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Abstract

Desktop grids use the free resources in Intranet
and Internet environments for large-scale compu-
tation and storage. While desktop grids offer a
high return on investment, one critical issue is
the validation of results returned by participat-
ing hosts. Several mechanisms for result valida-
tion have been previously proposed. However, the
characterization of errors is poorly understood.
To study error rates, we implemented and de-
ployed a desktop grid application across several
thousand hosts distributed over the Internet. We
then analyzed the results to give quantitative, em-
pirical characterization of errors rates. We find
that in practice, error rates are widespread across
hosts but occur relatively infrequently. Moreover,
we find that error rates tend to not be station-
ary over time nor correlated between hosts. In
light of these characterization results, we evalu-
ated state-of-the-art error detection mechanisms
and describe the trade-offs for using each mecha-
nism. Finally, based on our empirical results, we
conduct a benefit analysis of a recently proposed
mechanism for error detection tailored for long-
running applications. This mechanism is based
on using the digest of intermediate checkpoints,
and we show in theory and simulation that the rel-
ative benefit of this method compared to the state-

of-the-art is as high as 45%.

1 Introduction

Desktop grids use the free resources in In-
tranet and Internet environments for large-scale
computation and storage. For over 10 years,
desktop grids have been one of the largest dis-
tributed systems in the world providing TeraFlops
of computing power for applications from a wide
range of scientific domains, including climate
prediction [12], computational biology [26], and
physics [1]. Despite the huge computational and
storage power offered by desktop grids and their
high return on investment, there are several chal-
lenges in using this volatile and shared platform
effectively. One critical issue is validation of re-
sults computed by insecure and possibly mali-
cious hosts. For example, in [28], the authors re-
port that errors can be caused by both hardware
or software errors (for example, CPU’s corrupted
by overclocking, or by incorrect modifications of
the application or desktop grid software). (Zeal-
ous project participants often try to increase their
ranking in the project’s list of the most productive
users.) Other times, errors can be caused by a ma-
licious user who for example submit fabricated re-
sults [19]. For these reasons, effective error detec-
tions mechanisms are essential and several meth-



ods have been proposed previously [23, 29].
However, little is known about the nature of

errors real systems. Yet, the trade-offs and effi-
cacy among different error detection mechanisms
is dependent on how errors occur in real systems.
Thus, we investigate errors in a real system by fo-
cusing on the following critical questions:

1. What is the frequency and distribution of
host error rates?

2. How stationary are host error rates?

3. How correlated are error rates between
hosts?

4. In light of the error characterization, what
is the efficacy of state-of-the-art error detec-
tion mechanisms and can new mechanisms
be proposed?

To help answer those questions, we deployed
an Internet desktop grid application across sev-
eral thousand desktop hosts. The results of the
application returned by the hosts were then vali-
dated. The invalid results were then analyzed to
characterize quantitatively the error rates in a real
desktop grid project, which we describe in the fol-
lowing sections.

The paper is organized as follows. In Section 2,
we define the basic terminology used throughout
the paper. In Section 3, we describe related work
in terms of error characterization and detection.
In Section 5.2, we study the stationarity of host
error rates over time. In Section 5.3, we study the
correlation of errors between hosts. In Section 6,
based on our empirical results, we present a bene-
fit analysis for a recently proposed mechanism for
error detection based on intermediate checkpoints
and tailored for long-running applications.

2 Background

At a high level, a typical desktop grid system
consists of a server from whichworkunits of an

application are distributed to aworker daemon
running on each participating host. The worku-
nits are then executed when the CPU is available,
and upon completion, theresult is return back to
the server. We define a resulterror to be any re-
sult returned by a worker that is not the correct
value or within the correct range of values. We
call any host that has or will commit at least one
error anerroneous host(whether intentionally or
unintentionally).

Workunits of an application are often organized
in groups of workunits orbatches. To achieve
overall low rates for a batch of tasks, the indi-
vidual error rate per host must be made small.
Consider the following scenario described in [23]
where a computation consists of 10 batches, each
with 100 workunits. Assuming that any work unit
error would cause the entire batch to fail, then to
achieve an overall error rate of 0.01, the probabil-
ity of a result being erroneous must be no greater
than1 × 10−5. Many applications (for example,
those from from computational biology [28] and
physics [1]) require (low) bounds on error rates as
the correctness of the computed results are essen-
tial for making accurate scientific conclusions.

3 Related Work

3.1 Characterizing Errors

To the best of our knowledge, there has been
no previous study that gives quantitative estimates
of error rates from empirical data. Several previ-
ous works [11, 15] studyfailure rates of executing
tasks, where a failure is any event that causes a
task’s execution to terminate. However, the defi-
nition of failures in those studies is different from
the notion of errors as it does not take into account
result correctness; a workunit’s execution could
fail, but the result computed eventually could be
entirely correct and would not be considered an
error. While certain failures may be correlated to
result errors, the relation has not been studied in
detail.



