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1 Introduction

The first major contribution of this paper is to propose a nesthematical approach that can be used to derive
conditions for the existence and uniqueness of a gene ofavariational inequalities of the form: Finde R™
such that

(Mu+ q,v—u) + ®(v) — P(u) >0, Vv € R" 1)

whereM € R™ " is a real matrixgy € R™ a vector andd : R"” — RU{+occ} a proper convex and lower
semicontinuous function.

In this paper, we first develop a topological approach usingu®er degree theory that has been introcuded in
[29] for the caseb = ¥ whereV i denotes the indicator function of some nonempty closedeosgtK’. This
approach reduces the study of probl&in (1) to the one of somiec@Mplementarity problems like:

z € D(P)s
Mz € (D(®o))" )

(Mz,z) <0,

where D(®), is the recession cone of the domain®fand (D(®.,))* is the dual cone of the domain of the
recession functio®,, of ®.

Then we show that this approach can be used to state corglitiothe existence and uniqueness of solutions of
Problem[(ll) for various important classes of matrigésnd functionsp. In particular, we show that fundamental
results known in complementarity theory and concerningss\wclasses of matrices like positive definite matri-
ces, P-matrices, weakly positive definite matrices, pasistable matrices, diagonally stable matrices, positive
semidefinite matrices,Pmatrices, weakly positive semidefinite matrices, positigemi-stable matrices, coposi-
tive matrices and diagonally semi-stable matrices can hergdized to probleni1). Recession tools play a
major role in this approach.

Then we present how our theory for probldth (1) can be usedriteedeonditions for the existence and uniqueness
of solutions of the generalized equation
Az + Du € BOZ(Cx) 3)

whered ¢ R"*",B € R™"™,C € R™*" andD € R"*? are matricesy € IR” is a vector=Z : R" —
R U{+o0} is a proper convex and lower semicontinuous function @rmtenotes the subdifferential operator of
convex analysis.

The second major contribution of this paper consists to gheivthe mathematical model i (3) and consequently
in @) can be used to develop a suitable methodology for thattation and mathematical analysis of circuits in
electronics involving devices like diodes and operati@maplifiers.

As shown through several examples of classical static radattircuits like clipping circuits, slicers, sampling
gates, operational amplifiers, four-diode bridge full-eaectifiers, such generalized equations are mandatory
studying to characterize the well-posedness of the cB¢uitnay be a time-varying input signal— «(t)) as well

as to compute some defined output signal. We show also tha¢si#ts which are presented in this paper can be
useful for the determination of the equilibrium points ohdynical circuits, a topic of major importance for further
dynamical analysis and control applications.

2 Mathematical Tools

The aim of this Section is to recall some notions and funddateasults in convex analysis which will be used
throughout this paper.

For z,y € R™, the notation(z,y) = > I, z;y; is used to denote the euclidean scalar produckénand
llz|| = v/{z, ) to denote the corresponding norm. The identity mappingbvill be denoted byidg~ while the
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identity matrix of ordem is denoted byl. We will also denote byfe?, ..., e"} the canonical basis @".

e [Convex subdifferential] Let g (R™; R U {+o0}) be the set of proper, convex and lower semicontinuous func-
tions fromR™ to R U {+o0}. Let® € T'h(R™; R U {+0o0}) be given. The convex subdifferentia®(z) (see e.g.
[B0], [25]) of ® atx is defined by:

0P(z) ={w e R": ®(v) — ®(z) > (w,v — z),Vv € R"}.

The setb®(z) describes the differential properties®dby means of the supporting hyperplanes to the epigraph of
D at(z, P(x)).

e [Fenchel transform] Let @ € I'o(R™; R U {+00}) be given. We denote b (®) the domain ofd, i.e.
D(®) = {z e R": &(z) < +o0}.
The Fenchel transforr* of ® is the function defined by:

O*(2) = sup {{z,z) — ®(z)}, (2 € R").
z€D(P)

The function®* : R” — R U {+o0} is proper convex and lower semicontinuous. A well known itdalconvex
analysis (see e.d. [BO[, T45]) ensures that:

z € 00(x) <=z € 00" (2) <= P(z) + P*(2) = (=, 2).

e [Closed convex setl.et K C R™ be a nonempty closed convex set. We denot& lythe indicator function of
K, thatis:

0if ze K
Uk(x) := , (xeR™). (4)
+oo if 2 ¢ K
Then
{weR" : (w,v—2)<0,Ywve K} if xe€ K
a\I/K($):
0 ifed¢ K
and

Wic(2) = sup (2,2), (2 €R).
reK

The dual cone of is the nhonempty closed convex coR€ defined by

K*:={weR": (w,v) >0, Yv € K}. (5)

e [Recession function]Let z( be any element i) (®). The recession function df is defined by

D(z) = lim %fb(:co + Az) (z € R").

A— 400

The function®, : R” — R U {+o0} is a proper convex and lower semicontinuous function whiescdbes the
asymptotic behavior ob.

e [Recession conel.et o be some arbitrary element &f. The recession cone & is defined by

1
Ko=) 5 (K — o).
A>0
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The setK, is a nonempty closed convex cone that is described in terrieafirections which recede frokd.

Let us here recall some important properties of the recedsitction and recession cone (see Section 1.41h [27]):

Proposition 1 a) Let® : R” — R U {+o0} be a proper convex and lower semicontinuous function. Then

D (ax) = aPso(x), (a >0, x € R™), (6)
@ocle) = timint U (o e, %

(x € D(?),e e R") = Dy(e) > P(x+e) — P(x). (8)

b) Let®; : R" — RU {+o0} and®, : R" — R U {400} be two proper, convex and lower semicontinuous
functions. Then

(@14 P2)oo () = (P1)oo () + (P2)oo (), (w € RY). ©)

c) Let K C R™ be a nonempty, closed and convex set. Then

(VK)o () = Vi (z), (z€R"), (10)

(xeK,e€c Ky) = x+ecK. (11)

d) Let K C R™ be a nonempty closed and convex cone. Then
K. =K. (12)
e) LetK C R"™ be a nonempty compact and convex set. Then

K = {0} (13)

e [Proximation operator] Let ® € I'o(R"; R U{4o0}) be given. It is known that for eaghe R", there exists a
uniquez € R™ such that
(x —y,v—x) + P(v) — ®(x) >0, Vv € R",

that is
y € x4+ 0P(x).

The mappingPs : R™ — R"; 3y — Pg(y), called the proximation operator (see elgl [43]), and ddfine
Py (y) = (idg~ +0®) " (y), (y € R") (14)
is thus a well-defined singled-valued operator. Moreovés,easy to check that:
1
yex+00(z) = = (idgn +00) (y) =z = argminveRn{§||v —y|]* + ®(v)}.

If K is a nonempty closed convex set, then
P\pK = PK

wherePg denotes the projector frofd™ onto K, i.e.

) 1
Py (w) = argmin,e {5 [lv — =[]}
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e [Brouwer topological degree]Let D c R™ be an open and bounded set.fIt D — R™ is continuous and
0 ¢ f(0D) then the Brouwer topological degree pivith respect taD and0 is well-defined (see e.gl[B5]) and
denoted byleg(f, D, 0).

Let us here recall some properties of the topological degeewill use later in this paper.
P1. Solution property: If 0 ¢ f(0D) anddeg(f, D,0) # 0 then there exists € D such thatf(x) = 0.

P2. Homotopy invariance property: Let p : [0,1] x D — R"™; (), z) — ©(\, x), be continuous such that, for
each) € [0,1], one ha®) ¢ (A, D). Then the map — deg(p(),.), D, 0) is constant o0, 1].

P3. Normalized property: If p € D thendeg(idg» — p, D,0) = 1.

3 ACClass of Variational Inequalities
Let® : R" — RU {40} be a proper, convex and lower semicontinuous function wikezl domain, i.e.
D(®) = D(®). (15)
Let M € R™*™ be a given matrix ang € R™ a given vector. We consider the variational inequality feob
VI(M, q,®): Findu € R" such that:
(Mu+ q,v—u)+®(v) — P(u) >0, Yo € R". (16)

The solution set of probleWI(M, q, ®) will be denoted bySOL(M, ¢, ®) and the resolvant set By (M, ),
that are:
SOL(M,q,®) := {u € R" : u solution of {I8)}

and
R(M,®) :={qeR": SOL(M,q,®) #0}.

Remark 1 i) The variational inequality in[1l6) is equivalent to thdfdrential inclusion:
Mu+q e —0%(u) (17)
andR (M, ®) is nothing else that the range of the set-valued mapping — Mz — 0®(x), i.e.

R(M,®) = Ugern {—Mx — 0D(x)}.

i) If a solution of [I®) exists, let us say", then: (Mu* + q,¢) + ®(u* +e) — P(u*) > 0, Ve € R™ and then
using [B), we get{Mu* + q,e) + P (e) > 0, Ve € R™. It results that necessarily:

(g,€) + Poo(e) >0, Ve € ker{MT}. (18)

iii) Condition (I3) is not really necessary to develop oupagach but it is assumed in order to simplify its presen-
tation.

3.1 Special classes of matrice®/ and functions ¢

In the study of ProblenVI(M, q, ®), the following definitions of various special matricés and functionsb
will be used.
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e We denote by['(R™;R U {+o0}) the set of proper convex and lower semicontinuous functbnsR” —
R U {400} with closeddomain, i.e.:

D(R™RU {+00}) := {® € To(R";RU {+00}) : D(®) = D(P)}.

e We denote byDT'(R™; R U {400}) the set of function® : R™ — R U{+oc0} with the "diagonal” structure:

where, for alll < i < n, we have
®, € T(R"; RU{+0}) (20)
and
D;(A\z) = AP, (x), YA >0, Vo € R™. (21)

Itis clear that
DI'(R™;RU{+00}) CT(R";RU{+00}) C I'y(R™; R U {+0o0}).

e We define byB,, the set of M, @) € R"*™ x TI'(R™; R U {40c}) such thatD(®) is bounded.

e We define byPD,, the set of M, ®) € R"*" x I'(R™;R U {+00}) such that
(Mz,z) >0, Vo € D(®)oo,z # 0. (22)

e We define byPDO,, the set of( M, &) € R"*" x I'(R™; R U {400}) such that
(Mz,x2) >0, Vz € D(®)w. (23)

e We define byP,, the set of M, @) € R™*™ x TI'(R™; R U {+00}) such that
r€D(®)s = (z,¢')e! € D(®s) (1< j < n), (24)

and
(x € D(P)oo, 2 #0) = Ja € {1,....,n}:xq(Mx), > 0. (25)

e We define byP0,, the set of M, @) € R"*" x I'(R™; R U {+oc}) such that
2 €D(P)o = (z,6/)e! € D(®s) (1 <7< n), (26)

and
(2 € D(P)o,x #0) = Jae{l,...,n}: x4 #0and zo(Mzx), > 0. (27)

Remark 2 i) Note that bothD(®)., and D(®,) are used in[Z4) and (28).

ii) Condition (Z3) (or [ZB)) means thatif € D(®)., then its projectionw, e’} = w;el onto the space
X;={zeR":2,=0,Vk € {1,...,n},k #j}

belongs taD (P, ).

i If ® =0, withK =R, R"“x(R4)* (a € {1,...,n}) or (R)" then condition[[24) (0i{A6)) holds.
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Leto(M) C C be the set of eigenvalues bf.

e We define byPS,, the set of M, &) € R™*" x I'(R™; R U {400}) such that
D(®s) =R", (28)

and
o(M)NR CJO, +o0]. (29)

¢ We define byPS0,, the set of( M, ) € R"*" x I'(R™; R U {+0o0}) such that
D(®4) = R™, (30)

and
cM)NR CRy. (31)

Remark 3 Condition [2Z9) (resp.[{d1)) means that any real eigenvalug/ds positive (resp. nonnegative).
¢ We define byQ,, the set of( M, ) € R"*" x I'(R™; R U {+0o0}) such that
R(M,®) =R",

i.e. for eachy € R™, problemVI(M, q, ®) has at least one solution.

e We define byQ0,, the set of M, &) € R™*™ x T'(R™; R U {+00}) such that there exists, > 0 so that
R+ M, ®) =R", V0 <\< Ao,
i.e. forany0 < A < )\, and for eacly € R™, problemVI(AI + M, q, ®) has at least one solution.

