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Using Local Planar Geometric Invariants
to Match and Model Images of Line Segments

Abstract

Image matching consists of finding features in different images that
represent the same feature of the observed scene. It is a basic process in
vision whenever several images are used. This paper describes a matching
algorithm for lines segments in two images. The key idea of the algorithm
is to assume that the apparent motion between the two images can be ap-
proximated by a planar geometric transformation (a similarity or an affine
transformation) and to compute such an approximation. Under such an
assumption, local planar invariants related the kind of transformation
used as approximation, should have the same value in both images. Such
invariants are computed for simple segment configurations in both images
and matched according to their values. A global constraint is added to
insure a global coherency between all the possible matches: all the local
matches must define approximately the same geometric transformation
between the two images. These first matches are verified and completed
using a better and more global approximation of the apparent motion by
a planar homography, and an estimate of the epipolar geometry.

If more than two images are considered, they are initially matched
pairwise, then global matches are deduced in a second step. Finally, from
a set of images representing different aspects of an object, it is possible to
compare them, and to compute a model of each aspect using the matching
algorithm.

This work uses in a new way many elements already known in vision:
some of the local planar invariants used here were presented as quasi-
invariants by Binford and studied by Ben-Arie in his work on the Peaking
Effect. The algorithm itself uses other ideas coming from the geometric
hashing and the Hough algorithms. Its main limitations come from the
invariants used. They are really stable when they are computed for a pla-
nar object or for many man-made objects which contain many coplanar
facets and elements. On the other hand, the algorithm will probably fail
when used with images of very general polyhedrons. Its main advantages
are that it still works even if the images are noisy and the polyhedral ap-
proximation of the contours is not exact, if the apparent motion between
the images is not infinitesimal, if they are several different motions in the
scene, and if the camera is uncalibrated and its motion unknown.

The basic matching algorithm is presented in section 2, the verification
and completion stages in section 3, the matching of several images is
studied in section 4 and the algorithm to model the different aspects of
an object is presented in section 5. Results obtained with the different
algorithms are shown in the corresponding sections.

1 Introduction

Image matching is one of the most difficult basic problems in vision. It appears
whenever several images are considered. For example, consider the reconstruc-
tion problem: from two images of a three-dimensional object, compute the



geometry (i.e. shape) of the object. Two problems must be solved, matching
and reconstruction:

1. given a point of the object, find its projection in each image;

2. once both projections are known, compute the position of the object
point.

The first problem is usually specified differently: given an image point
m1, find the corresponding point ms in the other image and the object point
M of which they are both projections. The process of finding corresponding
points my and my; is called image matching (to distinguish it from image-model
matching).

Many papers have been published in the past on the image matching prob-
lem. Many methods deal with grey level images: in this case, the algorithm
tries to match every pixel of both images. Each pixel contains a value, the
grey level, which encodes the light intensity received in one point of the sensor
plane. These methods can be classified in three groups, as in [1].

Correlation: these use cross-correlation to measure the similarity of two im-
age regions. Given a region in the first image, they search for the most
similar region in the second image. Constraints arising from the cam-
era geometry can be used to limit the size of the search space: epipolar
geometry is a good example. Other limitations may be purely algorith-
mic: for example, the regions considered must have borders parallel to
the image axis. Such methods have a long history in photogrammetry
[2, 3] and computer vision [4]. Improvements are regularly published
[5, 6, 7, 8, 9, 10].

Relaxation: in these methods, the first few matches are guessed. Constraints
derived from these are then used to compute further matches. This pro-
cess is repeated until no new matches can be found. For example, see
Marr and Poggio [11, 12], Grimson [13, 14|, and Pollard et al. [15, 16].

Dynamic programming: in this case, the matching problem is formulated
as the minimization of a function of many discrete variables. Examples
can be found in [17, 18].

When higher level features are available in images, such as edge points or
line segments, the matching problem is slightly different. Such features are
less numerous but richer in information; in particular, they have geometric
characteristics that can be used to aid matching. They are also usually more
reliable than grey level values. On the other hand, it is no longer possible to
obtain dense matches or reconstructions with such features. Another difficult
problem is relevance: a curved shape represented by line segments is hard to
match because the definition of the segments is very instable.

Several methods adapted to such features have been proposed.

Prediction and verification: these methods are similar to relaxation tech-
niques. Some initial matches are guessed, then constraints are deduced



from them, that allow the guesses to be verified and further matches to
be found [19, 20].

Subgraph isomorphism: adjacency relations between image tokens are mod-
eled as the edges or vertices of a graph, and standard methods for find-
ing subgraph isomorphisms can be applied. These methods demand that
there be little noise in the images, and use no geometric information. In
addition, their complexity is often very high. Several examples can be
found in [21, 22].

Geometric invariants: for images obtained by perspective projection, pro-
jective invariants can be computed to characterize - and hence to match
- point and line configurations [23, 24]. Various invariants have been sug-
gested [25, 26, 27, 28]. Until now, these methods have mainly been used
for planar or very simple scenes.

Quasi-invariants : some authors also use quantities which are not exactly in-
variant under the projection mapping used to model the camera. These
quantities are usually invariants of a more restrictive set of transforma-
tions, but remain “almost invariant” for “typical” camera displacements.
Binford [29] defines quasi-invariants geometrically as measurements that
are equal to a quantity computed in the scene for at least one particular
transformation, and that are constant to first order when the transfor-
mation is perturbed (i.e. the first order term of the Taylor expansion of
the quasi-invariant with respect to the transformation vanishes). If the
second order term also vanishes, the quasi-invariant is said to be strong.

Binford proves that the angle between two segments, and the length ratio
of these segments are quasi-invariants. We will use these two quantities
in the present paper. He also proves that the affine coordinates defined
in a plane in the scene are strong invariants. We will also use affine
coordinates, but in the image rather than in the scene. These affine
coordinates may correspond to non coplanar points in the scene, and are
not quasi-invariants.

By design, quasi-invariants are stable for non degenerate projective trans-
formations. This explains why they can be used successfully for matching
and recognition tasks.

The peaking effect: Ben-Arie [30] studied the probability distributions of
angles and length ratios of two segments from random viewing directions,
and he noticed that “the probability density of the ratio of the projected
angle to the original angle has a sharp peak at the unity ratio, that is to
say, at the point where the projected angle equals the original angle. A
similar peaking phenomenon appears in the probability density curve of
the ratio of distances; the peak is at the point where the ratio of distances
in the image equals the ratio of the depicted distances in the scene... the
probability that a projected angle will have values between double and
half of the original angle is more than 84%! The same span of proportions
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with regards to projected distances has a probability of more than 86%!



He uses his statistical measurements to compute a metric for the com-
parison of scene and image ratios and angles. This is used in a relaxation
method in his recognition system. [31, 32] describe other recognition sys-
tems based on the peaking effect. The same statistical distance is used,
but within a prediction-verification scheme, where pose estimation of the
object is used as verification.

