Aliquot Sequence 3630 Ends After Reaching 100 Digits

Manuel Benito Wolfgang Creyaufmueller Juan Luis Varona Paul Zimmermann 1
1 SPACES - Solving problems through algebraic computation and efficient software
INRIA Lorraine, LORIA - Laboratoire Lorrain de Recherche en Informatique et ses Applications
Abstract : In this paper we present a new computational record: the aliquot sequence starting at $3630$ converges to~$1$ after reaching a hundred decimal digits. Also, we show the current status of all the aliquot sequences starting with a number under $10000$. In particular, we have reached at least $112$ digits for the so-called ``Lehmer five sequences'', and 101 digits for the ``Godwin twelve sequences''. Finally, we give a summary showing the number of aliquot sequences of unknown end starting with a number~$\le 10^6$.
Document type :
Journal articles
Complete list of metadatas

https://hal.inria.fr/inria-00101005
Contributor : Publications Loria <>
Submitted on : Tuesday, September 26, 2006 - 2:53:29 PM
Last modification on : Thursday, January 11, 2018 - 6:20:00 AM

Identifiers

  • HAL Id : inria-00101005, version 1

Collections

Citation

Manuel Benito, Wolfgang Creyaufmueller, Juan Luis Varona, Paul Zimmermann. Aliquot Sequence 3630 Ends After Reaching 100 Digits. Experimental Mathematics, Taylor & Francis, 2002, 11 (2), pp.201-206. ⟨inria-00101005⟩

Share

Metrics

Record views

233