Itis clear that
pPD, c PDO,, P, C PO,, PS, C PSO,,.

Subset-superset relationships cannot be expected dgatks by the following simple examples.
Example 1 Let us consider the matrices

-1 0 2 -1 1 1 1 1
Ml - ) M2 - ) M3 = ) M4 =
0 0 -1 2 —4 1 -4 -1

and the functions:
D1 =V x0,1]r P2 = VireRa)2: momar—11 P3 = V1 4oo[x[1, 400>

Dy () =|CC1 |+|CL‘2 | (VwERQ), ¢5E\IJ]R+X]R+.

Itis easy to see thdf\/;, ;) € Bg and(My, ®,) ¢ (PDOz uPogupsog), (Ms, ®3) € PDy and(Ms, ) ¢
(BzUPOz UPSOQ), (Mg, (133) e P, and(Mg, (133) ¢ (BzUPDOz UPSOQ). We see also thi@M4, (1)4) € PSs
and (M4, (1)4) ¢ (B2 UPDO0y U POz)

Remark 4 The class of matrices satisfying conditidnl(22) recovees dtass of positive definite matrices, the
class of matrices satisfying conditidn]25) recovers thesslof P-matrices and the class of matrices satisfying
condition [2®) recovers the class of weakly positive defimatrices and consequently the class of positive stable
matrices. The class of matrices satisfying conditlan (28pwers the class of positive semidefinite matrices, the
class of matrices satisfying conditidn]27) recovers thesslof B-matrices and the class of matrices satisfying
condition [31) recovers the class of weakly positive sefinile matrices and consequently the class of positive
semi-stable matrices. The concepts introduced above asnhb used to recover and unify several situations
involving matrices for which there is no subset-superdatienship.
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3.2 The asymptotic continuation principle

e Recalling thatD(®) is nonempty, convex and assumed to be closed, th®é®} ., is then a well-defined
nonempty closed and convex cone. Let us now consider thecmmplementarity problem:

SCP (M, ®): @)
z € D(®P)y

Mz e D(Ps)* (32)
(Mz,z) <0.
Recall thatD (P, )* denotes the dual cone &f(®,) and the second relation ii{32) reads also:
(Mz,h) >0, Yh € D(®).

Note that the first relation ifL{B2) involves the recessionecof the domain o while the second relation ilL{B2)
invokes the dual cone of the domain®{, and not the dual cone of the recession cone of the domain of

Let us now first remark that iD(®)., = D(®,) then problenSCP ., (M, ®) reduces to a classical complemen-
tarity problem.

Proposition 2 Let® : R® — R be a proper convex and lower semicontinuous function witked domain and
let M € R™*" be a given matrix. IfD(®)., = D(P,) thenz € R™ is a solution of problenSCP (M, ®) if
and only ifz is a solution of the complementarity probl&i® (M, D(®) . ):

2 € D(P)wo
Mz € (D(P)x)* (33)

(Mz,z)=0.

Proof: Let z be a solution of probleSCP . (M, ®). Then the second relation in{32) reads here
(Mz,h) > 0,Yh € D(P)so

from which we deduce in particular thét/ z, z) > 0. This together with the third relation il {32) ensures that
(Mz,z)=0.

If zis a solution of problemCP (M, D(®).,) then clearly: is a solution of problen$CP . (M, ®) too. [

Remark 5 Let® : R" — R be a proper convex and lower semicontinuous function widked domain.

i) The following inclusion holds:
D(®o) C D(P) . (34)

Indeed, lek € D(®.,) be given. Then, for someg € D(®), we have

1
D (e) = lim Xfl)(xo + Ae) = ¢ < +o0.

A— 400

Then, remarking that

lim %(I)(aro +Xe) = lim %(fl)(xo + Ae) — ®(xp)) = sup %(@(zo + Ae) — ®(xp)),

A——+00 A— 400 A>0
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we see that(zo + Ae) < A+ ®(xzg), YA > 0, so thatzg + Ae € D(®), VA > 0, and thuse € §(D(®) —
x0), YA > 0, so thate € D(P) .

i) If ® = ¥, whereK C R™is a nonempty closed convex set, then udinp (10), we see that
D((Vk)) =D(¥k.) = Koo = D(Vk)oo.

In this case, problelSCP .. (M, ¥k ) reduces to the complementarity problem:

z € Ky
Mz e (Kxo)* (35)
(Mz,z)=0.

i) Let @ : R — IR be the function defined by
d(r) = 2?, Vz € R.
Then®,, = Uy, D(P) = {0}, D(®)o = IR and the inclusion in[{34) is strict.

e Let us now denote b (M, ®) the solutions set of probleBICP (M, ®). Remark that problef8CP .. (M, ®)
has at least one (trivial) solution sinéec B(M, ).

Let us also set:

K(M,®) = {x € R" : Mz € D(®s)*}, (36)
No(M) ={x e R" : (Mz,x) =0}, (37)
N_(M)={zeR": (Mz,z) <0}, (38)
Ni(M)={z eR": (Mzx,z) > 0}. (39)

Proposition 3 Let® : R™ — R be a proper convex and lower semicontinuous function and/let R™*™ be a
given matrix. Ifu; anduy denote two solutions of probleMI(M, ®, q) then

up —ug € N_(M).

Proof: If u; anduy denote two solutions oVI(M, q, ®) then(Mu; + q,us — u1) + ®(uz) — ®(ug) > 0 and
(Mus 4+ q,u1 —u2) + ®(u1) — ®(uz) > 0 from which we deduce thdi\/ (uq — uz), u1 — u2) < 0. O

The structure of the sé(M, @) can be specified in several situations that are describdzifotiowing proposi-
tion.

Proposition 4 Let® : R™ — R be a proper convex and lower semicontinuous function witkedd domain and
let M € R™ " be a given matrix.

a) We haveB(M, ®) = D(®)o NN_(M) NK(M,®). b) If D(Ps) = D(P)s thenB(M,d) = D(P)o N
No(M) N K(M,®). ¢) If D(Ps) = R™ thenB(M,P) = ker{M}. d) If D(®,) = R™ and M is invertible
thenB(M,®) = {0}. e) If (M, ®) € B,, thenB(M, ®) = {0}. f) If (M, ®) € PDO,, UPO,, thenB(M, ?) =
D(®)oo NNo(M)NK(M, D). g) If (M, D) € PSO,, thenB(M, ®) = ker{M}.
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Proof: a) Part a) is a direct consequence of the definition of thé8é&f, ®). b) Part b) is a direct consequence
of Propositior[R. c) Herd(®.,)* = {0} andK(M,®) = ker{M} C N_(M) so thatB(M,®) = ker{M}.

d) Part d) is a direct consequence of part c). Mf, ®) € B,, thenD(®) is bounded and thuB(®)., = {0}.
f)If (M,®) € PDO,, then(Mz,z) > 0,Vz € D(®)s and thusD(®)o NN_ (M) = D(®)oo N No(M). Let
(M, ®) € PO, be given. Letw € B(M, ®) be given. It suffices to check théd/w,w) = 0. We know that:
(Mw,h) > 0,Yh € D(®s). Letj € {1,...,n} be given. We may set = (w,e’)e’ to get(Mw);w; > 0.
This last relation holds for all € {1,...,n} and sinced > (w, Mw) = Z?Zl(Mw)jwj we obtain finally that
(Mw,w) = 0. g) Part g) is a direct consequence of part c). O

Definition 1 We define bAC,, the set of M, ®) € R™*" xI'(R™; R U {+o00}) such that

vt e [0,1] : B((1—t)I +tM,®) = {0}.

In other words, we say that the cougl&/, @) is of classAC,, provided that, for alk € [0, 1], 0 is the unique
solution of problenBCP . ((1 — t)I + tM, ).

This concept that may appear technical can in fact be usesttiver various important situations. This is shown
in the following proposition.

Proposition 5 We have:
B,uUPD, UP,UPS, C AC,.

Proof: a) We prove thaB,, C AC,,. HereD(®) is assumed bounded and thli$®)., = {0}. If ¢ € [0,1] and
z€ B((1—1t)I +tM,®)thenz € D(®) and the result follows.

b) We prove thaPD,, ¢ AC,,. Let(M,®) € PD,, ¢t € [0,1] andz € B((1 —t)I + tM, ®) be given. Then
z € D(®) and
(1=t)z+tMz,z) <0.

If t =1then(Mz,z) < 0and[ZP)yields: = 0. If 0 < ¢ < 1then

1] < —— (M2, 2)

1-t¢

and from [2R), we deduce that necessazily 0. The result follows.

¢) We prove thaP,, C AC,,. Let(M,®) € Py, t € [0,1]andz € B((1 —t)I + tM, @) be given. We assert that
z = 0. Suppose on the contrary thatt 0. We claim that there exists some index {1, ...,n} such that

(1 —t)2f +t(Mz)pzp > 0.

Indeed, if0 < ¢ < 1 the result follows from(25) since € D(®).., z # 0 while if ¢ = 0, the result is trivial since
z # 0. We know that
(1=t)z+tMz,h) > 0,Yh € D(Do).

Letj € {1,...,n} be given. Using[d5), we may skt= (z,e’)e’ to get
(1- t),zj2 +t(Mz)jz; > 0.
This last relation holds for all € {1, ...,n} and since

(1=t)z+tMz,z) <0,
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we get the contradiction:

0> (1—t)zf +t(Mz)gzg + Z(l - t),zj2 +t(Mz)jz; > 0.
J#k
d) We prove thaPS,, C AC,,. Let(M,®) € PS,,t € [0,1] andz € B((1 — ¢)I + tM, ®) be given. We claim
thatz = 0. Suppose on the contrary that4 0. HereD(®.,)* = {0} and the second relation il{32) yields
(1-t)z+tMz=0.

