Sep 2002, Denver, Colorado, USA, 4 p, 2002. 〈inria-00100947〉

Partager

Métriques

Consultations de la notice

156