In our method, we benefit fully from the peaking effect and we use the
same kind of features: angles and ratios. But we use the peaking effect in
a quite different way. The three previous papers describe image-3D model
matching techniques, while we have an image-image matching technique.
We do not compare angles computed from a 3D model to image angles,
but only angles in two different images. Furthermore our system is not
based on relaxation or prediction-verification, but on geometric hashing
and Hough transform.

Geometric hashing: Lamdan and Wolfson [33, 34, 23] have developed an
image matching method based on affine local invariants. In each image,
they consider all triplets of points as affine frames, and compute the affine
planar coordinates of all the points in all these frames. Then they try to
find which pair of frames in different images give the same coordinates
to the points. If a pair is found, the match is done. The same method is
used when a new image is to be matched to an image database. In this
case the system finds the database image having the best correspondence
with the new image.

Lamdan and Wolfson justify the use of affine planar invariants by prac-
tical considerations. Projective invariants would have given too combi-
nations and the similarities are sometimes too poor to describe apparent
motion. Their system gives good results, but remains very computation
intensive.

Our system has many similarities to the peaking effect and geometric hash-
ing methods discussed in the literature. A more detailed comparison is pre-
sented at the end of paragraph 2.1.

Our approach. The method proposed in this paper is based on line seg-
ments, possibly linked one to the other at their endpoints. The key idea of
the algorithm is to assume that the apparent motion can be approximated
by a geometric transformation, i.e. a similarity or an affine transformation.
Under such an assumption, planar invariants associated with simple segment
configurations can be computed and matched between the different images. To
insure a global coherency between all the possible matches, a global constraint
is used: all the matches must define approximately the same apparent motion.
The matches are then verified and completed using a better approximation
of the apparent motion by a planar homography and an estimate of epipolar
geometry.

The invariants we use are planar algebraic invariants. They are not neces-
sarily invariant under perspective projection, but they are invariant between



images whenever the apparent motion can be approximated by a planar ge-
ometric transformation. They are known to be stable when computed from
images of planar objects. Man-made objects usually contain many planar sur-
faces: the algorithm will work with them.

On the other hand, the algorithm can fail with very general polyhedral
objects, but such objects are barely used in usual life. For curved objects, the
tools and invariants used should be very different (see [35]).

If several images are considered, they are matched pairwise and global
matches are deduced in a second stage. If the images represent different aspects
of an object, the matching algorithm can be used as a measurement of similarity
between images, and the images representing a same aspect can be grouped,
and give rise to a 2D model of this aspect.

The main advantages of our method are the following:

1. It needs no knowledge of the camera calibration, motion or epipolar ge-
ometry. The apparent motion is not assumed to be very small, so the
method is usable in cases where tracking methods would fail.

2. Objects in the scene can have independent motions. Results with two
different motions are shown at paragraph 3.4.3.

3. It works with real noisy images. In such images, the polyhedral approxi-
mation of the contours is often inexact and some segments are unstable.
This is particularly true if the scene contains curved objects. The topol-
ogy of the graph formed by the segments is known to be very unstable.
Using local quasi-invariants makes our method robust against this.

4. The use of geometric quasi-invariants associated with a few common seg-
ment configurations substantially reduces the number of possible matches,
so the complexity is much smaller than that of subgraph isomorphism
techniques.

The main limit of the method comes from the approximation of the appar-
ent motion. The validity of this approximation is quite clear for planar objects
according to Ben-Arie and Binford, but it is hard to determine the exact set
of 3D objects for which the algorithm will not fail.

The paper is organized as follows. Section 2 describes the matching al-
gorithm for two images. Section 3 shows how these initial matches can be
improved and completed using global constraints. Section 4 considers the case
of several images and section 5 shows how to go from image matching to object
modeling.

2 Matching two images

2.1 Matching algorithm

This section considers the case where two images of line segments are to be
matched. Such images are usually obtained from grey level images by edge



extraction [36, 37], and polygonal approximation of the edge lines. Segment
extremities may be used as junctions between segments, and each image may
be seen as a graph of segments and vertices. F1G. 3 shows some examples. The
problem is to match the segments and their extremities between images.

It is clear that corresponding features do not have the same pixel coordi-
nates in the two images. The coordinate difference is called apparent motion.

Apparent motion is not a 2D geometrical transformation. For example, two
scene points can give the same projection in one image and different projec-
tions in the other one. However, for generic views of nearly coplanar ensembles
of features, the apparent relative motion is well approximated by a 2D trans-
formation. Our system uses 2D similarity or affine models to approximate the
relative motion of small ensemble of nearby line segments and points.

The stages of the algorithm are as follows:

1. One of the two kinds of approximation (similarity or affine) is chosen,
and local invariants are calculated for the salient feature configurations:
angles and length ratios for similarities, and affine coordinates for affine
transformations.

2. These invariants are matched between the two images according to their
values and to thresholds derived from the noise level.

3. When the invariants of two configurations match, the similarity or affine
transformation between the configurations is computed.

4. The transformations are represented as points in a parameter space: four
parameters for similarities (two translations, one rotation, and one scaling
factor), and six parameters for affine transformations (four parameters
for the linear part and two for the translation).

5. Correct matches define transformations close to the best approximation
to the apparent motion, so points in the parameter space tend to cluster
in a small region. On the other hand, false matches are not correlated
with one another and their corresponding points are scattered across the
parameter space. Thus we search for a small region of parameter space
where the point accumulation is maximal. This allows us to compute an
approximation to the apparent motion and to separate correct matches
from false ones.

6. Invariant matches give rise to configuration matches, and feature matches
are deduced from these. In case of ambiguity, only the most probable
matches are considered as correct: for example, if a feature a is matched
5 times to feature b, and only once to feature ¢, the match (a,b) is con-
sidered to be correct.

The stages are explained in detail below, for similarities and then for affine
transformations. Finally, we show some experimental results. But first we
compare our method with geometric hashing and peaking effects methods.



Comparison with Wolfson’s geometric hashing. Geometric hashing, as
presented in [33, 34, 23], deals with affine planar invariants. Points are ex-
tracted from both images. Each triplet of points is considered as an affine
basis and the affine coordinates of all the other points are computed in these
frames. The coordinates obtained in different frames in each image are then
compared to see if any two frames correspond. If this is the case, point matches
may be deduced directly from the comparison.

The main similarities with our method are the use of local planar invariants
which are not object invariants, and the use of a more global approximation
to the apparent motion to constrain the matching.

But there are important differences: in geometric hashing no topological
structure is used, while we use the segments and their adjacency to reduce the
combinatorics. If the approximation of planar apparent motion is not global
valid, it is very often quite accurate for nearby points linked by segments. Such
points are often linked by segments or edges on the object itself, frequently
corresponding to the borders of planar facets, for which a planar affine or
similarity transformation is often a robust approximation to the true apparent
motion.