If t = 0thenz = 0 and a contradiction. I < ¢ < 1 then

Mz=—(1;t)z

. _ (-1 i i icti
so thatv* := ——= < 0 is a real eigenvalue ¥/ and a contradiction tg(29). O

Let us now give some additional properties that will be useelr|

Proposition 6 Let® : R"™ — R be a proper convex and lower semicontinuous function witkedd domain and
let M € R™*" be a given matrix. If

(M, ®) € PDO,, UPO, UPSO0,

then
VA >0, (M + M,®) € AC,.

Proof: Let A\ > 0 be given.

a) If (M, ®) € PDO, then condition[[23) o/ entails that\] + M satisfies conditiorf{22) and the result is a
consequence of Propositibh 5.

b) If (M, ®) € PO, then condition[(27) o/ entails that for eachh € D(®), z # 0, there exister € {1,...,n}
such that:

To(AT + M)y = A2 + 24 (M2)y >0
and thus\I + M satisfies conditior[{25) and the result follows from Propios[3.
b) Let (M, ®) € PS0, be given. Lett € [0,1] andz € B((1 — ¢)I + tM, ®) be given. We claim that = 0.
Suppose on the contrary that 0. Here from [ZB) we deduce th&l(®.,)* = {0} and the second relation in

@2) yields
(I=t)z+tMz+1t z=0.

If t = 0thenz = 0 and a contradiction. I < ¢ < 1 then

1—t
MZZ—( ; )z—/\z

so thatv* := —@ — A < 0is areal eigenvalue af/ and a contradiction td_(B1). O

The following Theorem is the basic result of this Sectionredduces the study of the general class of
variational inequalitieVI(M, q, ®) to semi-complementarity problenCP . (tM + (1 — t)I, ®) (¢ €
[0, 1]) involving the convex combinations of the matd{ and the identity matriX. More precisely, we prove
that if the couplg M, ®) € AC,, then for eacly € R™, problemVI(M, q, ®) has at least one solution. In other
words we prove that

AC, C Qa.
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Theorem 1 (Asymptotic continuation principle) If
(M,®) € AC,
then, for eacly € R™, problemVI(M, q, ®) has at least one solution.

Proof: Letq € R™ be given. From[[14) and{lL7), Problevil(M, q, ®) is equivalent to the fixed point problem:
u=Pp(u— (Mu+q)).
Let us now define by : [0, 1] x R™ — R" the continuous homotopy denoted as
H(t,u) = Py (tu — t(Mu+q)) = Po(u— (t(Mu+q) + (1 — t)u)).
We claim that there exist8, > 0 such that for allR > R, and for allt € [0, 1],
H(t,u) # u, Yu € R",||u]| = R. (40)

Indeed, if we suppose the contrary then we may find sequeficesy C [0, 1] and{w;};en C R" satisfying
[lu;|]| — +o0 andu; = H(t;,u;). Then
Itis clear from [41) that
u; € D(®) (i € N).
Moreover, fori large enoughl|u;|| # 0 and we may set:
Uq
Zi =

il

There exists subsequences, again denotdd,byand{ z; }, such thatim; ., o t; = ¢ € [0, 1] andlim; _, 4 o 2; = 2
with ||z]| = 1.

Letxzg € D(®) be any element in the domain &f Let A > 0 be given. For large enoughﬁ < 1 and thus

A
—u; + (1 — —)zo € D(P)
1 i
since the seD(®) is convex.

Recalling that the seb(®) is assumed to be closed and taking the limit as +oco, we get\z + 29 € D(®).
This result holds for any > 0 and thus

ze () %(D(cb) —20) = D(P) oo (42)

Lete € D(® ) be given. Then fronf{34}, € D(®)., and from[IL)u; +e € D(P). We may thus set = u; +e
in ) to get
(1 - ti)ui + ti(Mu; + q), €> + ®(u; +e) — @(ul) >0

and thus usind{8), we obtain
(1 =ti)ui,e) + (ti(Mu; + q),e) + P (€) > 0.
Note that® ., (e) < 400 sincee € D(®,) and we may therefore divide this last relation|hy|| to get:

1
(1 =tz e) + Mz +t,— L e) + Tl
3

D (e) > 0.
i
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Taking the limit ag — +oo, we get((1 — ¢)z + tMz,e) > 0. This holds for any € D(®,) and thus
(1—t)z+tMz e D(D)". (43)
Setting now = x in @), we obtain:

The function® is proper, convex and lower semicontinuous, and thus (sedbeorem 1.1.11 in[27]) there exists
a > 0 andb € R such that:
O(z) > —allz|| + b, Vo € R™.

Thus
(1= ta)lwl[* + ta(Mug, ui) < af|ug]] — b+ (1 — ti)ui, wo) + (tiMus, m0) + (tig, T — wi) + P(0).

Dividing this last relation by|u;||?, we get:

a b

To
1 —t)z]? + ¢ Mz, zi) < — + (t;Mz;, —— )+
(= tll=ell” 4 feiM oz, 20 gl gl iz ||uz'||>
Zo q Zo P(x0)
U= ) (o, T2 e, 10— ) 0,
T | Tl Nl |7 a2

Taking the limit ag — +o00, we get
(1=t)z+tMz,2) <0.

This last relation together witli(¥2) arld143) imply that 5((1 —t)I + tM, ®). Moreoverz # 0 and we obtain
a contradiction to our assumption requiring thaf, ®) is AC well-posed.

Thus, forR > Ry, (@0) holds and the Brouwer degree with respect to thdsget= {z € R™ : ||z|| < R} and
0 of the mapu — u — H(t,u) is well-defined for allt € [0,1]. SetR; := Py (0) and letR > max{Ry, R1} be
given. Using the homotopy invariance property as well aswrenalized property of Brouwer degree, we obtain:

deg(ZdR" - P@ (ZdR" - (M =+ q)7 DR7 O) = deg(idR" - H(17 ')7 DR7 O)

= deg(idg» — H(0,.), Dg,0) = deg(idgn — P5(0), Dg,0) = 1.
It results from solution property of Brouwer degree tR&L(M, q, @) # () and the result follows. O

3.3 Positivity and solvability conditions

Using Theorerilll together with Propositldn 5 we obtain
B,UPD,UP,UPS, C AC, C Qn
and we get the following result ensuring that for each R™, problemVI(M, q, ®) has at least one solution:

Corollary 1 If
(M,®) € B, UPD, UP,, UPS,

then
R(M,®) =R"™

Each matrix discussed in Corolldiy 1 presents some "pdgitproperty” and is nonsingular o (®). in the
sense that:
D(®)o Nker{M} = {0}.
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3.4 Nonnegativity and solvability conditions

Let® : R" — RU {+oc} be a proper, convex and lower semicontinuous function witsed domain and let
M e R™™ be a matrix. In this Section, we will assume thaf, ¢) € QO0y,.

Theorem 2 If (M, @) € Q0,, andB(M, @) = {0} then

R(M,®) =R"™
Proof: Here there exists, > 0 such that:
R+ M,®)=R", V0O <\ < . (45)
It results that for alk € N, 7 > Alo there exists;; € R™ such that
1

We claim that the sequende,;} = {u;;7 € N\{0}} is bounded. Suppose on the contrary thaf|| — +occ as
i — 4o00. Then, fori large enough||u;|| # 0 and we may set; := ﬁ There exists a subsequence, again

denoted by{ z; }, such thatim; . o, z; = z with ||z|| = 1.

Itis clear from [45b) that
u; € D(®) (1 € N,n #0).

Letxy € D(®) be any element in the domain @f Let A > 0 be given. For large enoughﬁ < 1 and thus

A A
Tal T g™ € P(@)

since D(®) is convex andry € D(®). Taking the limit as — 400, we get\z + xo € D(®) sinceD(®P) is
assumed to be closed. This result holds for any 0 and thus

2€ () (D) ~ o) = D). @7)

Lete € D(® ) be given. Ther € D(®)., and from[IL)u; + e € D(®). We may sev = u; + e in (@) to get
1
<(zl + M)ui +q,e) + ®(u; +e) — @(u;) > 0

and thus usind{8), we obtain
1
<Eui’ e) + (Mu; + q,e) + P (e) > 0.
Remarking thaf®,(¢) < +oo sincee € D(®,), we may divide this last relation byu;|| to get:

q 1
——e)+ ——P
il sl

Taking the limit ag — +oo, we get(M z, e) > 0. This holds for any: € D(®,) and thus

<%Zi7€> + (Mz; + (e) > 0.

2 e K(M, ). (48)

Setting nowv = x¢ in [@4d), we obtain:

Slhual? + (Mt i) < (1 Mus, z0) + (g, 70 — i) + B(ao) — B(u). (49)
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The function® is proper, convex and lower semicontinuous, and thus (ge@ beorem 1.1.11 il [27]) there exists
a > 0 andb € R such that:
O(z) > —allz|| + b, Yz € R™.

Thus )
(Mu;,u;) < allw]] —b+ <(;I+ M), xo) + (g, v0 — i) + P(z0).

Dividing this last relation by|u;||?, we get:

Ot < i = e G+ M0 ) + Gl oy =0 +
Taking the limit asi — +o0, we get(M z, z) < 0. Thus
ze N_(M). (50)
Using [4T), [4B) and{30) we obtain that
z € B(M, D).

Finally, we get a contradiction since we have proved thgt0 andz € B(M, ©).

The sequencéu; } is thus bounded and there exists a subsequence, again di¢ngfevhich converges. Let us
set

u= lim wu,.
1——+o00

Letv € R" be fixed. We have:
(T + Mus + g5 — ) — 2(0) + B(ur) < 0.
Taking the limit inferior ag — +o0, and using the lower semicontinuity ®f we obtain:
(Mu+ q,u—v) — ®(v) + P(u) <O0. (51)

The vecton has been chosen arbitrarilyi* and thus the result ili.{b1) holds for alie R™. The existence result
follows. O

From Theorerfi]l and Propositibh 6, we have
PDO,, U PO, UPS0, C Q0,

and thus if(M, ®) € PDO, U P0,, U PS0, and B(M,®) = {0} then (M, P) € Q. This together with
Propositiorh give:

Corollary 2 If
(M, ®) € PDO, U PO, UPSO0,
and
D(®)oo NNo(M) NK(M, @) = {0}
then

R(M,®) = R".

Remark 6 Various other classes of couplet/, ) can be studied in using the asymptotic continuation prilecip
This is however not the main deal of this paper and will bewlised in a future work.
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3.5 Existence and uniqueness results

In requiring some additional structural properties®ms specified in[(19)[{20) anf{21), the uniqueness of the
solution of problenWVI(M, q, ®) can be proved. The following resultis a generalization oéf-known existence
and uniqueness theorem in complementarity theory. Réwit € DT'(R™; IR U{+o0}) means that

where, for alll < i < n, we have
P, e T(R"; RU{+0}) (53)
and
D, (A\x) = AP;(x), VA >0, Vo € R™. (54)

Theorem 3 Suppose that
® € DT'(R™;RU {400})

and letM € R™*™ be a P-matrix, i.e.
r#0 = FJaec{l,..,n}:z,(Mx)y > 0. (55)
Then, for eacly € R™, problemVI(M, q, ®) has a unique solution.