Parameter Definition
f Fraction of hosts that commit at

least one error
s Error rate per host
ϕ Probability that a worker returns an

erroneous result
ε Fraction of results that will be erro-

neous
m Number of identical results before a

vote is considered to be complete
q Frequency of spot-checking
n Amount of work contributed by the

erroneous worker
c Number of segments or equiva-

lently checkpoints per task
R Number of workers on which a

checkpointed task is replicated
X Random variable distributed geo-

metrically with parametersp and
v representing the number of task
segments before an error occurs

Table 1. Parameter Definitions.

3.2 Validating Results

In this section, we discuss three of the most
common state-of-the-art methods [25, 23, 24,
29, 28] for reducing error rates in desktop
grids namely spot-checking, majority voting, and
credibility-based techniques, and emphasize each
of their advantages and highlight the assumptions
on which they are based.

Themajority voting method detects erroneous
results by sending identical workunits to multiple
workers. After the results are retrieved, the result
that appears most often is assumed to be correct.
In [23], the author determines the amount of re-
dundancy for majority voting needed to achieve
a bound on the frequency of voting errors given
the probability that a worker returns a erroneous
result. Let the error rateϕ be the probability that
a worker is erroneous and returns an erroneous

result unit, and letε be the percentage of final re-
sults (after voting) that are incorrect. Letm be the
number of identical results out of2m−1 required
before a vote is considered complete and a result
is decided upon. Then the probability of a incor-
rect result being accepted after a majority vote is
given by:

εmajv(ϕ, m) =

2m−1
∑

j=m

(

2m − 1
j

)

ϕj(1−ϕ)2m−1−j

(1)
From Equation 1, the author shows that the

error rate decreases exponentially. So voting is
especially effective when the error rate is small.
However, when the fault rate is relatively large,
increasing redundancy does not significantly re-
duce the error rate; for example, whenϕ = 20%,
the error rate is still more than 1% whenm = 6.

The redundancy of majority voting ism
1−f

,
wheref is fraction of hosts can commit at least
one error. Even if a workunit is replicated just
twice, the performance of the entire system will
be cut in half. Another potential drawback to this
method is that it is susceptible to correlated fail-
ures, as the bounds computed forεmajv assume
that error occur independently among hosts; if
hosts collude together often and conduct a coor-
dinated attack, majority voting may not be bene-
ficial.

Thus, voting is an effective method only when
the error rate is independent among hosts, and
the error rate is relatively small (< 1%), or when
there is an abundance of resources to limit the per-
formance degradation resulting from duplicated
workunits, or when the performance degradation
is acceptable.

Another method for error detection isspot-
checking, whereby a workunit with a known cor-
rect result is distributed at random to workers.
The workers’ results are then compared to the pre-
viously computed and verified result. Any dis-
crepancies cause the corresponding worker to be
blacklisted, i.e., any past or future results re-



turned from the erroneous host are discarded (per-
haps unknowingly to the host).

Erroneous workunit computation was modelled
as a Bernoulli process [23] to determine the error
rate of spot-checking given the portion of work
contributed by the host, and the rate at which
incorrect results are returned. The model uses
a work pool that is divided into equally sized
batches and it assumes the following. First, an
upper boundf on the percentage of the total num-
ber of workers that are corrupt can be determined.
Seconds, the rates at which a corrupt worker
sends erroneous results is constant across erro-
neous workers, and does not fluctuate. Moreover,
whens < 1, erroneous workers decide when to
send in erroneous results independently of one an-
other. When multiple workers do send in bad re-
sults for the same workunit, those results match.
(Note that this is a worst case scenario and makes
the probabilistic results stronger than in reality.)

Allowing the model to exclude coordinate at-
tacks, letq be the frequency of spot-checking, and
let n be the amount of work contributed by the
erroneous worker.(1 − qs)n is probability that
erroneous host is not discovered after processing
n workunits. The rate which spot-checking with
blacklisting will fail to catch bad results is given
by:

εscbl(q, n, f, s) = s ∗ P (erroneous worker |

it passed previous spot-checks)

=
sf(1 − qs)n

(1 − f) + f(1 − qs)n

(2)

The denominator gives the portion of work-
ers (both good and bad) remaining after all spot-
checks have occurred for the batch of workunits.

This shows that the error rate for spot-checking
is inversely proportional to the number of worku-
nits computed per worker; the error rate decreases
linearly with n, and so batches should be chosen
to be as large as possible to increase the chance
that an erroneous host will be detected.

The advantage of this approach is that the
amount of redundant computation is negligible
(especially when compared to the majority voting
method described previously, which uses redun-
dant computation to validate results). In particu-
lar, the amount of redundancy of spot-checking is
given by 1

1−q
.

The disadvantage of spot-checking is the diffi-
culty of effectively blacklisting an erroneous host,
when it can register under new identities at will or
if there is high host churn as shown by [6]. More-
over, blacklisting may be harmful if it removes
from the project workers that unintentionally and
infrequently return invalid workunits. However,
without blacklisting, the upper bound on the error
is much higher and does not decrease inversely
with n.

Another way of reducing workunit errors is to
use conditional probabilities of errors, given the
history of host result correctness. A system based
on this principle is called acredibility-based sys-
tem. Due to space limitations, we only describe
the method at a high-level, and details can be
found in [25]. The idea is based on the assump-
tion that hosts that have computed many results
with relatively few errors have a higher probabil-
ity of errorless computation than hosts with a his-
tory of returning erroneous results. Workunits are
assigned to hosts such that more attention is given
to the workunits distributed to higher risk hosts.