A second difference is the method used to compare invariants. In geometric
hashing there is a global comparison of the invariants, for each triplet in both
images in all the possible frames in both images. This is very computation
intensive. OQur methods compares local invariants pairwise. After that, we use
a Hough technique to find sets of coherent matches, and finally to compute
the best approximation to the apparent motion. Furthermore, if objects in the
scene have different motions, these correspond to different apparent motions
in the images. While it is easily possible to search for two such motions in our
Hough space, the comparison is much more difficult with geometric hashing.

As a conclusion, our method use several ideas also present in geometric
hashing. But other methods, like the use of a Hough technique, are applied
at crucial points of the algorithm and allow us to avoid the weaknesses of
geometric hashing.

Comparison with peaking effect methods. Our method also shares some
assumptions and ideas with the peaking effect methods. We use the same
features, angles and ratios, so we benefit from the properties demonstrated in
Ben-Arie’s paper, but our context is quite different. We use no 3D model or
data, and our matching method is based on a voting technique and requires
no verification step like localization. This allows us to match against several
different images in parallel, and to achieve image recognition without having to
consider each possible image individually. This is also the case with geometric
hashing. A recognition system based on our matching process is presented in
[38].

2.2 Approximation by a similarity

Similarities are compositions of isometries and scalings. We will consider only
direct similarities, i.e. compositions of rotations, translations and scalings.



These transformations define an “extended” Euclidean geometry (since Eu-
clidean classically excludes scalings).

The two basic invariants of similarities are the angle and the length ratio
defined by any two segments. Clearly, these are not invariants of the 3D object.
But they are not too far from invariance: Binford has shown that they are
quasi-invariants [29].

The peaking effect provides a statistical explanation of their usefulness [30].
Experimentally, matching using angles and length ratio does give good results,
even if they seem at first sight to be relatively poor and coarse image features.

2.2.1 Stage 1: computing invariants

Similarity invariants may be computed from two segments or three points.
To reduce the complexity of the configuration enumeration and to increase the
validity of the planar approximation, only pairs of segments having an endpoint
in common are considered. Let S; and Sy be two such segments, Py be their
common endpoint, and P; and P, be their other endpoints (see F1G. 1).

Figure 1: Invariant of two adjacent segments.

The pair is characterized by its angle a, length ratio p, and a “reliability
weight” p.

P,P,. PP,

O = arcCoS ——~———————
[P0 Pr|-[| Po Pl

p=IRA/IRP  p=IRPl+I[ PPl

By convention, 51 and Sz, and P and P, are chosen so that the oriented
angle (S51.52) is acute and counterclockwise. This simplifies the comparison of
invariants and configurations. The weight factor is justified by the fact that
noise and texture usually give short segments, whereas long segments are often
more significant and characteristic. The weights are used mainly in the filtering
stage of the algorithm.

2.2.2 Stage 2: matching invariants

To compare the configuration invariants of two images, we use two thresholds
Omax and pmax. They are chosen with regard to the image noise, typically
Omax = 20° and ppax = 1.5. A pair of segments in the first image with



invariants (a1, p1), is matched to a configuration in the second image with
invariants (s, pg), if three conditions are satisfied:

lar — o] < amax p2/p1 < Pmax p1/p2 < Pmax (1)

At this stage, a configuration is often matched to 10 - 20 of other configurations.

In the implementation, the comparison process is sped up by sorting the
invariants in each image by «. The lists obtained may be compared by a linear
rather than a quadratic enumeration.

2.2.3 Stage 3: computing similarities

Only a small proportion of all the matches found in the previous stage are
correct. To separate these from the incorrect matches, we use the fact that
correct matches correspond to the same apparent motion and thus define some
approximate similarities very close to that motion.

A single matched pair of configurations provides enough information to
compute the similarity between its members. Indeed, each pair provides three
point matches and two are sufficient to compute a direct similarity.

Let us consider two pairs of matched segments, with extremities (P, Py, P»)
and (Qo, @1, @2). The parameters of the similarity which transforming the first
configuration into the second one may be computed as follows:

po L <||Q0Q1|| N IIQonII)
2\ IRP  [[RP

—_— T

6 = (ITPTC%QO + % [(QleQon)) — (PP Py Py)

( ;m ) = ]7@; where P = Hj, o Ry(P)
Yy

Ry represents a rotation by angle # about the origin, and Hy represents a
scaling by k centered at the origin. The translations ¢, and ¢, are based only on
the common vertices Py and (), because these are often more reliable than the
external vertices (which may be linked to no other segment). The similarity
computed with this method provides an apparent motion approximation for
the two configurations it is computed from.

2.2.4 Stages 4 and 5: filtering similarities

For each pair of matched configurations, a similarity is computed using the
previous method. Each similarity is defined by its four parameters (¢,,1,,0, k),
and may be represented by a point in IR*. Each point is weighed by the sum
of the weights of the configurations used to compute the similarity.

Incorrect matches are generally not correlated one with another, so their
similarities are distributed over a large region of IR*. On the other hand,
correct matches all define good approximations to the apparent motion and
give points clustered in a small region of the parameter space. The aim of this
stage is to search for this region.
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To do this, we define a distance between similarities:

th —tg)> | (ty, —t
:CA2$) _I_(Zl/)‘2
z Y

d ((twatya 0: k): (t;atlw 0,7 kl)) = (

y)? 2
42 <k2 R~ 2kK cos(6' — e))

where \; and A, are the size of the image along = and y axis respectively, and

for each similarity (¢, tg, 6°, k%) we compute the sum:

1
(tx%;}’k) 0.5 + d ((tz, ty, 0, k), (13,19, 6°, k0))
The similarity with the greatest sum is considered as the best approximation
of the apparent motion. Only matches which give rise to a similarity close to
this one are considered to be correct.

To limit the complexity of this computation, the implementation sorts the
similarities in JR* according to their first coordinate, and only the similarities
such that:

|ty — 2] < ¢ma® Ity — tg\ < e |6 — 6% < gmae K0 /™% < | < EO.fmeT

where 7%, £, 0™ and k™" are four thresholds, are considered in the
sum. The threshold values are typically 15 pixels, 15 pixels, 20 degrees and
1.5.

2.2.5 Stage 6: matching features

Each matching pair of configurations (P, P1, P») and (Qq,@1,Q2) suggests
three possible point matches: (Py,Qo), (P1,Q1), (P2, Q2). For each point, all
of the suggested matches are considered and the match that occurs most often
is taken to be correct. The other matches and the configurations matches from
which they are deduced are suppressed. For example, given four point matches
(P,Q1), (P,Q1), (P,Q1), (P,Q2), the match between P and Q) is assumed to
be correct. The match (P, Q3) and the configuration match from which (P, Q2)
was deduced are suppressed.