Proof: We first remark that her®(®) = D(®,) x D(®3) x ... x D(®,). Moreover, as a consequence of
assumption§(83) an{b4), each B&tb; ) is a nonempty closed convex cone and th{®)., = D(®). Moreover,
the functiond is positively homogeneous and thits, = ®, D(®.) = D(®). We claim that M, ) € P,,.
Indeed, ifr € D(®)o, = D(®) then for allj € {1,...,n}, we see thatz,e’)e/ = (0 ... 0 z; 0 ... 0)T

€ D(®1) X ..D(Pj_1) x D(®;) x D(Pj41) x ... x D(®,,) and thus(z, e/ )e/ € D(®) = D(P). This together
with (&8) ensure that)M, @) € P,,. The existence result is then a direct consequence of @oyHll

To prove the uniqueness, suppose by contradiction thalgmoWI(M, q, ®) has two different solutions and
U. We set

We have
(w,v —u) + ®(v) — P(u) > 0,Yv € R" (56)

and
(Wyo—=U) + ®(v) — ®(U) > 0,Vv € R". (57)

We may set = u + (u,e’)el € D(®) (1 < j <n)in (&H) to get

0 <wju; + Z Dy (up + ujei) - Z D (uy) = wi; + <I>j(2uj) - (I)j(uj‘).
k=1 k=1

Thus, for all integers < j < n:
0 <wjuj + P;(uy). (58)

Using [&T), we check in the same way that, for all inteders j < n:
0 < W,U; + ®;(U;). (59)
Letus nowset = u + (U,e?)e/ € D(®) (1 < j < n)in (&H) to get
0 < w;Uj 4 @;(uj + Uj) — ;(uy) (60)
andv =U + (u,el)e? € D(®) (1 < j <n)in &) to get

0< WjUj—F(I)j(Uj—FUj)—‘I)j(Uj). (61)
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Settingv = 0 in (&8), we get also
0> (w,u) +P(u)

and thus .
0> [wju; + ;(uy)]. (62)

Jj=1

Using [5T) we prove in the same way that
0> [W;U; + ®;(U;)]. (63)
j=1

Using [58) and[[39) together with{62) afldi63), we see tlaiall integersl < j < n:
wjug + ®j(uj) =0, W;U; + @;(U;) = 0.

Then, for all integerg < j < n:

(u=0U);(M(u—-0)); = (uj — Uj)(wj = W) = ujw; + UjW; —u;W; — Ujw; <

< =®;(uy) — @;(U;) + @ (Uj + uj) — ;(Uj) + 5 (uj + Us) — ©5(uy)
=29, (u; + Uj) — 2(®;(uy) + @;(Uj)).
Note that
1 1 1 1
20;(u; +Uj) = 2@3'(2(5%' + ng)) = 4@3'(5%' + ng) < 2(2(uy) + @5(U;))-

Thus, for all integers < j < n:
(u=0U);(M(u-"U)); <0.

Recalling that: — U # 0, a contradiction to[{35) has been obtained. O

Remark 7 The famous result on complementarity problems with P-iedr{see e.gl[18]) can be easily deduced
from Theorerl3. Indeed,df = ¥R, )~ then® can be written as if@2) with; = U, (1 <i<n)andifM is

a P-matrix then Theorefd 3 can be applied to ensure that foh @ae R™, there exists a unique € (IR,)™ such
that Mu + g € (R4)™ and(u, Mu + ¢) = 0.

The following variant of Theorelid 3 can be used provided thaftinctionsp; (1 < < n) are strictly convex.

Theorem 4 Suppose that
® € DT(R™; R U{+0})

and
®; is strictly convex(1 < i < n), (64)
where®; (1 < < n) as given in[BR).
Let M € R™*N be aP,-matrix, i.e.
r#0 = Jae{l,..,n}:xy, #0andz,(Mz), > 0. (65)

(a) Then, for eacly € R™, problemVI(M, q, ®) has at most one solution.
(b) If D(®)oe N No(M) NK(M,®) = {0} then, for eacty € R", problemVI(M, q, ®) has a unique solution.



Variational inequalities via semi-complementarity preiis 19

Proof: As in the proof of Theoreml3, it is easy to check thaf, ®) € P0,,. The existence result in part (b) is
then a direct consequence of Corollfty 2.

To prove the uniqueness in parts (a) and (b), we suppose btradéstion that problenVI(M, q, ®) has two
different solutions: andU and we proceed as in the proof of Theoldm 3 to see that, fartaljersl < j < n:

(u=0U);(M(u—"U0)); <2®;(u; + Uj) = 2(P;(uy) + ©;(U;)).

Using the strict convexity of the functioris; (1 < j < n), we obtain finally that for all integers € {1,...,n}
such thatu,, # U,:
(u=U)aMu—-U))a <0

and a contradiction t¢{®5) has been obtained. O

3.6 Semicoercivity and solvability conditions

The results discussed in the previous section requirelhéf, ®) = {0}. If B(M, ®) # {0} then in assuming
some semicoercivity condition on the matriX, we may determine conditions @nensuring the solvability of
problemVI(M, q, ®).

Theorem5 Let® : R® — R U {+oo} be a proper, convex and lower semicontinuous function wihsetl
domain and letM € R™*" be a matrix. Suppose in addition that

(Mz,2) > 0,¥z € D(®) U D(D) .

If there existsey € D(®) such that:
(g — MTxg,v) + oo (v) > 0, Yo € B(M,®), v # 0, (66)

then problemVI(M, q, ®) has at least one solution.

Proof: Let ¢ € R™ be given. Herd M, ®) € PDO,, and using Propositidd 6 and TheorEh 1, we see that for all
i € N,i # 0, there exista; € D(®) such that

<(%I+M)Ui+q,v—ui>+(I)(U)—‘I)(Ui) >0, Vv € R™ (67)

We claim that the sequenéde,;} = {u;;7 € N\{0}} is bounded. Suppose on the contrary thaf|| — +occ as
i — 4o0. Then, fori large enoughl|u;|| # 0 and we may setz; := m There exists a subsequence, again

denoted by{ z; }, such thatim; . o, z; = z with ||z|| = 1.

As in the proof of Theorefl2 we check that B(M, ®). Using now[8F) withv = z, we get also:

((%I + M)ui,u; — xo) < {q, 20 — ui) + P(xo) — P(uy).

Here )
<(;I—|— M)’UJ“’UJ1> > O,\V/Z e N,z }é 0,
and thus

(L M) + (g a0) — Do) + D) <0
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Dividing this last relation by|u;||, we get:

1 o (o) | P(|[ui|zi)
(=1 + M)zi,z0) + (g, zi — ) — <0.
i [ual | [l Al
Taking the limit inferior ag — +o0, we get:
D(]|uil|zi
(g — Mg, 2) —l—ljminfM <0
1——+00 ||UZ||

and thus, usind{7), we obtain:
(q— MT2,2) + D0 (2) <0.

This is a contradiction to conditioR{66) since we have pcbakove that € B(M, ®) andz # 0.

The sequencéu; } is thus bounded and we may conclude as in the proof of Theldrem 2 O

Remark 8 i) Let us set
Ri(M, D) :={z € R": (2,0) + Do (v) > 0, Vv € B(M,P),v # 0}

and
MT(D@) = |J {M"z}.
zeD(P)

Condition [66) means that if € M7 (D(®)) + R4 (M, ®s) then g € R(M, ®).
ii) Note that if B(M, ®) = {0} then condition[[&b) is trivially satisfied on the empty set.

Remark 9 If 0 € D(®) (which is the case for most practical problems) then we mapsér, = 0 to see[(8b) in
the more legible form
(q,v) + Poo(v) > 0, Vv € B(M,®),v # 0. (68)

Theorenib may obviously be applied to the class of positinéidefinite matrices, i.e.
(Mz,x) >0,V € R".

This last class of (not necessarily symmetric) matrices adticular interest for various problems in engineering
and it is then worthwhile to specify our results in this framoek.

Corollary 3 Let® : R — RU{+oco} be a proper, convex and lower semicontinuous function vitkez! domain
and letM € R™*™ be a positive semidefinite matrix.

a) If D(®)s Nker{M + MT} N K(M,®) = {0} then for each; € R, problemVI(M, q, ) has at least one
solution.

b) Suppose thab(®) ., Nker{M + MT} N KC(M, ®) # {0}. If there existsry € D(®P) such that:
(g — MTzg,v) + oo (v) > 0, Yo € D(®)o Nker{M + MT} N K(M,®), v#0, (69)

then problenVI(M, q, ®) has at least one solution.

c) If u; andus denote two solutions of probleMI(M, q, ®) then

up —ug € ker{M + M7T}. (70)
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Proof: Setting X1 = ker{M + M"}, we may writeR" = X; © Xi-. We denote byPx, (resp. Py ) the

orthogonal projector fronR™ onto X; (resp. Xi-). The matrix M is positive semidefinite and thus (see e.g.
Proposition 3.4.3 in[27]) there exists> 0 such that:

(Mx,z) > C||PX1LZC||2, Vo € R™. (71)

ThusN_ (M) = X;. Part a) is then a direct consequence of Corollhry 2, pallvis from Theorerfll5 and part
c) is a consequence of Propositldn 3. O

Remark 10 Recession tools like recession functions and recessioascoan also be used to develop powerful
methods, called recession methods, that can be used tauihetbie solvability of general noncoercive variational
inequalities in Hilbert spaces. The idea of this approachgback to G. Ficherd[19]. Various solvability results
using recession tools have then been developed in the fieddnoicoercive linear and semicoercive nonlinear
variational and hemivariational inequalities in Hilberpaces with applications in unilateral mechanics (see e.qg.
[8], [23]-[28] and the references cited therein).

Ifin addition the matrix)/ is symmetric, them is a solution of problenVI(M, q, ®) if and only if u is a solution
of the optimization problem:

min (2 (Mor,2) + (g,2) + 9(2)}. (72)

This last case is also of particular interest.

Corollary 4 Let® : R™ — RU{+oo} be a proper, convex and lower semicontinuous function vidtbec! domain
and letM € R™*™ be a positive semidefinite and symmetric matrix.

a) If D(®)o Nker{M} NK(M, @) = {0} then for eachy € R", problemVI(M, q, ®) has at least one solution.

b) Suppose thab (®) ., Nker{ M} N K(M, @) # {0}. If
(q,v) + Pos(v) >0, Vv € D(P)o Nker{M} NK(M,P), v #0, (73)

then problemVI(M, q, ®) has at least one solution.

c) If u; andus denote two solutions of probleMI(M, q, ®) then

up —ug € ker{M}. (74)
and
(q,u1 — ug) = ®(u2) — ®(u1). (75)
d) If
O(x+ z) = O(x),Ye € D(P), z € ker{M}
and

(¢.¢) 0, Ve € ker{M},e #0,
then problenVI(M, q, ®) has at most one solution.

e) If the function® is stricly convex then probleMI(M, q, ®) has at most one solution.
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Proof: Let us first remark thatter{ M + MT} = ker{M} and parts a) and the first relation in part c) are direct
consequences of part a) and c) in Corol[@ry 3. Using the atprice of problenVI(M, q, ®) with problem [ZP),
we get also

%(Mul,ul) + (g, u1) + P(uy) = %(Muz,uﬁ + (g, ua2) + ®(uz)

from which we deduce the second relation in part c). It is easheck that part d) is a direct consequence of part
C).