To determine the credibility of each host, any
error detection method such as majority voting,
spot-checking, or various combinations of the two
can be used. The credibilities are then used to
compute the conditional probability of a result’s
correctness. As such, this method, like spot-
checking, assumes that the error rate per host re-
main consistent over time as it uses the condi-
tional probability of errors.

In summary, blacklisting is a method for pre-
venting errors by removing hosts from the system.
Majority voting is a method for detecting and cor-
recting errors by replicating workunits on multi-
ple hosts. Spot-checking is a method for detecting



erroneous hosts by sending workunits to workers
randomly for which the correct result is known.
Credibility-based systems (which could be based
on majority voting or spot-checking or both) re-
duce the probability errors by assign workunits to
hosts, based on their past performance.

4 Method

We studied the error rates of a real Internet
desktop grid project called XtremLab [2, 18].
XtremLab uses the BOINC infrastructure [9, 5]
to collect measurement data of desktop resources
across the Internet. The XtremLab application
currently gathers CPU availability information by
continuously computing floating point and integer
operations, and every 10 seconds, the application
will write the number of operations completed to
file. Every 10 minutes, the output file is uploaded
to the XtremLab server.

In this study, we analyze the outputs of the
XtremLab application to characterize the rate
at which errors can occur in Internet-wide dis-
tributed computations. In particular, we collected
traces between April 20, 2006 to July 20, 2006
from about 4400 hosts. From these hosts, we ob-
tained over1.3×108 measurements of CPU avail-
ability from 2.2 × 106 output files. We focused
our analysis on about 600 hosts with more then 1
week worth of CPU time in order to ensure the
statistic significance of our conclusions. (Note
that when we increased the threshold to 2, 3, or
4 weeks, the conclusions of our analysis did not
change.)

Errors in the application output are determined
as follows. Output files uploaded by the workers
are processed by a validator. The validator con-
ducts both syntactical and semantics checks of the
output files returned by each worker. The syntac-
tical checks verify the format of the output file
(for example, that the time stamps recorded were
floating numbers, the correct number of measure-
ments were made, and each line contains the cor-
rect number of data). The semantic checks ver-

ify the correctness of the data to ensure that the
values reported fall in the range of feasible CPU
availability values. Any output files that failed
these checks were marked as erroneous, and we
assume any output file that fails a syntactic or se-
mantic check would correspond to an error of a
workunit in a real desktop grid project.

To date, there has been little specific data about
error rates in Internet desktop environments, and
we believe that the above detection method gives
a first-order approximation of the error rates for a
real Internet desktop grid project. However, there
are limitations in our methodology, which include
the following. First, the method measures the er-
ror rates of only a single, compute-intensive ap-
plication. While we believe this application is
representative of most Internet desktop grid ap-
plications in terms of its high ratio of compu-
tation compared to communication, applications
with different IO or computation patterns could
potentially differ in error rates. Nonetheless, we
believe this is the first study of a real project to
give quantitative estimates of error rates. Sec-
ond, the method will not be able to detect all pos-
sible errors, for example those errors that cause
workunits to be correct both syntactically and se-
mantically. Third, we cannot determine the ex-
act cause of errors. For example, if an output
file is corrupt, we cannot determine whether the
cause was due to hardware malfunction, software
code modifications, a malicious user, or any other
cause. Nevertheless, we do not believe the errors
are due to network failures during transfers of out-
put files. This is because BOINC has a protocol
to recover from failures (of either the worker of
server) during file transmission that ensures the
integrity of files transfers [9]. In this protocol,
the length of the transfer is transmitted before the
actual file, and so the server is able to determine
if the transfer was completed. If a failure occurs
during transmission, the worker will retry send-
ing the file later from where it left off before the
failure. Thus, we believe most errors occurred on
the host machine itself.



Detecting all possible causes of errors in large-
scale distributed systems and being able to detect
all possible symptoms of those causes is a chal-
lenging and open issue, and we will refine our
validation process in future work.

5 Error Characterization

5.1 Distribution of Error Rates

The effectiveness of different methods by
which errors are detected is heavily dependent
on the distribution of errors among hosts. We
measured the fraction of workunits with errors
per host, and show the cumulative distribution of
these fractions in Figure 1. The mean error rate
was 0.002, and the max error rate was 0.098.
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Figure 1. Error Rates of of Hosts in Entire Plat-
form

We find that a remarkably high percentage of
hosts (about 35%) returned at least one corrupt
result in the 3 month time frame. Given that the
overall error rate is low and a significant fraction
of hosts result in at least one error, blacklisting all
erroneous may not be an efficient way of prevent-
ing errors.

An error rate of 0.002 may seem so low that er-
ror correction, detection and prevention are moot,
but consider the scenario in Section 2 again where
the desired overall error rate is 0.01. In that case,
the probability of a result being erroneous must
be no greater than1 × 10−5. If f × s = 0.002 as
shown in Figure 1, we can simply replicate each
workunit twice to achieve an error rate less then
1 × 10−5. That is, ifm = 2, then the error rate
given by Equation 1 isǫmajv = .000004, and the
redundancy is about 2.00.