2.3 Approximation by an affine transformation

Now consider the case where the apparent motion between the images is ap-
proximated by an affine transformation, rather than by a similarity. The basic
invariant of affine geometry is the length ratio of parallel segments. The above
approach may be extended to affine transformations by using invariants based
on parallel length ratios in place of Euclidean invariants.

As above, and as in other geometric hashing methods, these invariants are
not object invariants. They are just invariants for the kind of apparent motion
we assume. If this assumption is not valid at all, the method will fail. On
the other hand, a difference with the extended Euclidean case is that affine
invariants are projective quasi-invariant only if the corresponding 3D structure
is planar (the same remark holds for the invariants used in geometric hashing).

11



Before matching, and without prior information, it is impossible to know which
sets of segments correspond to planar structures.

The main justification for using affine invariants is that affine planar trans-
formations provide a much wider set of transformations, that permits a better
approximation of the apparent image motion.

In this section, we discuss only the differences between the similarity ap-
proximation and the affine approximation; the overall approach remains the
same.

2.3.1 Stage 1: computing invariants

Three segments or four points are needed to compute an affine invariant, in
the general case where the points or segments are not collinear. To limit
the complexity, we consider only two kinds of configurations, called Z or Y
configurations.

P A

Figure 2: Definition of invariants from a Z (left) or Y (right) three-segment
configuration.

For a Z configuration, such as that shown in Fi1G. 2, two invariants are
defined.

p=IBI|/|Pll and o =|BI|/IPT|

To reduce ambiguity, the configuration points are labeled so that p is greater
than or equal to 1.

In the case of Y configurations, the invariants are the affine coordinates of
P, with respect to the three other points P, P, and P3. These coordinates are
defined as follows:

a1Pi+a2Ps +a3P3 =Py
a1+ay+a3=0

The configuration points are labeled in such a way that aq is smaller than as
and a9 is smaller than a3. In both cases, the configuration is weighed by the
sum of length of the three segments.

2.3.2 Stage 2: matching invariants

The affine matching process follows exactly the same algorithm as for similar-
ities. Only the matching conditions (1) are different. For two Z configurations
with invariants (p1,01) and (p2, 02), the conditions are:

p1 < kpy p2 < kp1 o1 < ko o9 < ko

12



For two Y configurations with invariants (a1, as,a3) and (b, ba, b3), they are:
|a1—b1|<s |02—b2‘<€ |a3—b3|<s

In our experiments, k£ was taken equal to 2.2 and € to 1.5.

2.3.3 Stage 3: computing affine transformations

Each configuration match provides four point matches. From these, it is pos-
sible to compute the affine transformation 7" that transforms the first configu-
ration into the second one, using a least square method.

Let Pz-j be the i-th point of the j-th configuration and (m{yzjl)t be its homo-

. a1 a2 tz\ | . .
geneous coordinate vector. If (as a4 ty ) is the homogeneous matrix associated

with 7', we have the following equation:

x% x% x% xi a; ay g m% m% :cé 55411
yi 3 93 wi|=\|as a1 by | |yl vi y3 vi
1 1 1 1 0 0 1 1 1 1 1
which can also be be written in the following form:
zr | _ [z oy 1 a d Yo | _ [22 w2 1
2| = 1,1 2 an 2] = 1,1 a4
T3 r3 yz 1 ¢ Y3 r3 yz3 1 ¢
X
i zp yi 1 vi zp yi 1 Y

The least square resolution of these systems, for example using the Singu-
lar Value Decomposition [39], provides as a solution the transformation T that
minimizes the expression Y3 ||P? — T'P}||2. We chose this solution T as the
best approximation to the apparent motion for the two considered configura-
tions.

2.3.4 Last stages

Proceedings as for the similarities, affine transformations are represented as
points in IR®, and filtered in order to separate the correct matches from the
false ones. Feature matches are then deduced from configuration matches and
voted on. To compare affine transformations, we use the following distance:

1o 4 12

a1 a2 g ay ay ty tr —t'z)? (t —t)

d((“os%“f’)’(“é““g‘)):Z(ai_“;)2+( Y - S
T

and compute for each transformation the sum:

1
(h%%,k) 2.5 + d ((tz, ty, 0, k), (13,19, 60, k0))
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2.4 Algorithm evaluation
2.4.1 Complexity

The most time consuming operation in the algorithm consists of comparing
tuples up to a threshold e, and of doing an elementary operation for all the
pairs of close elements. If n is the number of tuples, the complexity of the
operation is O(nlogn) when ¢ = 0 and O(n?) when ¢ — co. Let us denote
O (f:(n)) that complexity in the general case.

In order to compute the complexity of the algorithm, we can consider that
there are approximately the same number of segments and extremities in both
images. Let n be that number. As it is uncommon to have more than 4
segments with one common extremity, the computation of all invariants may
be done with a O(n) complexity in time. Their comparison may be done in
O (fei(n))-

At the next step, m transformations are computed. In the worst case, m is
O(fe;(n)). The comparison of the transformations can be done in O (f;,(m)).
The last stage of the algorithm has a lower complexity.

Then, the global complexity is O (fc,(fs,(n))), with:
O(nlog?n) < O (fe,(fer (n))) < O(n)

The geometric hashing algorithm is based on the comparison of all the
quadruples of points of two images, and have a complexity of O(n*). It should
be noted that geometric hashing is an algorithm designed for indexing rather
than matching. In the case of indexing, a complete match is not necessary and
the complexity can be reduced.

T| 1 2 3 4 5 6 718 9
Image1 | S| 33 29 53
Image2 | S| 34 27 62 | 402 91 403 12 | 18 17
Image 3 | S | 136 142 173
Image 4 | S | 102 106 131 | 2648 487 1223 13 |21 25
Image 5 | S | 306 266 485
Image 6 | S | 312 276 491 | 26241 3960 17988 33 |62 78
Image1 | A | 33 29 101
Image 2 | A | 34 27 128 | 5119 1292 9894 30|21 20
Image 3 | A | 136 142 264
Image 4 | A | 102 106 199 | 16677 2998 8790 26 | 22 22
Image 5 | A | 306 266 906
Image 6 | A | 312 276 920 | 31276 5625 20499 5 |15 20

Table 1: Experimental evaluation of the matching algorithm complexity.

Results of an experimental evaluation of the algorithm complexity are
shown on table 1. For each experiment, the columns shows the number of:
segments in the image (1), extremities in the image (2), invariants in each im-
age (3), comparisons done between invariants (4), transformations computed
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(5), distances computed between transformations (6), transformations consid-
ered as correct (7), segments matched (8) and extremities matched (9). The
column T indicates the type of transformations used: S for similarities, A for
affine transformations. These results show clearly that the complexity remains
much smaller from O(n*)!

2.4.2 Experimental results

In this section, our matching algorithm is illustrated with some results obtained
using real images: this allows the assumptions and approximations made to be
validated.

13

%

5 %
fot

Figure 3: A first example of matching, using similarities (top), and affine
transformations (bottom).