Moreover, letry € D(®) be given. Then, for alb € ker{M}, we have{M 'z, v) = (z, Mv) = 0. It results
that condition[[ER) is thus here equivalent to conditiod)(7Bart b) is then a direct consequences of part b) in
Corollani3.

Finally, if @ is strictly convex then the function — % (Mz, z) + (¢,z) + ®(z) is strictly convex too and thus

problem [ZR) has at most one solution. The result in part k)viis since problem{d2) is equivalent to problem
VI(M, q, ®). 0

3.7 Copositivity and solvability conditions

Our aim in this section is to show that our results estabtisheCorollaryI2 and Theorefd 5 recover some results
established in the framework of complementarity system&oa (R..)" involving copositive plus matrices.

Let K C R™ be a nonempty closed convex cone. We set:

B(M,K)={rxe€ K: Mz e K" and (Mz,z) = 0}. (76)

HereB(M, ¥ k) = B(M, K)and problenWI(M, q, ¥k ) is equivalent to the complementarity probl€¥ (M, q, K):
ue K
Mu+q e K*
(u, Mu+q) = 0.
Our results in Corollarfl2 and Theordiin 5 read here:
Corollary 5 Let K C R" be a closed convex cone. Lt be a matrix satisfying:
(Mz,x) >0, Vo € K. (77)

a) If B(M, K) = {0} then for eachy € R", problemCP (M, g, K) has at least one solution.
b) Suppose thaB (M, K) # {0}. If there existsy € K such that

(q— MTz9,0v) >0, Voe B(M,K), v#0, (78)

then problemCP (M, q, K) has at least one solution.
c¢) Moreover, ifu; andus, denote two solutions of proble@P (M, q, K) then

up —uz € N_(M). (79)
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Remark 11 i) Recall that one says that a matri¥ € R™*™ is copositive plus ot provided that
(Mz,z) >0,Ve e K

and
(x € K, (Mz,z) =0) = x€ker{M+ M}

In this case
BM,K)={zx € K: Mz e K*and x € ker{ M + M"}}.

i) Note that the approach developed [n]20] arid]21] for coepentarity systems originated the approach devel-
oped in [Z3] for variational inequalities. We note that Tmem[3 recovers both solvability results and unifies both
approaches (anyway in the framework of finite dimensionaibj@ms).

4 Variational inequalities method in electronics

Several researchers have recently shown that mathemattsifrom complementarity systems theory and varia-
tional inequalities theory may be used to develop rigoroathematical study of circuits in electronics involving
devices like diodes, Zener diodes and varistors that areacteized by set-valued ampere-volt characteristics.
Mathematical approaches using tools from mathematicarpraming and complementarity systems theory have
been particularly developed in 15[ 116]. 13101341 ]3&hd the references cited therein while mathematical ap-
proaches using tools from set-valued analysis and vanialtioequalities theory have been studiedin [[7], [B]1[10],

[L3], [L4] and [22].

4.1 Set-valued Ampere-Volt Characteristics in Electronis

Electrical devices like diodes are described in terms of ArapVolt characteristiog, 1) that is a graph expressing
the difference of potentidl” across the device as a function of currétitrough the device.

A B
e B e

—_—
\'%

Figure 1: Electrical Device

The schematic symbol of a circuit element is given in Figiird ie conventional current flowwill be depicted
on the conductor in the direction of the arrow and the potémti:= V4 — Vi (Va4 (resp.Vp)) potential of point
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A (resp. B) across the device will be denoted alongside the deviceefixgntal measures as well as empirical
and physical models lead to a variety of monotone graphstlgtpresent vertical branches. The reader can find
general descriptions of devices and Ampere-\olt charesties either in the appropriate electronics literaturaor

electronics society catalogs (see e.g. [1], [2], [3], [&], [6], [38]).

Let us so suppose here that we may write:
Ve F@), (i eR)

for some set-valued functiaf : R = R. The domainD(F) of F is defined by:
D(F)={xeR:F#0}.
We assume thaf is maximal monotone, i.e.
(21 — 22)(x1 — 22) > 0, V1,20 € D(F), 21 € F(21), 22 € F(x2)
and the grapld/(F) of F, i.e.
G(F) ={(z,y) e R" xR" : x € D(F), y € F(z)}
is not properly included in any other monotone subsék of R.

A classical result (see e.g. Proposition 1.3.15711 [27])uees that there exists a proper, convex and lower semi-
continuous functiop : R — R U {400} such that

F(i) = 0p(i), (i € R).
Note that there existsoco < a < b < +o0 such thafa,b] C D(F) C [a,b] andp can be determined by the
formula: )

{ f;o B0(s)ds if i € [a,b]

+oo if i€ R\[a,b]

whereig € |a,b[ and3° : D(F) — R denotes the minimal section ¢, i.e. °(z) € F(z) and|3%(z)| =
inf{|w| : w € F(z)}. Remark that the functiop in (80) is determined by up to an additive constant.

p(i) = (80)

Note also that:
dp(i) = [B°(i7), B°(iT)] , Vi €la, b,

where

B67) = lim_A(2)
and

B0 = lim B(e).
We have

Ve dp(i) <= i€ dp* (V) <= ¢(i) + ¢ (V) =iV.

Remark 12 (Terminology) We will say that an electrical device is VANRassibleprovided that its ampere-volt
characteristic graph(i, V) is maximal monotone. Then there exists a proper convex amerlsemicontinuous
functiony : R — R U {400} such that

V e dy(i), Vie R.

The functiony will be called the electrical superpotentiédetermined up to an additive constant) of the device.
Roughly speaking, the electrical superpotenfiadppears as a "primitive” of in the sense that the "derivative"
(in the generalized sense) pfrecovers the set-valued functign
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4.1.1 Diode models

The diode is a device that constitutes a rectifier which pesrthe easy flow of charges in one direction but restrains
the flow in the opposite direction. Diodes are used in powestebnics applications like rectifier circuits, switching
inverter and converter circuits.

Example 2 (IDEAL MODEL) Figure[3 illustrates the ampere-volt characteristic of aeal diode.

Figure 2: Ideal diode model

This is a model in which the diode is a simple switcH/ I& 0 theni = 0 and the diode is blocking. #f> 0 then
V' = 0 and the diode is conducting. We first see that the ideal disdescribed by the complementarity relation

V<0, i>0, Vi=0

that is also
min{—-V,i} = 0.

The electrical superpotential of the ideal diode is
¢p(r) =Yg, (z), (z€R)

Then
¢p(z) =V¥r_(2), (z€R)
and the recession function of the electrical superpotérgia

(¢D)oo () = ¢p(2), (z €R).

We have also
R_ if =0

Opp(r):=q 0if >0 , (reR)

0if <0
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and

doh(z): =1 01if 2<0 , (z€R).

0if 2>0
The complementarity relation can be written as

Ve dep(i) <= i€ (V) <= pp(i) + ¢ (V) =iV.

Example 3 (PRACTICAL DIODE MODEL) Figure[d illustrates the ampere-volt characteristic of aaptical
diode model.

i

[~
—_—
~
V (Volts)
1
Vl
i (mA)
V2
-100 —+

Figure 3: Practical diode model

There is a voltage point, called the knee voltdgeat which the diode begins to conduct and a maximum reverse
voltage, called the peak reverse voltdge that will not force the diode to conduct. When this voltagexceeded,
the depletion may breakdown and allow the diode to conduttterreverse direction. Note that usuallys |>>|

V1 | and the model is locally ideal.

For general purpose diodes used in low frequency/speedagtians,| V; |~ 0.7 — 2.5V and| V4 |~ 5 kV; for
high voltage rectifier diodes,V; |~ 10 V and| V% |~ 30 kV; for fast diodes used in switched mode power supply
and inverter circuits| V3 |~ 0.7 — 1.5 V and| V, |~ 3 kV and for Schottky diodes used in high frequency
applications,| V4 |~ 0.2 — 0.9 V and| 4 |~ 100 V.

The electrical superpotential of the practical diode is

Viz if >0

QDPD(.”L') = s (.I' S R)
Vox if 2 <0

Then
@*PD(Z) = \IJ[Vz,Vl](Z)v (Z € R)
and the recession function of the electrical superpotéigigiven by:

(¢PD)oc(r) = @pp(), (x €R).
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We see that
Vo if <0

dopp(z)=1¢ [WVo,V1] if =0 , (z €R)

Viif >0

recovers the ampere-volt characteristic V') while
R_if 2=V,
0 if z €]Vs, V4]

d¢pp(z) = , (2 €R).

0 if »eR\[Vs,Vi]

recovers the volt-ampere characteristi¢, ). The ampere-volt characteristic of the practical diode taus be
written as

V € 0ppp(i) <= i € 0ppp (V) <= opp(i) + ¢pp(V) =iV.

Example 4 (COMPLETE DIODE MODEL) Figure[d illustrates a complete diode model which includes t
effect of the natural resistance of the diode, called thé besistance, the reverse curreh, , the diode capaci-
tance and the diffusion current. This last model is more eaeuand represents the true operating characteristics
of the diode.

Note that| V4 |<<| V4 |. For example, the 10ETS.. rectifier (SAFEIR serlés [3]) hasrbdesigned with
| Vi |=1.1V,| V4 |=800— 1600V, Ir; = 0.05 mA and with a bulk resistance equal2z0 m(2.
Let us use the notation of Figue 4. It is implicitly assunteat t

Tro <0< I, Va<Vo<0< V] < V3.
Let us also set:

o (Vs = V1) g (IriVs —1Ir3Vi)  Iri(IgiVs — Igr3V1)

(Irs — Ir1) (Irs — Ip1) e 2(Irs — Ir1)

The electrical superpotential of the complete diode is

Viz + Ipa (2 = Vy) if 2 < Ips

2}/;21'2 if Iro <z <0
vop(z) = , (x eR)
2}/;11'2 if O<ax<Ipg

%azQ—ﬁx—i-'y if Ipp <uw

and simple calculations yield:
Vy if < IRro

Vi, Vo] if = 1Igy

dpop(r) = oo i In <2<0 | (z€R).
i

T if 0<a<Ig
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Vit - -

IRZ

. V.IRI Irs i(mA)

1V,

Figure 4: Complete diode model

On the other hand, we may compute the conjugate function:

+oo if 2 <V,

Vo, .
IR2(2—72) if Vi<z<V,

IRQ 2

) “R2 2 it < 2 <0
vep(2) =< 21" 2S2s

, (2€R)

IR
22

e if <
2 f 0<z<W;

1 1 .
5a22 + (Ip, —aVy)z + 51/1(041/1 —nL)if 1<z
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and
0 if 2< Vy

]—OO,IRQ] if Z:V4
IRQ if V4<Z§‘/2

0¥ = R).
©op(2) IVﬂZ if 1y <2< 0 , (zeR)
2

In .
%z fo<z2<V

az+ (Igy —aVy) if V1 <z
The recession function of the electrical superpotentialdee:

‘/ZL,T if ,TSIRQ

(peD)os (@) = ; (zeR).
+oo if o> Ipo

The ampere-volt characteristic of the complete diode can the written as
V € dpep(i) <= i € 0pip(V) <= wep(i) + vep(V) =iV.