While spot-checking can achieve a similar er-
ror rate of about1×10−5, spot-checking requires
a large number of workunits to be processed be-
fore achieving it. For example, to achieve a simi-
lar error rate of1× 10−5 via spot-checking where
q = .10, f = 0.35 (from Figure 1),s = 0.003
(as shown in Table 2), it requires that the num-
ber of workunits (n) processed by each worker
be greater than 5300 by Equation 2. While re-
dundancy is lower at 1.11 compared to majority
voting, if each workunit requires 1 day of CPU
time (which is a conservative estimate as shown
here [10]), it would require at least 14.5 years
of CPU timeper workerbefore the desired rate
could be achieved. Even if we increaseq to 0.25
(and redundancy is 1.33), spot-checking requires
n = 3500 (or at least 9.5 years of CPU time per
worker assuming a workunit is 1 day of CPU time
in length).

Next, we focused on characterizing the hosts
that returned at least one corrupt result. Figure 2
shows the cumulation distribution of the fraction
of workunits with errors for all hosts with at least
one corrupt result. We observe that about 80%
of the hosts have error rates of .005 or less. The
mean error rate over this set of hosts is 0.0065,
and the maximum is 0.098.

Figure 3 shows the skew of the distribution of
errors among those erroneous hosts. In particu-
lar, we sort the hosts by the total number of er-
rors they committed, and the blue, solid plot in
Figure 3, shows the cumulation fraction of errors.
For example, the point (0.10, 0.70) shows that the
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Figure 2. Error Rates of Erroneous Hosts Only

top 0.10 of erroneous hosts commit 0.70 of the er-
rors. Moreover, the remaining 0.90 of the hosts
cause only 0.30 of the errors. We refer to the
former and latter groups asfrequent and infre-
quent offenders, respectively.

Figure 3 also shows the effect on throughput if
the top fraction of hosts are blacklisted, assum-
ing than an error is detected immediately and that
after the error is detected, all workunits that had
been completed previously by the host are dis-
carded. If all hosts that commit errors are black-
listed, then clearly throughput is negatively af-
fected and reduced by about 0.40. Nevertheless,
blacklisting could be a useful technique if it is
applied to the top offending hosts. In particu-
lar, if the top 0.10 of hosts are blacklisted, this
would cause less than a 0.05 reduction on the
valid throughput of the system while reducing er-
rors by 0.70. One implication of these results is
that an effective strategy to reduce errors could fo-
cus on eliminating the small fraction of frequent
offenders in order to reduce the majority of er-
rors without having a negative effect on overall
throughput.

So we also evaluated majority voting and spot-
checking in light of the previous result, by divid-
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Figure 3. Cumulative Error Rates and Effect
on Throughput

ing the hosts into two groups, frequent and infre-
quent offenders based on the knee of the curve
shown in Figure 3, but a similar problem de-
scribed earlier occurs. The error for majority vot-
ingεmajv is given by Equation 1, whereϕ = fall×
sfrequent×ffrequent +f ×sinfrequent×finfrequent.
fall is simply the fraction of workers that could re-
sult in at least one error (0.35).sfrequent (0.0335)
and sinfrequent (0.001) (see Table 2) are the er-
ror rates for frequent and infrequent offenders, re-
spectively. ffrequent (0.10) andfinfrequent (0.90)
are the fraction of erroneous workers in the fre-
quent and infrequent groups respectively.

We plot εmajv as a function ofm in Figure 4.
We find that the error rateεmajv decreases expo-
nentially withm, beginning at about1× 10−5 for
m = 2.

We also compute the error rate for spot-
checking with blacklisting when dividing the
hosts in terms of frequent and infrequent offend-
ers. The error rateεscbk is given by the sum of
the error rates for each grouping,εscbk,frequent and
εscbk,infrequent. εscbk,infrequent is given by substi-
tuting fall × ffrequent for f andsfrequent for s in
Equation 2.εscbk,infrequent can be calculated sim-
ilarly.



Then we plot in Figure 5 εscbk,frequent,
εscbk,infrequent, andεscbk as a function ofn (the
number of workunits that must be computed by
each worker) whereq = 0.10. The plot for the
frequent offenders decreases exponentially; this is
because the error rate for the hosts is relatively
high, and so after a series of workunit compu-
tations, the erroneous hosts are rapidly detected.
The plot for the infrequent offenders decreases
very little even asn increases significantly. This
is because the error rates for the infrequent of-
fenders are relatively low, and thus, increasingn
does not improve detection nor reduce error sig-
nificantly. The effect of the net error rateε is that
it initially decreases rapidly forn in the range [0,
1000]. Thereafter, the error rate decreases little.
We also looked at much larger ranges, and the de-
crease in error rate was relatively small.

The conclusion is that spot-checking acts as a
low-pass filter in the sense that hosts with high er-
ror rates can be easily detected (and can then be
blacklisted); however, hosts with low error rates
remain in the system. Specifically, spot-checking
can reduce error rates down to about1 × 103

quickly and efficiently. To achieve lower error
rates, one must use majority voting. In the next
section, we show that spot-checking may have
other difficulties in real-world systems.

