Ten Consecutive Primes In Arithmetic Progression

Harvey Dubner Tony Forbes Nik Lygeros Michel Mizony Harry Nelson Paul Zimmermann 1
1 SPACES - Solving problems through algebraic computation and efficient software
INRIA Lorraine, LORIA - Laboratoire Lorrain de Recherche en Informatique et ses Applications
Abstract : In 1967 the first set of 6 consecutive primes in arithmetic progression was found. In 1995 the first set of 7 consecutive primes in arithmetic progression was found. Between November, 1997 and March, 1998, we succeeded in finding sets of 8, 9 and 10 consecutive primes in arithmetic progression. This was made possible because of the increase in computer capability and availabiblity, and the ability to obtain computational help via the Internet. Although it is conjectured that there exist arbitrarily long sequences of consecutive primes in arithmetic progression, it is very likely that 10 primes will remain the record for a long time.
Type de document :
Article dans une revue
Mathematics of Computation, American Mathematical Society, 2002, 71 (239), pp.1323-1328
Liste complète des métadonnées

https://hal.inria.fr/inria-00100978
Contributeur : Publications Loria <>
Soumis le : mardi 26 septembre 2006 - 14:53:17
Dernière modification le : jeudi 11 janvier 2018 - 06:20:00

Identifiants

  • HAL Id : inria-00100978, version 1

Collections

Citation

Harvey Dubner, Tony Forbes, Nik Lygeros, Michel Mizony, Harry Nelson, et al.. Ten Consecutive Primes In Arithmetic Progression. Mathematics of Computation, American Mathematical Society, 2002, 71 (239), pp.1323-1328. 〈inria-00100978〉

Partager

Métriques

Consultations de la notice

194