Example 5 (EMPIRICAL DIODE MODEL) An empirical model used in electronics to describe the asyer

volt characteristic of a diode is:

V(i) = %m(é 1) (i > —1Is),

wherel is the saturating reverse current(~*° < . < 10712 A), Vr is the thermodynamic voltageq{ mV) and

7 is the emission coefficient (< . < 2). This model is usually considered in the engineeringditere when a
rigorous mathematical analysis taking care of the domaia$ not required. It is however possible to proceed
to a suitable mathematical treatment as above in definingétealued functioly : R = R by

Y ln(4 +1) if i > —Is
V(i) =
0 if i < —Ig.

Then setting

Ve (4 + 1)+ Is) — 0 0f 0> —Ts

¢Ep(i) = VTT@ if i1 =—Ig

+oo if 1< —Ig
we see that
Moreover
(ED) oo (1) = ¥y (i), (i €R).
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Figure 5: Zener diode model

4.1.2 Zener diode models

The Zener diodes are made to permit current to flow in the seveirection if the voltage is larger than the rated
breakdown or "Zener voltagd’;. For example, for a common Zener diod&,~ 0.7 volts andV, ~ —7 volts.

The Zener diode (see Figud 5) is a good voltage regulatoraintain a constant voltage regardless of minor
variations in load current or input voltage. There is a asrpoint/z, called the Zener knee current, which is the
minimum value of the Zener current required to maintainagdt regulation and a maximum allowable value of
Zener currenf ;. Currents above this value will damage or destroy the system

The graph corresponding to the ampere-volt charactefisti¢) is maximal monotone and there exists a proper
convex and continuous electrical superpotentialR, — R such that

V € dpli), (i € R).

Example 6 (IDEAL ZENER DIODE MODEL) The ideal Zener diode model (see Figllre 6) is given by the com-
plete diode model (see Figurk 3) with the appropriate vafoe$’; andV5. This means that the voltage across the
diode is constant over a wide range of device current values.

Example 7 (PRACTICAL ZENER DIODE MODEL) This model (see Figuld 7) is a piecewise linear model
that includes the effects of the Zener impedance.

Let us use the notation of Figure 7. It is here implicitly assal that
L <0<, Vi<Vs<0< V<V

The electrical superpotential of the Zener diode is

—(Vlg;lv‘%)xQ +Vaz if 2 <0
vz(r) = , (z €eR).

(‘/22;[2‘/4)1'2—1—‘/211' if >0



Variational inequalities via semi-complementarity preiis 31

i
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Figure 6: Ideal Zener diode model
i
N
i VL -
<
V (Volts)
Vot — —
Vi :
L |
I i(mA)

Vs
/ Vi

Figure 7: Practical Zener diode model

Then ) |
sy (22 = 2Vaz + V) if 2 <V

ey(z)=<¢ 0if V3<2<V, , (z €R).

st (22— Vi + V) f Vi< 2
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The recession function of the electrical superpotentigiven by:

(#2)oc(x) = Wyoy(2), (z €R).

Moreover
—(Vll_lv?’)x + Vs if <0
Opz(x) = Vs, V4] if =0 , (r eR)
—(V2[_2V4)x +Viif >0
and

{/1]_1{/3('2_‘/3) if z2<V3

0pz(2)=«¢ 0if V3<2<V, , (z€R).

VQIEV4 (z—=Vy) if Vi<z

The ampere-volt characteristic of the complete diode cas tie written as
V€ 0pz(i) <=i€ dpy (V) < ¢vz(i) + 5 (V) =iV.

Example 8 (VARISTOR) A varistor is a nonlinear device that has an electrical belbagimilar to the Zener
diode (with| V4 |=| V2 |). More precisely, the varistor (see Figute 8) is a voltagsdndent resistor with a
symmetrical monotone ampere-volt characteristic.

i
o
¥ 2

\4
<«

i(mA)

_—

Figure 8: Varistor

It is used connected in parallel with the electronic deviceiecuit that is to be guarded in order to form a low-
resistance shunt when voltage increases and thus prevegritigher rise in the overvoltage.

4.2 Mathematical Formulation of a Class of Non-regular Modés in Electronics

A circuit in electronics is formed by the interconnectioretéctrical devices like generators, resistors, capagitor
inductors, transistors, diodes and various others. Thavwedbr of a circuit is usually described in terms of currents
and voltages that can be specified through each involvetrielalevice. The approach to state a mathematical
model that can be used to determine these currents andesitagsists to formulate the ampere-volt characteristic
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of each electrical device, to write the Kirchoff’s voltagemM expressing that the algebraic sum of the voltages
between successive nodes in all mesches in the circuit evend to write the Kirchhoff’s current law stating that
the algebraic sum of the currents in all branches which ag@/t® a common node equal zero.

The practice (seé€][8] anfL2]) shows that a large class ofiitér can be studied via the following general mathe-
matical formalism.

LetA € R™*™, B € R™*™, C' € R™*™ andD € R"*? be given matrices. Lef : R — R U {+occ} be a given
proper, convex and lower semicontinuous function.det R” be given, we consider the problem:

NRM(A,B,C,D,u, E): Find (z,yr) € R x R™ such that

Az — Byr, + Du =0, (81)
y=Cuz, (82)

and
yL € 0E(y). (83)

The matricesd, B, C and D in @) are structural matrices used to state Kirchoff'sagé laws and Kirchoff’s
current laws in matrix form. The matrid depends of electrical parameters like resistances, dapaes and
inductances. Usually is a control vector that drives the systemgenotes a current vector apg is a voltage
vector corresponding to electrical devices like diodes sehossibly set-valued) ampere-volt characteristics can
be described as il{B3).

It is noteworthy that[{81)E(83) may represent the equatafre static circuit, but also the generalized equation
that is to be satisfied by the equilibrium points of a dynatégauit, or more generally of a class of differential
inclusions (se€[12] for applications in the absolute sitglproblem).

Let us now make the following two assumptions:

Assumption (H1): E: R™ — R U {+oc0} is proper convex lower semicontinuous and

D(E) =D(3).

Assumption (H2): There exists, € R™ such tha& is finite and continuous afy = C'zo.

Assumption (H3): There exists an invertible matrik € R"*" such that

PB=CT
We set
O(x) = Z(Cx), (Ve € R™). (84)
Then
D(®)={zeR":Cx € D(E)}. (85)

Assumption(H2) entails thatD(®) # () and it is clear thaf : R* — R U {400} is proper convex and lower
semicontinuous. Moreovdp (®) is convex sinceD (=) is convex and closed sinde(Z) is supposed to be closed
in (H1).

Proposition 7 Suppose that assumptiofid1) — (H3) are satisfied and leb be defined as il {34).
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i) If (x,yr,)isasolution of ProbleflNRM(A, B, C, D, u, E) thenz is a solution of problenrVI(—PA, —PDu, ®),
i.e.
(—=PAx — PDu,v — z) + ®(v) — ®(z) > 0,Vv € R". (86)

i) If « is a solution of problenVI(—PA, —PDu, ®) then there existg;, € R™ such that{x, y;,) is a solution of
ProblemNRM(A,B,C,D,u, E).

Proof: Let («,yr) be a solution of Probleni{81)-(B3). Then
0 € Az — BOZ(Cz) + Du

which is equivalent to
0 € PAx — PBO=(Cx) + PDu

sinceP is invertible. Thus
0 € PAz — CTO=(Cx) + PDu.

The existence of a vectgp = C'zy at whichZ is finite and continuous ensures that (see e.g. Propositiohllin

[Z2)):
CTOZ(Cz) = 09(2), (2 € R™).

Thus
0 € PAx + PDu — 0%(x),

that is
(=PAx — PDu,v — z) + ®(v) — ®(z) > 0,Vv € R".

Suppose now that is solution of Problen{{86). We see as above that:
0 € Az — BO®(Cx) + Du.
It results that there existg, € 0®(Cz) such that:
0 = Az — By, + Du.

Then we obtain the relations iR81}=[83) by setting: Cz. O

Propositiol¥ means that if assumptigisl ) — (H 3) hold then problenI{81(83) can be studied via the variaion
inequalityVI(M, q, ®) with
M =—-PA, q=—-PDu, ®=EZ0C. (87)

The results discussed in Section 3 can thus be used herettedollowing result is then of particular interest to
calculate the recession tools involved3g), ¢, @), that are herd (®) ., P andD (P, ) With ® = =0 C.

Proposition 8 Suppose that assumptiof§1) and(H3) are satisfied and leb be defined as ir.{84). Then

D(®)o = {2 €R" : Cz € D(Z)s ]}, (88)

Do (x) = Eao(Cx), V2 € R (89)

and
D(®w)={z€eR":Cz e D(E)}. (90)
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Proof: i) Let us set
Doo(C,2) :={z € R": Cx € D(Z)}-

It is easy to see that
D((I))oo = Doo (C, E) (91)

Indeed, ife € D(®)o thene+zy € D(P),VA > 0. ThusC(Ae+Zo) € D(E), VA > 0. Hereyp = Czy € D(E)
and

Thuse € Do (C, E).

Reciprocally, ife € D, (C, E) thenCe € D(E)o.. ThusA\Ce+75y € D(E), VYA > 0. Thushe+Zy € D(P), VA >
0 and then

A>0
i) We have:
i 1_ 7 — | 1 =(7 -= n
D (z) = )\EIJ’I}OO XH(C(a:O + \z)) = )\ETOO Xu(yo +ACz) =2 (Cx) (x € R™).
i) The relation in [@D) is a direct consequencelail(89). O

5 Diode Circuits

We are now in position to study diode circuits like amplitisgdectors that are used to transmit the part of a given
waveform which lies above or below some given referencd,ledible-diode clippers that are used to limit the
input amplitude at two independent levels, sampling gatasimare transmission circuits in which the outputis a
reproduction of an input waveform during a selected timerivl and is zero otherwise and other circuits involving
both diodes and operational amplifiers.

We will present some electrical systems involving ideabiédi®that can be studied by means of classical tools from
complementarity theory and then discuss some extensi@ystems involving practical components.

Let us first start with two simple clipping circuits to illuate the essence of our methodology.

Example 9 (Clipping circuit 1 / Ideal diode) Let us consider the circuit of figufd 9 involving a load resiste
R > 0, an input-signal source and corresponding instantaneous curréran ideal diode as a shunt element and
a supply voltagdr.
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Figure 9: Clipping circuit 1: Diode as shunt element

Kirchoff’s voltage law gives
u=Ur+V+FE

whereUr = Ri denotes the difference of potential across the resistor dnd 0¥, (i) is the difference of
potential across diode. Thus
E+ Ri—ue€ —0¥r, (i) (92)

which is equivalent t?/ I(R,E —u, ¥ _ ), i.e.
i€eRy:(Ri+E—u)(v—1)>0,YveRy.