5.2 Stationarity of Error Rates

Intuitively, a process is stationary if its statis-
tical properties do not change with time. In par-
ticular, a stationary process will have a constant
mean. In this section, we investigate how station-
ary the mean of the host error rates is over time,
and describe the implications for error detection
mechanisms given our findings.

We measured the stationarity of error rates by
determining the change in mean error rates over
96 hours periods for each host. That is, for ev-
ery 96 hours of wall-clock time during which the
worker had been active, we determined the mean
error rate on each host, and measured the change
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in error rates from one period to the next. (We
also tried 12, 24, 48 hour periods, but found sim-
ilar results.) After close inspection of the results,
we found that hosts often have long periods with
no errors, and that when errors occurred, they oc-
curred sporadically. Figure 6 shows the cumu-
lative distribution function of error rate changes
over all hosts. Because hosts often had relatively
long periods without any errors, we excluded the
data when the error rate for the current and pre-
vious interval was 0. Otherwise, including such
data, would “skew” the distribution; that is, we
would observe a CDF where most changes from
one period to the next would be zero, but this
would only because be errors occur infrequently
and sporadically.

We found that only about 10% of the error rates
were within 25% of the mean error rate of er-
roneous hosts. (We also graphed the CDF for
the top 10% and bottom 90% of erroneous hosts,
but found similar patterns.) Moreover, the mean
change in error rate was 0.00507 (or about 0.77
of the mean error rate of erroneous hosts), and the
median was 0.00347 (or about 0.533 of the mean
error rate of erroneous hosts). This result shows
that workunit errors are not very stationary, and
in fact, the error rate fluctuates significantly over

Statistic
Host Group µ σ σ/µ

All erroneous 0.0034 0.018 3.48
Top 10% erroneous 0.0335 0.030 0.89
Bottom 90% erroneous 0.001 0.002 2.01

Table 2. Statistics for Host Error Rates over
96 hour Periods.

time.
We also computed statistics forhosterror rates

over 96 hour periods. This characterizess as de-
fined in Section 3. Table 2 shows the mean, stan-
dard deviation, and coefficient of variation (which
is the standard deviation divided by the mean) for
all hosts, the top 10% of erroneous hosts, and the
bottom 90% of erroneous hosts. We find that even
for relatively long 96 hour periods, the host error
rate is quite variable. In particular, the coefficients
of variation for all hosts, the top 10%, and the bot-
tom 90% are 3.48, 0.89, and 2.01 respectively.

To investigate the seasonality of errorless peri-
ods, we determined whether the set of hosts that
err from time period to time period are usually the
same hosts or different. In particular, we deter-
mined the erroneous host turnover rate as follows.
For a specific time period, we determine which set
of hosts erred, and then compared this set with the
set of the hosts that erred in the following time
period. The erroneous host turnover fraction is
then the fraction of hosts in the first set that do
not appear in the second set. We computed the
erroneous host turnover fraction for time periods
of 1 week, 2 weeks, and 4 weeks (see Figure 7).
For example, the first segment at about 0.62 cor-

The reason that the mean for all hosts is different from
the mean shown in Figure 2 is that here we calculate the
mean using the mean of the individual hosts averages over
time, whereas the mean in Figure 2 is calculated by dividing
the total number of errors over all hosts by the total num-
ber of workunits completed. So the mean calculated here
is taken over the mean of each host and takes into account
variations over time.



responding to the 1 week period between April 27
and May 4 means that only 0.62 of the hosts that
erred between April 20 and April 27 also erred
between April 27 and May 4. (Note that the trace
period began on April 20, 2006. Thus, the plots
depicted in Figure 7 begin on April 27th, May 4th,
and May 18th, respectively. Moreover, the trace
period ended on July 20th, 2006. Thus, the plots
end on July 20, and July 30th, as we only consid-
ered whole time periods for comparison.)
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Figure 7. Turnover Rate of Erroneous Hosts

We find that for the 1 week and 2 week peri-
ods, the turnover rate fluctuates between∼ 0.60
and∼ 0.35. For the 4 week period, the turnover
rate is about 0.50. On average, the turnover rate
is about 0.50 for all periods, meaning that from
time period to time period, 0.50 of the erred hosts
will be newly erred hosts. That is, the 0.50 of
erred hosts hadnot erred in the previous period.
(We also determined the turnover rates for the fre-
quent and infrequent offenders separately and the
results are reported in the Appendix.)

One explanation for the lack of stationarity
is that desktop grids exhibit much host churn,
as users (and their hosts) often participate in a
project for a while and then leave. In [6], the au-

thors computed host lifetime by considering the
time interval between entry and its last commu-
nication to the project. The host was considered
“dead” if it had not communicated to the project
for at least 1 month. They found that churn in
Internet desktop grids was on average 91 days.
Another explanation described in [28] is that a
source of errors is overclocking of CPU’s, and er-
rors may be caused by non-stationary fluctuations
in CPU temperature, as long running processes
cause the CPU to overheat and emit calculation
errors.