F1G. 3 shows the result of matching two images. Matched points have the
same number. The similarity-based method was used for the two upper images,
and the affine method for the two lower images. (There is no correspondence
between the numbers in the upper images and the numbers in the lower ones).

The left image contains 133 points, the right one 106. The main object
contains 67 points in the former, 53 in the latter. The others are due to noise,
background or texture. 25 matches are obtained using similarities , and 24
using affine transformations. All of the matches are correct, although, in the
case of similarities, two of them correspond to the image border. On the other
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hand, some points clearly belonging to the object are not matched. This is due
to imperfect segmentation (for example segments split in two by a vertex), or
to regions where the apparent motion is not well approximated by a similarity
or even an affine transformation (due to perspective effects for example).

Clearly, planar local invariants are sufficiently robust for reliable matching,
even when the apparent motion is visibly far from an exact similarity or an
affine transformation.
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Figure 4: Another example of matching using similarities (top) and affine
transformations (bottom).

F1a. 4 shows similar results for another pair of images These images contain
non polyhedral objects, for which the approximation of edges by segments
is unstable and very noisy. The first image contains 322 points, the second
352. About 80 points belong to the house. With similarities, 131 points were
matched, with 15 outliers, and 15 errors at the windows: the windows are
represented by repetitive rectangles and errors often occur in such situations.
With affine transformations, 58 points are matched, with 8 outliers and 4 errors
due to the windows.

2.5 Conclusion

The results obtained show the validity of the algorithm, especially its ability
to deal with real noisy images containing polyhedral and even curved objects.
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Of course, the matching obtained is not complete, and the next section shows
how these initial results can be improved.

The method appears to be general and not specific to the particular kinds
of local invariants used. To demonstrate this, we used other kinds of invariants,
such as Euclidean invariants computed from three segments. The results are
similar.

Another idea would be to use projective invariants, computed using cross
ratios. In this case, the problem is that the computation of such invariants and
of the corresponding homographies between configurations is very sensitive
to noise. This makes the search for an accumulation point in R® extremely
difficult. Owur conclusion was that projective invariants are only useful for
matching when the data is very precise.

As a conclusion, we can say that our algorithm is robust, and that its
robustness comes from the use of simple local planar invariants. They appear
to be a powerful tool to deal with images where noise forbids to use exact and
more sensitive invariants. They make a big part of the originality and of the
success of our method.

3 Improving image matching

The algorithm described in the previous section provides an initial match be-
tween two images without any prior information. The results may contain a
few incorrect matches and miss correct ones: apparent motion approximation
by a similarity or an affine transformation is too restrictive for some image
regions.

However, once an initial match is found, other finer tools can be used to
evaluate the validity of computed matches, and to find new ones. A first tool
is the approximation of apparent motion by a 2D homography. When the
observed object is planar, this is not an approximation, but an exact com-
putation. A second tool is epipolar geometry. This only gives point to line
correspondences rather than point to point ones, however it is exact for both
planar and non planar objects. The computation and use of these two tools
are described in this section.

These tools are particularly interesting when the scene contains an object
moving against a fixed background, as the mobile object will fail to define the
same epipolar geometry or homography as the rest of the scene. This opens
new directions for applications of the matching method.

3.1 Projective approximation of apparent motion

As similarities or of an affine transformations may not approximate the appar-
ent motion well over large image regions, a first idea is to use a transformation
with more parameters. In the Klein hierarchy [40], the next class after the
affine transformations is the projective ones (homographies). At least four
points are necessary to define a homography between two images. The match-
ing algorithm described in the previous section provides, in general, more than
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four correspondences, and this redundancy allows the computation instability
described in the conclusion 2.5 to be suppressed.

Several methods are available to compute a homography between two im-
ages from at least four matches.

3.1.1 Linear least squares method

The first and simplest method is linear least squares as in stage 3 of para-

graph 2.3. Let (P}, P?) be the matches obtained previously, and T be the

homography which minimizes Y, | P> A (T.P})||?, with homogeneous matrix

(Z;} a3 g;g) If the equations Pz-2 x T.PZ-1 are written as it was done in para-
a3l as2 a3z3

graph 2.3, T can be obtained by solving the system of equations by singular
value decomposition.

3.1.2 Robust least median squares method

Real images are always noisy and some false matches always fall within the
thresholds of the matching algorithm. The least squares method uses all the
matches, including the errors. A few errors are sufficient to cause inaccuracy
of the computed transformation, even at the points given to compute it. A
least median squares method can correct this drawback by detecting outliers.
The algorithm is the following:

1. Four point matches are chosen randomly.

2. The homography T defined by these four matches is computed using the
linear method.

3. The errors |[P? A(T.P})||? are computed for all of the remaining matches,
and their median ¢ is found and associated with 7' (more generally, the
xz%-ian error can be used for z # 50).

This process is repeated sufficiently many times that the probability of
choosing at least one set of four correct matches is very high. The final esti-
mation of the homography is the transformation 7" whose associated value € is
the smallest.

This method allows outliers in the data to be detected. Any matches giving
an error three times greater than the median (or twice greater than ¢ if z is
greater than 50), may be considered to be outliers and eliminated. The best
estimate of the homography is independent of these outliers, and turns out
to be good enough for many applications. For a more accurate result, it is
possible to refine the estimate using the non linear method below.

The number of times the three stages 1, 2, and 3 must be repeated and the
percentage x depend on the the fraction of outliers in the data. x must be less
than the estimate rate of outliers in the data. 50% may be taken as a default
value, but the result is of course better with a better estimation of the real
rate.
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If y is the real fraction of false matches in the data, the probability of
choosing at least one configuration of n correct matches in m trials is [41]:

P=1-[1-(1-y"

If we assume that ¥y = 40% and we want P > 0.99, 34 iterations are sufficient.
As indicated in [41], this method can be improved by requiring that the chosen
points are well distributed in the images. According to our experimental re-
sults, the additional time this requires is hardly justified by the improvement
of the result.

3.1.3 Non linear optimization method

The two previous methods are not symmetric with respect to the images. Two
images play different roles in the criterion 3, ||[P? A (T.P})||? to be minimized,
and this may have consequences on the result.

This expression may be symmetrized:

> (1B AT.B + |B AT .P?)

2

A linear resolution is no longer possible. The results of the least mean or
median squares methods may be used as an initial estimate of the solution in
a non linear optimization method, such as that of Levenberg-Marquardt [39)].

The linear solution usually provides a good enough approximation to the
real solution to insure convergence within a few iterations. On the other hand,
the elimination of outliers by the least median squares method seems necessary
to obtain accurate results in most cases. The non linear method is sensitive to
the quality of the initial estimate of the solution: this is yet another argument
for the use of the robust method rather than that of the linear one.