Here R > 0 and for eachF, u € R, we may apply Corollarfl1 to assert th&f92) has a uniquetsmiu

Moreover: 5 5
m <= §+2_ = € —B\I/R+(Z) = —E-i-}—z €Z+8‘I/]R+(Z)

- F 1
uR )zﬁmax{o,u—E}.

If w < E then the diode is blocking whileqf > E then the diode is conducting.
Let us now consider a driven time depending input «(t) and define the output-signal— V,(¢) as

=1 = (idR+a\I/R+)_l(

V,(t) = E+ V(1).

The time depending current— i(t) is given by

i) = % maxc{0, u(t) — B} (93)
and thus
Vo(t) =V (t) + E = u(t) — Ri(t) = u(t) + min{0, £ — u(t)} = min{u(t), E'}. (94)

This shows that the circuit in figuf& 9 can be used to transheitgart of a given input-signal which lies below
some given reference level
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Figure 10: Clipping circuit 1: Ideal diode as shunt elemént: 1

Example 10 (Clipping circuit 1/ General diode) In the case of a diode with electrical superpotentialwe may

follow the same steps as above to get:

u(t)— E
R

u(t)— E

i(t) = (ids + ) ) = argmin ez (517 — (WO + (o). (95)

and
Vo(t) = u(t) — Ri(t). (96)

input voltage
output voltage

time. time

Figure 11: Clipping circuit 1: General diode as shunt eleinosing,V; = 0.1,V = —90, F =1

Example 11 (Clipping circuit 2/ Ideal diode) Let us consider the circuit of figulel 2.
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Figure 12: Clipping circuit 2: Diode as shunt element

Here we have
uw=Ur—-V+FE

with Ur = RiandV € 0¥R, (—i). Thus
E+ Ri—u € dUg, (i) = —0Vg_(i) (97)
which is equivalent t&/ IR, E — u, ¥'z_), i.e.
teR_:(Ri+E—-u)(v—1i)>0,YveR_.

Here R > 0 and for each®, u € R, we may apply Corollarf1 to assert thBf197) has a uniquetsmiu Moreover:

E E
(E])<:>E—|—i—%E—a\I/Rf(Z')<:>—E+%E’L’+8\I/R7(Z‘)

- F 1
uR ) = Emin{O,u—E}.

If u < E then the diode is conducting whileiif> E then the diode is blocking. For a driven time depending input
t — u(t) the time depending current— i(t) is given by

1= (idp + 6\IJ]R7)_1(

i(t) = %min{o, u(t) — E}. (98)

and the output-signal— V,(t) = V(t) + E'is
Vo(t) = max{u(t), E} (99)

and thus the circuit in figurEZ12 can be used to transmit the paa given input-signal which lies above some
given reference levdl.
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Figure 13: Clipping circuit 2: Ideal diode as shunt element

Example 12 (Clipping circuit 2/ General diode) In the case of a general diode with superpotentialve set:

p(z) = p(=x), (z€R).

Suppose there exists a poipt= —x( at whichy is finite and continuous. Note that this is the case for eactieho
discussed in Section 4. Then:
9¢(x) = —0p(—x), (v €R).
Thus
. . _,. E  u _.
E+ Ri—ue€ dp(—i) = —-0¢(i) < ) + = € i+ 0p(1)
i = (idg + 0p) ! (“ ;E) = argmin, e { |7 - (“ ;%E) 2+ @)}

. 1 u—F
— angain (312 — (L7 ) P+ pl-0))

For a driven time depending input— «(t) the time depending current— i(¢) is given by

i) = angmin,ca (1o — (U072 ) 24 (o), (100)

and the output-signal — V,(t) = V(t) + F can be computed by the formula

V,(t) = u(t) — Ri(t). (101)
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input voltage
output voltage
o

05+

time. time

Figure 14: Clipping circuit 2: practical diode as shunt eéetnl; = 0.2, V5 = —90, E = 0.5

Let us now discuss two circuits, a double-diode clipper asdrapling gate, to illustrate the results established in
Propositior¥ and Corollafy 4.

Example 13 (Double-diode clipper / Ideal diode)Let us consider the circuit in FigufedL5 involving a load iesi
tanceR > 0, two ideal diodes, an input-signal source and two supplyagasE; and E». It is assumed that
FE, < E5. We denote bythe current through the resistdk and we set = i; + i> where—i; denotes the current
through diodeD; andis is the current through diod®s;.

E<E——

Figure 15: Double-diode clipper

Using Kirchoff’s voltage laws, we get the system:

By + R(iy +12) —u=+V;
(102)
Es + R(i1 +i2) —u= -V,
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whereV; € 0¥g, (—i1) = —Vg_(iy) is the difference of potential across diodlg andV; € 0¥, (i2) is the
difference of potential across diode,.

Setting® = ¥g_ g, and

R R Ei—u i
M= , g= T , (103)
R R E2 —Uu ig
we see that the system [D{102) is equivalent to the variatioequality VI(M, q, ®), i.e.
TecR?*: (MY +qv—"_)+ &) —d(Y) >0,V c R (104)

Here the matrix\/ is positive semidefinite and symmetdig(®)., = R_- xR, ker{M} = {v € R? : vg = —v1}
andC(M,®) = {v e R?: vy = —v1}. Thus

D(®)o Nker{M} NK(M,®) = {v € R? : vy <0,v9 = —v1}.
Then, for allv € D(®)o Nker{ M} NK(M, D), v # 0, we have-v; = v, > 0 and thus
(q,v) = (B1 —u)v1 + (B2 — u)vz = va(E2 — E7) > 0. (105)

We may apply Corollarfd4 which ensures that the systefiin) (a4 at least one solution.
Using the first relation in part (c) of Corollarid4 we first remkethat if T andY denote two solutions di{IP?2) then
T — 7T € ker{M} and thusi; — i; = — (i — i2), i.€.

i1+ 9 = 11 + io. (106)
It results that ifY* = (i} i3)T denotes a solution of the system[In{{104) then the currentitir the resistor?,
i.e.7* =14} + 45 is uniquely determined.
Using now the second relation of part (c) of Corolldlly 4, weaib also that:

(Er —w)iy + (B2 — u)iz = (By — u)iy + (B2 — w)is. (107)
Here B, # E; and thus the system iRTI0€)-(107) yields= i; andiy = i>. The solution ofl{T04) is thus unique.

Using the relations in[{102) we see that :

U—EQ
R }

U—E1

R

i1 + 15 = min{i3, } = max{i],
from which we deduce, after elementary calculations, that:

u_—REl if u< By

u_—REZ if u> FEy
So, for a driven time depending inptit— w(t) the time depending curremt— *(¢) through the resistor? is
given by

wOZFL it (t) < By

wO=F2 if u(t) > By
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and the output-signal — V,(¢) defined by
Vo(t) = Va(t) + F2 = u(t) — Ri*(t)
is then given by the expression:
Eq if u(t) < By
Vo(t) =< w(t) if By <u(t)< Ey . (109)

Fs if u(t) > Fy

This shows that the circuit can be used to transmit the paatgifzen input-signal: that lies above some levél
and below some levél,.

AR

05+

input voltage
output voltage
o

time. time

Figure 16: Double-diode clipper: ideal diodg, = 0.1, E; = 0.6

Example 14 (Double-diode clipper / Practical diode)Let us again consider the circuit in Figurell5 and suppose
that the electrical superpotential of each diodes and Ds, is given by (practical diode model):

viz if >0
opp(x) = , (reR)

wr if ©<0

wherevs < 0 < v1. We suppose also that
Ey — E4

5 (110)

|V2|>

We set
@pD(.%') = QOPD(—.T)7 VarelR

and
®(z) = gpp(x1) + wpp(w2), V (21,72) € R?. (111)
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Kirchoff’s laws yield the system

Ei1+ R(i1 +i2) —u=+4V; € —0¢pp(i1)
(112)
Eo + R(Zl + ig) —u=-V e _84PPD(i2)
which is equivalent to the variational inequalWI(M, q, ®), i.e.
TeR?: (MY +q,v—"_)+®w) — &) >0,Vve R (113)

with M and ¢ as in [IO0B) and® as in [T11). HereD(®),, = R?, &, = &, N (M, ®) = ker{ M} and thus
D(®) o Nker{M} NN (M, ®) =ker{M} = {v € R? : vy = —v; }.
Letv € ker{M}, v # 0, be given. Then:
(¢:v) + o (v) = v2(E2 — Ev) + ¢pp(—v1) + ¢pp(v2) = v2(E2 — E1) + 2¢0pp(v2).
It results that ifv, > 0 then
(q,0) + Poo (V) = v2(Es — Ey) + 20102 > 0

while if va < 0 then
(¢,0) + Poo(v) = —v2(2 | v2 | —(E2 — E4)) > 0.
We may then apply Corollafyt 4 which ensures that the systdfilliy) has at least one solution.

If T* = (i% i5)T denotes a solution of the system[n {11 13) then from the filstioa in part c) of Corollary3, we
deduce that the currerit = i} + i3 through the resistol? is uniquely determined.

Moreover, the functio® is strictly convex and part e) of Corollafyf 4 ensures that sledutionY* is unique and
given by:

1
T = argminz€R2{§<Mx,x> + (g, z) + ®(x)}. (114)
So, for a driven time depending inptit— w(t) the time depending curremt— *(¢) through the resistor is

given by
i*(t) = i5(t) + i5 (1) (115)

where
. . . 1
(i5(t) a5t )T = argm1nm€R2{§<Mx,x> + (By —u(t)zr + (Ey —u(t))ze + ®(x)} (116)
and the output-signdl,, can then be determined by the formula:

V(1) = u(t) — Ri*(¢).
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input voltage
output voltage
o

05+

time. time

Figure 17: Double-diode clipper: practical diode

Example 15 (Sampling gate)A sampling gate is a circuit in which the output is a reprodaictof the input
waveform during a selected time interval and is zero otheewi he time interval is selected by the gate sighal
The circuit in FigurdIB is a sampling gate involving a bridggfour diodesD,, D5, D3, D, and symmetrically
controlled by gate voltages V. and —V. through the control resistor®. > 0. The input-signal is given by
and the output signal is defined by the voltagehrough the load resistoR;, > 0. Usually,V; is sinusoidal while
V. is rectangular shaped.

+

Figure 18: four-diode-bridge sampling gate

We denote by the voltage of the diod®; and byz; the current across the diode, (1 < j < 4). Moreover,zzs
denotes the current through the left resisfoy, x4 is the current through the right resistdt,. andx; denotes the
current trough resistoi? ;. Kirchoff’s laws yield

Vi—V4+V2—RLI7:0

2VC—V3—V4—RCI6—RCSC5:0
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V1= Va+ V3 +V,=0.