One implication is that mechanisms that de-
pend on the consistency of error rates, such
as spot-checking and credibility-based methods,
may not be as effective as majority voting. Spot-
checking depends partly on the consistency of er-
ror rates over time. Given the high variability
in error rates and the intermittent periods with-
out any errors, a host could pass a series of spot-
checks, and thereafter or in between spot-checks,
the host could produce a high rate of error. Con-
versely, an infrequent offender could have a burst
of errors, be identified as an erroneous host via
spot-checking, and then blacklisted. If this oc-
curs with many infrequent offenders, this could
potentially have a negative impact on throughput
as shown in Figure 3.

The same is true for credibility-based systems.
A host with variable error rates could build a high
credibility, and then suddenly, cause high error
rates. For example, suppose a host built a high
credibility by returning errorless results for an en-
tire 96 hour period (shown possible and likely
by Figure 7). Then, the credibility-based system
would conclude that any workunit sent to that host
would be errorless. However, the the host after
the 96 hour period could return erroneous results
at a rate of 0.065 (as shown by Figure 6), which
the credibility-based system would not detect, as
it assumes consistency of host error rates (in this
case 0). Thus, the estimated bounds resulting
from spot-checking or credibility-based methods
may not be accurate in real-world systems.



By contrast, majority voting is not as suscep-
tible to fluctuations in error rates, as the error
rate (and confidence bounds on the error rate) de-
crease exponentially with the number of votes. If
m = 2, the expected error rate is1.2 × 105 with
a standard deviation of8.2 × 107. Alternatively,
if we assume the near-worst case scenario where
hosts have a relatively high failure rate of 0.0214
(= 0.0034 + 0.018), we can still reliably achieve
an error rate less than1×10−5 by replicating each
workunitm = 4 times, resulting in a redundancy
of about 4. Nevertheless, the effectiveness of ma-
jority voting could be hampered by correlated er-
rors, which we investigate in the next section.

5.3 Correlation of Error Rates

Using the trace of valid and erroneous worku-
nit completion times, we computed the empiri-
cal probability that any two hosts had an error.
That is, for each 10 minute period between April
20 to July 20, 2006, and for each pair of hosts,
we counted the number of periods in which both
hosts had an error, and the total number of peri-
ods in which both hosts computed a workunit. We
then obtained the empirical probability that any
two hosts would give an error simultaneously .

To compute the “theoretical” probability, we
took the product of the individual host error rates,
as described in Section 5.1. We then determined
the difference between the theoretical and empiri-
cal probabilities for each host pairing. If the error
rates for each pair of hosts are independent, then
the theoretical probability should be equal to the
empirical, and the difference should be 0.

Figure 8 shows the cumulative distribution for
the differences between theoretical and empiri-
cal pairwise error rates. We find most (0.986)
of the empirical pairwise error rates were greater
than the theoretical. This suggests that the er-
ror rates between hosts are not correlated. More-
over, only 0.01443 of the pairings had differences
less than 0. After carefully inspecting the num-
ber workunits computed by these host pairs, we
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Figure 8. Pairwise Host Error Rates

believe these data points are in fact outliers due
a few common errors made by both hosts over a
relatively low number of workunits. That is, if we
had more data, the number of instances where at
least one of the two workunits is computed cor-
rectly would increase, and the empirical probabil-
ity (and difference between the theoretical proba-
bility) would thereby decrease. We will continue
to collect more data to give additional evidence
for this conjecture (and make additions to the fi-
nal paper as necessary, if it is accepted).

6 Comparing Intermediate Check-
points for Long-Running Worku-
nits

In this section, we present novel bene-
fit analysis for a recently proposed mecha-
nism for error detection [7]. This mech-
anism is based on checkpointing and repli-
cation, and is well-suited for long-running
workunits. A number of projects such as
climateprediction.net, climatechange,
and seasonalattribution have workunits
whose execution span months [10], and we be-
lieve early error detection for these projects would



be useful. The technique involves comparing in-
termediate checkpoint digests (provided for ex-
ample by the MD5 [22] and SHA family [13] of
algorithms) of redundant instances of the same
task. (Note that often computations occupy a
large space in memory often near the 100MB
range [10] and/or sending a small, intermediate
result for comparison may not be possible nor ef-
ficient.) If differences are found, the conclusion is
that at least one task’s execution is wrong. In con-
trast to the simple redundancy mechanism, where
diverging computations can only be detected af-
ter a majority of tasks have completed, interme-
diate checkpoint comparison allows for earlier
and more precise detection of errors, since execu-
tion divergence can be spotted at the next check-
point following any error. This allows one to take
proactive and corrective measures without having
to wait for the completion of the tasks, and it al-
lows for faster task completion, since faulty tasks
can immediately be rescheduled.

We determine the benefit of using this tech-
nique by means of theoretical analysis and sim-
ulation results. In [7], we presented the theoret-
ical analysis and simulation results of the same
error detection mechanism, but there were two
main limitations which we address here. First,
the previous analysis was conducted using hypo-
thetical error rates instead of error rates obtained
empirically from a real project. In fact, our previ-
ous work assumed error rates that were orders of
magnitude higher than the rates we determined in
this study. Nevertheless, we show here that sub-
stantial benefits can still be achieved using this
novel technique with real but relatively lower er-
ror rates. Second, the theoretical analysis previ-
ously conducted made the assumption that check-
points occur simultaneously across hosts at con-
stant intervals. For reasons that we discuss in
the next paragraph, this is an unrealistic assump-
tion in volatile, heterogeneous desktop grids. We
loosen the assumption to consider variable check-
pointing intervals, and give new theoretical up-
per and lower bounds on the benefits of this tech-

nique using a significantly different mathematical
approach.