3.1.4 Conclusion

In our experiments, we used the least median squares method to remove out-
liers. It gives much better results than the simple linear method. On the
other hand, our data are not precise enough to have a real improvement of the
results when using the non linear optimization method. In all cases, homogra-
phies work best for scenes that are not too deep.

3.2 Epipolar geometry computation

Epipolar geometry is the geometric relation between two images of the same
scene, and is summarized by the fundamental matrix F. This 3 x 3 rank
2 matrix verifies 'P2.F.P! = 0 for every couple of matched points (P!, P?),
represented by their homogeneous coordinates. Many methods of computation
of this matrix from point matches have been proposed in the literature. They
may be classified in three groups:

e linear methods, which allow epipolar geometry to be computed directly
from point matches;
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robust methods, which allow outliers to be detected and eliminated.

non linear methods, which provide very accurate results but require an
initial estimate of the solution.

Here are short descriptions of the main methods:

Simple linear method: this considers the problem as a simple system of

linear equations. The fundamental matrix F' is defined up to a scale
factor and one of its coefficient may be taken equal to 1. The matrix
is then found by solving the equations'P?.F.P! = 0, for at least eight
different point matches, using the SVD method. This method has a few
drawbacks: the system to be solved is ill-conditioned and the rank the
computed matrix is often equal to 3 as soon as the data are not exact.

Hartley’s method: the previous method may be significantly improved in

several ways [42]: first, changing the coordinate basis allows to correct
the ill-conditioning of the initial system. Second, setting the smallest
singular value of the linear solution to zero guarantees that the obtained
matrix is singular.

Boufama’s method: a new method was recently proposed [43]. Based on

a different formulation of the problem, it allows a singular fundamental
matrix to be found by a simple resolution. For planar scenes, the two
previous methods provide meaningless results, while Boufama’s method
provides correct pencils of epipolar lines: every point of every epipolar
line has its corresponding point on the corresponding epipolar line.

Least median squares method: as with the homography computation, it

Non

is possible to use a robust method based on the least median squares.
This method may be improved in several ways, concerning the way the
points are chosen, or the linear method used ... Such improvements are
described in [41].

linear optimization method: the first method could provide a non
singular matrix. To correct this, the criterion Y, ||'P?.F.P}||*> may be
minimized under the constraint det /' = 0. This may be done by using a
non linear optimization algorithm such as Levenberg-Marquardt [39].

The main drawback of this method is the instability of the function F' +—
> I'P2.F.P}||?, which admits many local minima; the correct solution,
i.e. the one that corresponds to the true camera motion, is not always
even the global minimum of the function as soon as the images are noisy.
To use this method, one must eliminate the outliers with the robust
method first, and give a very good first estimation of the result.

For our matching purpose, we generally use the least median squares method
with the linear Boufama’s method. They provide robust epipolar pencils which
can be efficiently used for matching. On the other hand, the epipoles are not
used and their position need not be determined precisely.
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3.3 Corrections and improvements

The tools described above allow the results obtained with the matching algo-
rithm presented in the first section of the paper to be significantly improved.

e Computing epipolar geometry or approximating the apparent motion
with a homography using robust methods allows outliers to be detected.
The mean-error found when computing the homography may be used to
decide whether the scene is planar or not. In the former case, Boufama’s
method or the robust method associated with Boufama’s one should be
used to compute the epipolar geometry. In the latter case, the epipo-
lar geometry should be used since the homography cannot accurately
approximate the apparent motion.

e New matches may be deduced from those already found. Let s; be a
segment whose endpoints are a; and ay. If only one of these, say aq,
is matched to a point b; in the other image, we can search for another
point be in this image, such that there exists a segment between b; and
bs and a2 and by are compatible with respect to epipolar geometry or the
homography approximating the apparent motion. If neither a; nor as
are matched, it is possible to look for a segment sy whose extremities by
and by respect the epipolar and homography constraints with a; and as.

e Finally, we can search among all the unmatched points in both images
for all the couples (a,b) that satisfy the epipolar and homography con-
straints. However, this may give incoherent results with respect to image
topology and should be used with considerable care.

3.4 Experimental results
3.4.1 Improved matches

Fi1c. 5 and 6 show results obtained from the matches shown in FiG. 3 and
4: the epipolar geometry and the homography were computed using a robust
method, and the outliers were detected and eliminated. F1G. 7 and 8 show the
results obtained after the improvement stage.

It is of course possible that new errors are introduced during this last stage.
However they must be at least approximately correct from a geometrical view-
point, because they must respect the two constraints.

On the other hand, some points are still not matched. This is mostly
because the homography gives a good approximation to the apparent motion
only in part of the image. In the remaining part, it suppresses any new matches.

The performance of these stages are summarized in Tab.2. The columns
Object 1 and Object 2 concern the images of F1G. 3, while the columns House 1
and House 2 concern the images of F1G. 4. Each entry of the first line is the
number of points in the corresponding image. The following lines provide the
number of points matched using the matching algorithm described in section 2
and the number of false matches, the number of remaining matches and errors
after the outliers detection stage, and the final number of matches and errors.
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Figure 7: Improvement of the matches shown on Fig. 3
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Images Object 1 Object 2 | House 1 House 2
Number of image points 133 106 322 352
First matches 25 131
Number of errors 0 30
Remaining matches 24 90
Remaining errors 0 0

Final matches 45 262

Final errors 1 12

Table 2: Results obtained with the improvement algorithms.
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Figure 8: Improvement of the matches shown on Fia. 4

3.4.2 Limits of the algorithm

A good way to judge an algorithm is to study the cases where it just fails. An
important point in our algorithm is the approximation of the apparent motion
by a planar geometric transformation. The results presented here concern the
limit of this approximation.

The image 0 of the sequence was matched with all the other images. Table 3
shows the number of point matches and the number of errors obtained with
different methods: simple match using similarities (SS), improved math using
similarities (IS), simple match using affine transformations (SA), and improved
match using affine transformations (IA) respectively.

Image 16 and image 9 correspond to the limit of deformation acceptable for
the algorithm when using similarities and affine transformations respectively.

Another limit of the algorithm is due to the numerous thresholds: these
thresholds are necessary when comparing invariants or transformations because
of the noise present in the image. They also allow to reduce the complexity.
Their choice was done empirically, after a long use of the algorithm on many
different images. A bad choice of the thresholds may explain bad results.
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Image 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
Nb Matches SS | 27 40 24 27 19 20 20 21 14 15 10 9 7 11 6 7
Nb Errors SS 0 0 0 0 3 3 o 3 3 0 3 0O 0 0 0 O
Nb Matches IS | 105 96 99 89 102 99 68 72 47 52 55 82 49 46 56 51
Nb Errors IS 2 5 3 4 3 4 7 8 8 12 8 12 15 12 15 19
Nb Matches SA | 31 26 21 20 24 14 14 13 14|10 8 4 6 9 8 8
Nb Errors SA 2 0 2 0 0 1 0 0o 0|6 4 4 6 9 8 4
Nb Matches TA | 100 102 91 67 82 64 59 56 51|14 8 51 0 15 1 3
Nb Errors TA 1 1 6 9 11 9 10 11 4 {10 1 13 0 15 1 0
Table 3: Number of points matched and of errors when matching image 0 with
the image of a sequence.
3.4.3 Images with moving objects
All of the above tools may be mixed and used with different aims. In the ex-
ample presented here, two images are taken from slightly different viewpoints,
but two objects have also moved between the two shots.
These images are matched and the match is improved using the tools pre-
sented above. The result obtained after the first stage is shown in F1G. 9.
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Figure 9: Result of the first matching.