Moreoverz; + 3 = w9 + 14 = x5 = vg aNdx, — T9 = x4 — T3 = x7. ThUS

1%
——
A T B Vl D
-R, 0 0 7 0 -1 0 1 1 0\ ——
Va Vi
0 —2R. 0 Tg — 0 O 1 1 +1 0 1 =0,
V3 2V,
0 0 0 1 1 1 -1 -1 0 0
Vi
and
Vi € OYr, (71)
Vo € OYr, (x2) = OYr, (71 — 27)
(117)
Vs € OYr, (23) = OYg, (x6 — 1)
Vi € O, (24) = OYgr, (27 + 26 — 21)
Setting
c
0 0 1
X7
-1 0 1
Y= Te
0 1 -1
A
1 1 -1

and defining the functioBl = ¥, )+, we may write the relations ilL{TlL 7) equivalently as:
V e 0Z(y)

and we may then consider probl&RM (A, B,C,D, u, E).

Let us first check that the assumptions of Proposifilon 7 atisfged. Indeed, it is clear that Assumpti¢fA 1)
holds. Moreover( 2 1 1 2 )=C(1 3 2) e int{K} isa pointatwhichZ is finite and continuous
and Assumptiofi//2) is thus satisfied. Finally, we remark th@’ = B and thus Assumptiof#3) holds with
P=1.

As a consequence of Propositldn 7, probRM (A, B, C, D, u, E) can be studied via the probleWil(— A, —Du, ®)
where® = = o C. Here — A is symmetric and positive semi-definite. Moreoldg®),, = D(®,.) = {z € R* :

Cz € (R4)'} andker{—A} ={( 0 0 « )T; a € R}. Itis then easy to see that
ker{—A} N D(P)s NK(—A,®)} = {0}.

It results from Corollanf¥ that the systemMRM (A, B, C, D, u, ) has a at least one solutiori. The matrix
A is symmetric and thus:

1 1
—§<Ax*,:17*> — (Du,x*) < —§<Aa:,:17> —(Du, ), Yo € R*: Cz € (Ry)*. (118)
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Moreover, ifz denotes another solution, then using part c) in Corol@ry 4:

SC;—S_C7 0
SCZ—S_CG = 0
T — T o

for somea € R. It results thatz? = 77 andxf = Zg, i.e. the current through the resistdt and the current
through the resistofz, are uniquely determined.

So, for a driven time depending input- V;(¢) and control gate signals — V.(t) andt — —V,(t), the output
time depending voltage— V,,(¢) through the resisto?;, is uniquely determined by:

Vo(t) = Rpaq(t)

where the current functioh— x7(¢) is uniquely determined in solving the variationalinequaVI(—A, —Du(t), ®).

T T T T T T T T
— Vo
— Ve
N LN <
RS ’ N h:
1+ r A - y g
\

I L
| )
K \

voltage
o
>

voltage
o

-05}- L

Figure 19: four-diode-bridge sampling gate

The previous examples show that the place filled by the clesgnometric and positive semidefinite matrices is as
importantin Electronics as it is in Mechanics. However,itieghematical formulation of circuits involving devices

like operational amplifiers involves matrices that aremaitsymmetric nor positive semidefinite. The following
example constitutes a nice illustration of Theofdm 3.

Example 16 (Operational amplifier) An operational amplifier is a great versatile circuit elenhéased on tran-
sistors which is used to design audio equipments, osciladod waveform generators, filters and many other
applications. Let us consider the system of Fidufe 20 irimglan ideal Zener diod® and a non-inverting ampli-
fier circuit with resistorsk; > 0 and R, > 0. We denote by?; > 0 the input resistorR, the output resistor and

~ > 0 the differential gain of the operational amplifier. Note thg; is very large (a few M) while R, is very
small (a fews2). The differential gainy is very large ¢ 100000).
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Ii
e
MJ
L R

Ui by 7
Uo
Ri

Figure 20: Zener diode + Operational amplifier

[i
‘ Ri u
R2 RO IZ
Ui NN
R Uo ’Yu
I
1

Figure 21: Small signals model

Considering as in FigurE21 a small signals model for the aienal amplifier, Kirchoff’s laws give:
Ii— 5L +1,=0,
R, I;+ R —U;+Vp =0,

—vR;I; + RiI1 + (R2 + Ry)I> = 0.
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with currentsl;, I, I and voltaged/p, U; as defined in FigurE21. Therefore:

A T B D
—_—— —— —_——
1 -1 1 I; 0 0
R, R 0 L |- -1 | Vpb+ ]| -1 |U; =0,
—R;, R (RQ + RO) Iy 0 0
and
Vb € 0vzp(I;) (119)
wherepzp denotes the electrical superpotential of the Zener diode, i
Viz if >0
(PZD(!T) = ) (x € R)a
Vox if <0
with V5 < 0 < V;. Setting
I;
c

—_—~
y=(10 0)| 1 |,

1>
we may write the relation i {I19) equivalently as:
V € 0¢pzp(y)

and we may consider the probleNRM (A, B, C, D, U;, pzp).

We check that the assumptions of Proposifibn 7 are satisfietbed, Assumption(d71) and (H2) are satisfied
sincep p is convex and continuous dR°. Assumptior{ 4 3) holds with

0 -1 0
P = 0 0 -1
-1 0 0

As a consequence of Propositldn 7, probRM (A, B, C, D, U;, pzp) can be studied via the problewil(—PA, —PDU;, ®
where
®(z) = ¢zp(Cz) = pzp(21), Vo € R®.

Here we have:

R; Ry 0
—PA = —’}/Ri RZ (RQ + Ro)
1 —1 1

The matrix—PA is a P-matrix andd € DT'(R?; R U{+oc}) (with ®; = &, &, = ®3 = 0). We may thus apply
TheoreniB to ensure that the systenNRM (A, B, C, D, U;, pzp) has a unique solution.
Thus, for a driven time depending input— U;(t) the output time depending voltage— U,(t) defined by (see
Figure[20):

Uo(t) = ’}/Rllz(t) - ROIQ (t)
is uniquely defined with the current functions~ I,(¢) andt — I5(¢) that are uniquely determined in solving
VI(—PA, —PDU;(t), ®,).
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In the next example we analyse the stationary solutions dflgé&rectifier. This application constitutes an example
that does not fit within this class of generalized equationl)-[88). Here the unknown iB{J16) is nobut y,

(see [B1)-483)).

Example 17 (Four-diode bridge full-wave rectifier) Let us consider the circuit in figulEeR2 involving four diodes
Dy, Dy, D3 and Dy, aresistorR > 0 and a capacitoC' > 0. We denote byp, € T'(R; R U{+c0}) (1 <i < 4)
the electrical superpotential of diode;.

D

Figure 22: Four-diode bridge

Let us denote by; the voltage of diod®; (1 < i < 4), = the voltage of the capacitor and use the other notation
indicated on Figurg22. Kirchoff’s laws yield the system:

i1 +is =% +C%
—Vi=ax+V3

13 =14 + 11 — i2
—V1:ZZ?—|—V3—U

Vo= -V +u.
We have
—Vi € =0¢p,(is), Vi € =0pp, (i1), —V2 € =0pp, (i2).
Moreover
V3 € Opp, (i3) & i3 € 0pp, (V3).
We set

Ops(x) = ¢p,(—2),Vz € R,
and we assume the existence of a peint R at whichép, is finite and continuous. Then
d0p,(x) = —0pp,(—x), Vo € R.
Therefore
Vs € 0pp, (23) & i3 € —(96‘[)3(—‘/3).

We set
(I)(I) = ¥Dy (Il) + 9D3 (IQ) +¢b, (I3) + ¢D, (I4)a Vz € R4 :

It results that the dynamical behavior of the circuit in FiglZ2 are described by the system:

B

—_——— 14
dr -1 1 1 -V

12



50 Addi et al

Y C N YL F
——
-V 1 0 -1 0 O n
i3 - 0 1 0 1 -1 —Vs 0
v = N + 0 -1 0 0 i + 1 |u (121)
—V5 0 0 1 0 O 19 1
and
y € —P(yr). (122)

Assuming that. remains constant, i.eu(.) = u, the stationary solutions (or fixed points) B (1 20)-{11 22}y
the problem:

—ax + Byr =0
(123)
(Nyr + Ca + Fu,v —yr) + ®(v) — ®(yz) > 0, Vv eRY,

H 1
with a := wc > 0.

From the first equation of{I23) one deduces that %ByL, so thaty = (N + %CB)yL + F'u and our problem
reduces to problefVI((N + 1CB), ®,Fu), i.e:

1
(N + ECB)?JL + Fu,v—yr) + ®(v) — ®(yr) >0, YoveR: (124)

The matrixNV € R**4 is skew-symmetric and the matrix

R -1 R 0

1 1 0 1 -1
M:=N+-CB=| o _| »
0 1 0 0

has rank 3 and is positive semidefinite since
(@, M) = %@, CBz) = R(xy + x3)%, Vo € Y
Case 1.Suppose that all diodes are ideal, i.e.
¢ep,(x) =Yg, (z),Vz e R (1<i<4).
Then® = ¥ (g, 4, D(®) = (R4)* and clearly
D(®)oo Nker{M + M*} N K(M,®) = {0}.

Indeedr € ker{M + M7T} yieldsz; = —x3 and thusz; = z3 = 0 sincez € (R, )*. Using thenz € K(M, ®),
we get also-z > 0 and—x4 > 0 and thuszy, = 24 = 0 sincex € (R4 )?. It results from CorollanyP that for
eachu € R, problemVI((N + 2CB), ®, Fu) has at least one solution.

Case 2.Suppose that diode®; and D, are ideal and consider for diode®, and D3 the practical model with
electrical superpotential
Viw if >0
plx) = , (z eR),
Vox if 2 <0

with V5 < 0 < V4. Here

O(z) = g, (1) + ¢*(—22) + VR, (23) + ¢(z4), V2 € R
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and
(p* = \IJ[szvl].
ThusD(®) = Ry x[Va, V1] X Ry X R, D(®)oo = Ry x{0} x Ry x RandD(®) = Ry x{0} x Ry x R.
We check that
D(®)oo Nker{M + M™*} N K(M,®) = {0}.

Indeed, here:, = 0 andz € ker{ M + M7} yieldsz; = —x3 and thuse; = 23 = 0 sincez; > 0. Using thenr €
K (M, ®), we get alsaz, = 0. It results from CorollarfP that for each € R, problemVI((N + 1CB), ®, Fu)
has at least one solution.

Various cases can be so studied and this shows that studgrfixed points of an interesting class of electrical
circuits can be cast into a variational inequality problerdrsas[[(IB), written as: Fingl, € R™ such that

(Myr, +q,v—yL) + ®(v) —®(yr) >0, Vv eR™ (125)

6 Conclusions

In the first part of this paper, it is shown that some clas®gatence and uniqueness results for complementarity
problems can be recovered and can be generalized to vaahtiequalities using recession tools from convex
analysis. Various classes of matricesare introduced which allow one to state well-posednessltssfau
variational inequalities of the formMu + ¢,v — u) + ®(v) — ®(u) > 0 for all v € R", thus recovering
the well-known results for P-, R positive definite and semi positive definite matrices ieéincomplementarity
problems. In the second part of the paper, it is shown thastilndy of electrical circuits with diodes, a topic of
major importance in Electrical Engineering, may benefittaflom the results of the first part. This work also
paves the way to numerical tools that may be used to detertinénequilibrium points of electrical circuits with
non-smooth elements and external excitation.
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