We assume that each task is checkpointed lo-
cally and periodically (as is done in several exist-
ing desktop grid systems [9, 17]). With respect
to CPU time, the application could conduct local
checkpointing periodically (for example, every 10
minutes). However, with respect to wall-clock
time, the time between checkpoints is random be-
cause of non-deterministic events that could delay
checkpointing such as a host being powered off,
or the worker being suspended or killed because
of user activity [15].

Thus, we model the time between checkpoints
as a random variable. In particular, each check-
point delineates the end of a task segment to cre-
ate a total ofc segments. LetR be the num-
ber of workers on which a checkpointed task is
replicated (see summary in Table 1). LetSk,g

be a random variable that represents the time to
checkpoint the current segmentg, beginning from
the last checkpoint (or start of the task, in the
case of the first checkpoint), on workerk where
1 ≤ g ≤ c, and1 ≤ k ≤ R.

Let Tk,j be a random variable that represents
the amount of time elapsed since the start of the
task up to the checkpoint time of segmentj, on
worker k. Specifically,Tk,j =

∑j

g=1 Sk,g (see
Figure 9 for an example).

We assume thatSk,g is distributed exponen-
tially with parameterλ across all workers. Pre-
viously, the authors of [16] also made the same
assumption regarding the distribution of task (or
equivalently segment) completion. While a num-
ber of previous studies have characterized the
distribution of availability intervals onenterprise
desktop resources [11, 20, 15], it is unclear how
these periods of availability relate to the time
of checkpointing a segment onInternetenviron-
ments. Thus, for future work, we will verify our
assumption using resource traces, for example,
those currently being collected on Internet desk-
top environments [2].

Given thatSk,g is distributed exponentially,Tk,j
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Figure 9. Example of Intermediate Check-
pointing

has a gamma distribution with parametersα = j
andβ = 1/λ.

The time to validate theith segment is given by
T(R),i, which is theRth order statistic of the set
T1,i, ..., TR,i. That is,T(R),i represents the max-
imum time to complete segmenti among allR
workers.

The expected gainE[W ] for using intermediate
checkpoints compared to state-of-the-art methods
where the comparison is done at the end of the
workunit is then given by:

E[W ] = E[T(R),c − T(R),i] (3)

where1 ≤ i ≤ c.

Let X be the number of trials, i.e., the segment
in which an error occurs over all hosts, and letX
have a truncated geometric distribution with pa-
rametersp and v, wherep is the probability of
getting an error within a segment over all hosts,
andv = 1 − p. While we showed in Section 5.2
that error rates are not stationary, we believe our
theoretical and simulation analysis gives a reason-
able estimate of the long-term, expected benefit of
our proposed method.

By the law of total expectation,

E[T(R),c − T(R),i]

=
c

∑

i=1

(

E[T(R),c − T(R),i|X = i] × Pr(X = i)
)

=

c
∑

i=1

((E[T(R),c] − E[T(R),i|X = i])

× Pr(X = i)) (4)

From [8], a lower bound on the expectation
of the maximum of a set of random variables is
the maximum of the expected value of each ran-
dom variable in the set. Moreover, Hartley and
David [14] report that an upper bound for the
expectation of the maximum isµ + σ × (n −
1)/

√
2n − 1, given a set ofn independent ran-

dom variables with identical means and variances
(µ, σ2).

Substituting in Equation 3, using those bounds
and Equation 4, we have the following:

E[W ] = E[T(R),c − T(R),i]

=

c
∑

i=1

((E[T(R),c]−E[T(R),i|X = i])×Pr(X = i))

≥
c

∑

i=1

((µ × i − (µ + σ × (R − 1)/
√

2R − 1])

× Pr(X = i)) (5)

whereµ = 1/λ, σ =
√

i × (1/λ)2, Pr(X =
i) = pvi−1.

In Figure 10, we give upper and lower bounds
on the benefitE[W ] relative to the upper and
lower bounds of the expected maximum time
E[T(R),c] for checkpointing at the end of the
task. In particular, in Figure 10(a), the number
of checkpointsc is fixed to 1000, andp varies
between [0.0005, 0.0015]. In Figure 10(b), the
probability of error within each segmentp is fixed
at0.001, andc varies between [500, 1000].

We observe potentially significant gains even
for small error rates. For example, in Fig-
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Figure 10. Benefits of intermediate checkpointing

ure 10(a), we find that if the probability of er-
ror p is 0.001 and the number of checkpoints per
taskc is 1000, then the potential benefit of inter-
mediate checkpointing is between∼ 30 − 45%.
While 1000 checkpoints may seem abnormally
large, if we assume a task checkpoints every
10 minutes a thousand times, this equates to a
7-day workunit. (This is a reasonable check-
point frequency and workunit length as the fre-
quency in real projects EINSTEIN@home, PRE-
DICTOR@Home, and SIMAP is on the order of
minutes [3, 4, 21] and execution is on the order of
days or months [10].) In Figure 10(b), we find
that if the number of checkpoints is 1050 (and
probability of error is 0.001), then the potential
benefit of intermediate checkpointing is between
∼ 30 − 45%.