In the second stage, we display only the segments that were not matched
and their extremities. These remaining segments are matched, and the match
is improved. The result is shown in FiG. 10.

This example shows the ability of our method to deal with mobile objects
in a scene. In the first run, the objects in the background were matched. As
a consequence of the use of a global constraint on the apparent motion, the
mobile objects were not matched. But when the matched features are removed,
i.e. most of the background, the mobile objects can be matched.
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Figure 10: Result of the second matching.

4 Matching more than two images

The remainder of the paper is devoted to the case where more than two images
must be matched. To accomplish this, we propose an algorithm in which the
images are first matched pairwise using the methods described above, and then
a global match is deduced from these partial ones. The algorithm and a few
experimental results are presented in the first paragraph of this section.

4.1 Algorithm principle

Let us assume that we want to match n images, given in no particular order.
In a first step, they are matched pairwise as above. The matches may be
summarized as a “match-graph”: the graph’s vertices are the image features,
and its edges are the feature matches.

From this graph, we want to compute a hyper-graph which has the same
vertices and whose hyper-edges represent global matches. Another way to state
this problem is to search for a partitioning of the match-graph, such that each
of the obtained components is a global match.

4.1.1 A first simple method: connectedness

A first simple idea consists of finding the connected components of the match-
graph. By itself, this method gives bad results: any error links two components
that should have remained separate and thus has a catastrophic effect. If more
than ten images are involved, the biggest components typically contain at least
ten to twenty features of each image.

F1G. 11 shows a part of the match-graph of a set of images. The features
of all images were ordered such that features having the same number should
go in the same global match. Correct matches are shown with continuous lines
and false matches with broken ones. The three errors in the figure are enough
to merge the first four global matches, and it is clear that every error can merge
two such components and thus has a catastrophic effect.
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Figure 11: When considering connected components, every error has a catas-
trophic effect.

The drawbacks of this method are threefold:

e the existence of a single path between two features is too weak a relation,
and does not take the available redundancy into account. Consider two
cases: in the first one, there exists only one path between two features
f1 and fy, and the length of this path is 10; in the second case, there
exist 10 paths of length 2 between these two features. It is clear that the
probability that f; and fo are in the same global match is much bigger
in the second case than it is in the first one. We would like the algorithm
to take such an information into account.

e the constraints of the problem are neglected: it is not common for two
features of the same image to belong to the same global match (although
it does happen when a corner gives rise to two points rather than one).
The case of 3 features of the same image may be excluded a priori. Ideal
components should contain, in the best case, one feature of every image.

e as stated before, every error has a catastrophic effect.
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4.1.2 Second method: strong connectedness

We want to eliminate these drawbacks, especially the last one, so that one
error is not sufficient to merge two components. We define the notion of strong
connectedness. Two features are said to be k-strongly connected, if there exist
at least k& paths of length less than or equal to 2 between the two features in
the matches graph.

It is then possible to search for the equivalence classes of the transitive
closure of this relation for a given k. This method provides much better results
than the first one, but raises the problem of choosing the threshold k.

4.1.3 Third method: strong connectedness and threshold adapta-
tion

To deal with this last problem, we propose a method to automatically adapt
the threshold k. Let Cy = {c.} be the set of all components obtained with
the relation of strong connectedness for a given threshold k. It is clear that
the components of C; form a partition of those of C. Each component cfc 41
is included in a particular component (:,7c All these components may then be
organized in a tree: the root is the set of all image features; at the first level,
the tree nodes are the components c!; at level two are the components cb...
The edges between the tree nodes represent the relation of inclusion between
the components of two consecutive levels.

The F1G. 12 presents such a tree. On the first line is ¢ which regroups all
the components. The components obtained which k equal to 1, 2 and 3 are
respectively on the second, third and fourth lines.

We use the following algorithm, where n is the number of images and s,
et Sgown are two thresholds, taken respectively equal to 1.2 and 0.8 in practice,
for all examples. The algorithm is not very sensitive to these two thresholds.
They just constrain every component to have almost one feature by image.

1. The tree is examined from its root.

2. If an examined component c}'c contains more than n.s;,, features, its sons
are respectively examined. On F1G. 12, this is the case for ci, ¢? and ¢}
on the first line.

If none of them may form a final component, c}'c is a final component.
This case is illustrated by ¢} on Fig. 12.

3. If c}ic contains less than n.s4, features, it is not a final component. This
is the case for ci, ¢ or ¢3 on F1a. 12.

4. If CZ contains between n.5goyyn, and n.sy,, features, it is a final component.
This case is illustrated by c] or ¢3 on Fig. 12.

Two post-treatments are added to this search method.

Dilatation: let a final component have no final component as brother in the
tree: if it does not contain a feature from an image, and if its father
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Figure 12: An illustration of threshold adaptation. The component name is
written in the first components, and the number of contained features in written
in every component. The final components are hatched.

contains a feature from this missing image, this feature is added to the
final component.

Reduction: let a final component contain two or more features of the same
image: only the feature the most connected with the rest of the compo-
nent remains in this component. Such a reduction will be applied to ¢}
on Fi1ac. 12.

4.2 Experimental results

We applied the previous algorithm, with strong connectedness, automatic thresh-
old adaptation and the two post-treatments, to the graphs formed by point
matches only. Segments matches were deduced from point matches afterwards.

Ten images of the object shown in FiG. 3 and 7 were matched. Fia. 13
shows the result of the global match on image numbers 1, 4, 7, and 10 of the
sequence. Matching points have the same number.

During the computation, 68 global matches were found: 50 contain a feature
from every image, 5 contain a feature from only 9 images, and 4 a feature from
8 images. The average number of errors is 5 per image. These errors are
mainly due to noisy segments of the backgroung, or to the hole in the side of
the object.
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Figure 13: Global match of a set of ten images (the images presented here have
the number 1, 4, 7, and 10 in the sequence).

5 Aspect modeling

Finally, we illustrate the use of the previous algorithms to model the different
aspects of an object. The aim of this modeling process is to find which aspects
of an object are present in a set of images, and to provide a “model”, or “generic
image”, for each aspect of the object.

