A new efficient algorithm for computing Gröbner bases without reduction to zero F5

Jean-Charles Faugère 1, 2
1 SPACES - Solving problems through algebraic computation and efficient software
INRIA Lorraine, LORIA - Laboratoire Lorrain de Recherche en Informatique et ses Applications
2 CALFOR - Calcul formel
LIP6 - Laboratoire d'Informatique de Paris 6
Abstract : This paper introduces a new efficient algorithm for computing Gröbner bases. We replace the Buchberger criteria by an optimal criteria. We give a proof that the resulting algorithm (called F5) generates no useless critical pairs if the input is a regular sequence. This a new result by itself but a first implementation of the algorithm F_5 shows that it is also very efficient in practice: for instance previously untractable problems can be solved (cyclic 10). In practice for most examples there is no reduction to zero. We illustrate this algorithm by one detailed example.
keyword : groebner
Type de document :
Communication dans un congrès
International Symposium on Symbolic and Algebraic Computation Symposium - ISSAC 2002, Jul 2002, Villeneuve d'Ascq, France. ACM, pp.75-83, 2002, 〈10.1145/780506.780516〉
Liste complète des métadonnées

https://hal.inria.fr/inria-00100995
Contributeur : Publications Loria <>
Soumis le : mardi 26 septembre 2006 - 14:53:23
Dernière modification le : jeudi 11 janvier 2018 - 06:27:20

Identifiants

Collections

Citation

Jean-Charles Faugère. A new efficient algorithm for computing Gröbner bases without reduction to zero F5. International Symposium on Symbolic and Algebraic Computation Symposium - ISSAC 2002, Jul 2002, Villeneuve d'Ascq, France. ACM, pp.75-83, 2002, 〈10.1145/780506.780516〉. 〈inria-00100995〉

Partager

Métriques

Consultations de la notice

86