We then confirmed and extended the theoreti-
cal results through simulation. We assign a num-
ber of tasks to a set of workers. Whenever a
worker computes a checkpoint, it randomly deter-
mines whether that computation is wrong or cor-
rect. Once a checkpoint is wrong, all the remain-
ing checkpoints from that worker are also consid-

ered as wrong.) In our experiments, the time that
a worker needed to compute a checkpoint was
given by an exponential distribution. We chose
an arbitrary average checkpoint time (as it does
not impact therelativebenefit of our technique).
We varied the number of checkpoints of each task
and the probability of error in each checkpoint.
In Figures 10(a) and 10(b), we show the results of
our experiments for the same range of paramters
as used for the theoretical analysis. The curve of
the observed benefit is the average of300 trials.

Our results show that the there is a considerable
benefit in comparing intermediate checkpoints,
especially for long-running workunits. Even for
very small probabilities of error, which corre-
spond to real values observed in real systems, the
time savings can amount to 20%-45% of the time
corresponding to state-of-the-art solutions.

One potential limitation of this method is scala-
bility of receiving the high-frequency digest mes-

We used a constant value for the probability of error.
We also tried random variables (truncated gaussian, expo-
nential and others), with little if any impact on the outcome
of the trials.



sages if digests are sent centrally to a “supervi-
sor” for comparison. We are currently working on
secure load-balancing techniques via distributed
hash tables (DHT) [27] to remove this limitation,
and we will report on this in future work.

7 Summary and Future Work

We characterized quantitatively the error rates
in a real Internet desktop grid system with respect
to the distribution of errors among hosts, the sta-
tionarity of error rates over time, and correlation
among hosts. In summary, the characterization
findings were as follows:

1. A significant fraction of hosts (about 35%)
will commit at least a single error over time.

2. The mean error rate over all hosts (0.0022)
and over only erroneous hosts (0.0065) is
quite low.

3. A large fraction of errors result from a small
fraction of hosts.For example, about 70% of
error are caused by only 10% of the hosts.

4. Error rates over time vary greatly and do
not seem stationary.Error rates can vary as
much as 3.48 over time. The turnover rate
for erroneous hosts can be as high as 50%.

5. Error rates between two hosts is often not
correlated.While correlation errors can oc-
cur during an coordinated attack, we do not
believe it commonly occurs in practice.

In light of these characterization findings,
we showed the effectiveness of several error
prevention and detection mechanisms (namely,
blacklisting, majority voting, spot-checking, and
credibility-based methods) and concluded the fol-
lowing (in parenthesis are the numbers corre-
sponding to the characterization finding above,
from which the conclusion was drawn):

1. If one can afford redundancy or one needs
an error rate to be less then1 × 103, then
majority voting should be used.Majority
voting will reduce errors exponentially. For
m = 2, the expected error rate would be
about1 × 10−6 (2, 5)

2. If one can afford an error rate greater than
1×103 and can make batches relatively long
(ideally with at least 1000 work units and at
least 1 week of CPU time per worker), then
one should use spot-checking with black-
listing. To minimize the affects of non-
stationary error rates such false positives
and false negatives, one should use spot-
checking for as long as a period as possible
on as many workunits as possible. Blacklist-
ing should be used because it is an effective
way of removing frequent offenders. (3, 4)

3. Fluctuations in error rates over time may
limit the effectiveness of credibility-based
systems. For example, a worker could
build up good credibility (either intentionally
or simply because error rates appear to be
non-stationary), and then once it is assigned
work, perform frequent errors. By contrast,
majority voting is less susceptible as error
rates and also the confidence bounds on error
rates decrease exponentially with the number
of votes. (4)

4. If one has a long-running application (> 1
week), then one should consider using the di-
gest of intermediate checkpoints to improve
and accelerate error detection. We pre-
sented novel analysis for a recently proposed
mechanism for error detection, which ap-
plies majority voting for comparing the di-
gest of intermediate checkpoints. We show
both theoretically and in simulation signifi-
cant gains (as high as 45%) compared to the
state-of-the-art replication mechanisms.

For current and future work, we will de-
velop techniques to focus on the cause of errors.



Also, we will develop secure and scalable load-
balancing techniques for comparing intermediate
checkpoint digests.
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Figure 11. Turnover Rate of Top .10 of Erro-
neous Hosts

We also computed the turnover rate for the top
0.10 of erred hosts (see Figure 11) and the bottom
0.90 of erred hosts (see Figure 12). For the top
0.10 of erred hosts, we find that even among the
hosts that err the most often, the turnover rate can
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Figure 12. Turnover Rate of Bottom .90 of Er-
roneous Hosts

be substantial, i.e., usually greater than 0.20. This
means that 0.20 of the hosts had not erred in the
previous period of time. Nevertheless, on average
this turnover rate is lower than the rates that con-
sider all hosts in the platform. For the bottom 0.90
of erred hosts, we find that the mean turnover rate
is usually greater than 0.79, which is on average
significantly higher than the rates that consider all
hosts in the platform.