Many methods have been proposed in the literature to compute the different
aspects of an object from its 3D CAD model[44]. This problem is difficult,
because CAD data does not contain exactly the information needed to describe
real visual appearance, and computationally expansive, because there are many
more topological aspects than visual ones [45].

We thus take a pragmatic approach, using kind of “learning from exam-
ple” paradigm. The aspects are deduced from what is actually seen in real
images. Of course our models do not have the accuracy of CAD models, but
the complexity of the computation has no comparison also.

5.1 Modeling principle

From several images of an object, we want to automatically establish a model
of all aspects of the object that are represented in the image set. With this
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aim in view, we use the following algorithm.

1. The images are matched pairwise.

2. A dissimilarity measurement is evaluated for each pair of images. The
results are put in a dissimilarity matrix.

3. A hierarchical clustering algorithm is used to gather images representing
the same or nearby aspects of the object into components.

4. In each components, a global match is made using the partial matches
computed at stage 1.

5. A model of each represented aspect is computed from these global matches.

Stages 1 and 4 have been already described. The three other stages are
described below.

5.1.1 Image dissimilarity

We need to evaluate the dissimilarity of the contents of two images. This can
be done by computing the fraction of the image tokens that were matched
between the two images. We use the following formula for two images I; and
IQ:

2 N’U(Il) X NU(IQ) lNe(Il) X Ne(IQ)

A, Ir) = 5 Ny (I1, 1) 3 Ne(,12)?

where N,(I) and N.(I) are respectively the number of vertices and the
number of edges of image I, and N, (I, I) and N(I,I;) are respectively the
number of vertex matches and of edge matches between the two images.

The value of the dissimilarity is thus 1 when the images are totally matched,
and oo when the matching algorithm has failed totally. It is not a distance in
a strict mathematical sense, but it is sufficient for a clustering algorithm.

O & £ - H
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Figure 14: Six views of an object.

For example, consider the six images shown in F1G. 14. They were matched
using Euclidean invariants, and their distance matrix is:

1 1.82859 11.8551 13.6304 27.2987 61.0833
1.82859 1 2.35642 24.6308 23.7482 15.5712
11.8551 2.35642 1 2.42964 18.4236 38.6125
13.6304 24.6308 2.42964 1 2.78519 41.875

27.2987 23.7482 18.4236 2.78519 1 2.67569

61.0833 15.5712 38.6125 41.875 2.67569 1
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5.1.2 Hierarchical clustering

Numerous clustering methods are proposed in the literature [46, 47]. They
usually require either a threshold or the final number of clusters to be given as
input to the algorithm.

As we do not have any idea of the number of clusters that should be ob-
tained in our case, we preferred to use a hierarchical merging method based on
a threshold to partition the initial image set.

1. Each image is put in a different set.

2. The two nearest sets (the least dissimilar ones) are merged if their dis-
similarity is smaller than a given threshold.

3. The dissimilarity matrix is updated. The dissimilarity between two image
sets is, by definition, the mean dissimilarity between the images of the
first set and the images of the second one.

4. The stages 2 and 3 are repeated until no more sets can be merged.

Updating the matrix is easy. If I, J and K are three image sets, and if |L|
denotes the number of elements of a set L:

1
dIUJK)= —~ d(i, k)
TOTR 2,

1] ||
= d(I,K
TUJ| (7 )+|IUJ|

d(J, K)

The choice of threshold is critical. In our experiments, we had to adapt the
threshold according to the image quality. Noisy images need large thresholds
(between 10 and 20), while exact data, coming from CAD models for example,
needs smaller ones (around 2 or 3).

5.1.3 Modeling

In the last stage of the process, the images have been grouped into components
that partition the initial image set, and in each component, the images have
been globally matched. The aim of the last stage is to establish a “model
image” for each component.

For each component, a key image is chosen. All of the other images in the
component are transformed by a homography to be as close as possible to the
chosen image (this homography was already computed during the matching
improvement stage).

The model is a new image which contains the vertices and edges present
in at least 60% of the component images. For features that are chosen to be
part of the model, their positions are computed as the mean position of the
corresponding features in the transformed images.

The rate of 60% is smaller than the sgy,,, threshold previously used, because
the reduction post-treatment may reduce the number of features in the global
matches.
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5.2 Experimental results

24

Figure 15: 78 images of an object.

To test the modeling algorithm, we used the object shown in Fig. 15.
Seventy eight images of this object were taken by turning the camera around
it. With a dissimilarity threshold equal to 10 in the clustering algorithm, we
obtained 10 image sets S;: FI1G. 16 shows the features extracted from four
images of each set, and the model computed for this set.

Here are the images contained in each set:

S, = {1,2,3,33,34, 35,36, 37,67,68,69, 70}  Sg = {46,47}
Sy ={4,5,6,7,38,39,40,41,71,72,73,74}  S; = {15,16,17, 18,48, 49,50, 51,52}

Sy = {8,9,42,43,44, 45,75, 76} Ss = {19,20,21, 22,23, 24, 53, 54, 55, 56}
S, = {10,11,12, 77,78} Se = {25, 26,27, 57,58, 59, 60, 61,63}
S5 = {13, 14} S1o = {28,29, 30,31, 32, 62, 64, 65, 66}

It should be noted that the object is almost symmetric with respect to a
vertical plane and each set contains some images taken from both sides of the
object.

To illustrate the modeling algorithm, we also used the images shown in the
previous sections, which have more numerous features. The model shown on
the left of F1G. 17 was computed from the ten images of the object shown on
Fic. 3. This model contains 70 points.

The model shown on the right of FiG. 17 was computed from five images
of the house shown on F1G. 4. This model contains 181 points.

6 Conclusion

This paper has presented several algorithms for image matching and object
modeling, in the case where the images are formed of line segments and vertices
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Examples of images from each set
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Figure 16: Four images and the model of each set.

or points between these segments. These allow two or more images to be
matched, and the different aspects of an object to be modeled. All these
algorithms were illustrated with results obtained from real images.

These algorithms are based on the use of local planar invariants and a global
constraint (all of the matches have to be consistent with the same apparent
motion).

These tools allow us to:

e use uncalibrated cameras or stereo rigs,
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Figure 17: The two obtained models.

e manage the case where there are mobile objects in the scene,
e work with noisy images and occluded objects,

e keep a low complexity.

These advantages allow us to deal with problems for which no other ex-
isting method is applicable, and the results clearly show the robustness of the
methods.

The work may be extended in three directions.

1. The basic algorithm, that of two image matching, is based on the exis-
tence of local quasi-invariants. It ought to work with other features, such
as curves for example.

2. The models we obtain summarize the object features that are stable and
characteristic. These may be used to recognize the object in other images.
The problem is to be able to index such models in a data base, and to
have an efficient search algorithm.

3. The modeling process is quite close to the “learning from example”
paradigm. The problem is to show that our modeling technique really is
a learning process, i.e. that the models that are built allow a better and
faster recognition than the initial images.
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